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Near-threshold photodetachment of H in parallel and crossed electric and magnetic fields
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Photodetachment of negative H ions in parallel and crossed static electric and magnetic fields is

considered for the case of photon polarization parallel to the electric field. The final-state interac-
tion between the electron and the H atom is included in the framework of the zero-range-potential
approximation combined with the frame transformation theory. The cross section shows modula-

tions caused by the electric field that are enhanced by the magnetic field. Singular behavior of the
cross section at Landau thresholds due to the magnetic field can be strongly suppressed by a weak
electric field. Final-state interaction eAects in the case under consideration are significant for very
strong magnetic fields 8 )60 T.

I. INTRODUCTION

The one-photon photodetachment of negative ions in
external static electric and magnetic fields is studied very
intensively both theoretically and experimentally. Many
interesting effects associated with this process have been
observed. Some of them are due to the inhuence of the
external field on the initial state (e.g. , Zeeman splitting)
and some are due to the interaction of the electron with
the external field in the final state. Effects of the second
type were observed for both magnetic and electric fields.
In the case of a magnetic field the observed structure'
is caused by the Landau resonances. The theory was
given by Blumberg, Itano, and Larson, Clark, Gurvich
and Zil'bermints, Larson and Stoneman, Greene, and
Crawford. In the case of a pure electric field a "ripple-
type" structure in the photodetachment of H was ob-
served' which is due to the interference between the
electron wave rejected by the potential barrier formed by
the electric field and the unreAected wave. " The quanti-
tative theory of this effect was given by Slonim and Dalid-
chik, ' Reinhardt (see Ref. 10), Rau and Wong, ' and Du
and Delos. '

Another important effect in the case of a pure electric
field is rescattering of the electron by the atomic residue
due to refIection of the electron by the potential barrier.
It was shown' ' that observation of this effect may be a
good tool for the spectroscopic determination of scatter-
ing parameters, such as the scattering length and phase
shifts. The first calculation' of this effect for the photo-
detachment of the H ion showed that it is noticeable for
high electric fields, F) 1 MV/cm. This is due to the p-
wave symmetry of the final-state wave function near the
origin, which is not affected by the short-range potential
of the residue. Thus, strong I mixing due to the external
field is necessary to obtain rescattering.

Both interference and rescattering effects may be
enhanced by the presence of an external magnetic field.
For example, if the external magnetic field is parallel to
the electric field the problem becomes more one dimen-
sional and in this case both interference and rescattering

effects may be more pronounced. The process of photo-
detachment in parallel fields was recently considered by
Du, ' who followed the transition from the case of a pure
electric field (8=0) to that of a pure magnetic field
(F=O). The final-state interaction of the electron with
the atomic residue was not included.

The case of perpendicular fields was considered by
Blumberg, Itano, and Larson. They were interested in
relatively small electric fields randomly distributed in
both direction and absolute value arising from the
thermal motion of the negative ions in the presence of the
magnetic field in the laboratory frame. This motional
electric field together with the Doppler effect led to a
broadening of the peaks in the photodetachment cross
sections.

If the negative ion velocity is very large, i.e., compara-
ble with the velocity of light as in the Los Alamos experi-
ment, ' the motional electric field dominates the process
and the magnetic field in the ion frame may be neglect-
ed

In the present paper we will be mostly interested in the
case when the dynamical structures due to both the elec-
tric and the magnetic fields are important. We will not
be interested in the inAuence of the external fields on the
initial state and consider therefore H ions which do not
experience the Zeeman splitting in the ground state. The
diamagnetic shift of the H ground state can be estimat-
ed' in the zero-range-potential approximation and turns
out to be negligible for all magnetic-field strengths con-
sidered below. We will consider photodetachment of H
ions in parallel and perpendicular fields using the ideas of
the frame transformation theory. ' We will study in de-
tail the inAuence of the magnetic field on the interference
and rescattering effects. %'e will consider the case of
photon polarization parallel to the electric field since the
effects are more pronounced in this case. ' '

II. PHOTODKTACHMKNT IN PARALLEL I IKLDS

A. Theory

Let us consider photodetachment of an s electron in
parallel fields for the photon polarization parallel to the
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fields. We will follow closely the approach suggested by
Du, ' but include the final-state interaction in the same
way as was done for the case of a pure electric field. '

The photodetachment cross section can be written as
(in a.u. )

for this function using the results of Rau and Wong' for
Ai and that of Greene for L,„.Since we are interested in
the case of m polarization, we consider that part of y'„'
which has odd parity under the transformation z ~—z:

2 2o= g fd i(er)„;i5 E„+ E—
n +(odd)

2'

' 1/2
22/3F 1/6

k
Ai'(g," )j;(kr )cosO, (10)

g /(e r)„,/ (2)

is the energy of Landau level; E is the total energy of the
system, which is equal to the electron energy in the final
state, and (e.r)„,is the dipole matrix element between the
initial negative-ion state and the final electron state g'„
with incoming-wave boundary conditions. We assume
that the interaction between the electron and the atom
can be described by the zero-range potential. Then, as in
the case of a pure electric field, ' we have

where ~,c are the light frequency and velocity, q /2 is
the energy of the z component of the detached electron,
q„=2(E—s„),and

E„=co~(n+—,
'

)

where $0= q„/(2—F) /, k =2E. The prime means the
derivative with respect to g0, and j, is a spherical Bessel
function.

In order to complete the frame transformation for
G' ' let us consider the spectral representation for G'+':

2/4

(2F )
1/3

COgP
Ai(g) )

X Ci(g"( ),
where g& =max(g", g0), p& =min(g", $0), and Ci(g) is the
irregular Airy function with the asymptotic form of an
outgoing wave.

Near the origin the z-dependent term in Eq. (11) has
the form

~( —) —+(0) 2~a& G( —)(r 0) (4) Ai(g& )Ci(g"&)=a —sinq„z+b cosq„z, (12)

where Gz ' is the Green's function of the electron in the
parallel fields, and

where the coeKcients a —,b can be obtained from the
matching conditions. We obtain

+(0)(0 )

1+ay *

a
y =2m. , [r'Gz+)(r', 0)],,Br

(5)
1/3

a + = — Ai($0)Ci'(g0),
9'n

1/3
a = — Ai'($0)Ci(g()),

Cn

(13)

(14)

where G'+'=(G' ')*, and a is the scattering length.
As in Refs. 8, 13, 16, and 17 we will use the frame

transformation theory to evaluate the dipole matrix ele-
ment. We assume that the wave functions near the ori-
gin, where integration has to be carried out, are not
affected by the external fields. Then for the initial state
we have

—r!a
;=C (7)

1/3 2 4 Qp(0) 2
A1(gn) 1/2e B&

(2 )1/2FI/6 Pl

where

2

g"= —(2F)'/ z+
2F

Here Ai is the regular Airy function and L,
„

is a Laguerre
polynomial. We can complete the frame transformation

In the case of photodetachment of an s electron and m. po-
larization of the laser, the z component of the electron's
angular momentum in the final state is 0. The function
y' ' in cylindrical coordinates p, z can thus be written in
the form

where we employ a+ for z & 0 and a for z & 0, and

b =Ai($0)Ci($0) . (15)

For the p-dependent term we have the same expression
near the origin as Greene and Du, '

2—
cu&p /4

e
rl

2
Q)gP

2
=&0((2s„)''p) .

X g [Ai(g())Ci($0)]
~ dko

(17)

for the p-wave part.
Substituting now (5), (10), and (17) into (4), we have the

following expression:
1/2

3X2 F'
k

~( )

2'
X [ —Ai'(g0)+g*Ai($0) ]j, (kr )cos8

for the p-wave part, where

Turning now to spherical coordinates and extracting the
p-wave part from the Green's function 6'+', we have

3cogG'+ )(p, z ) = — j, (kr )cos8
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&Q Ct7g
Ai( 0 )Ci( 0 )

(2F)' ( I+ay ) „dgo
(19)

The dipole matrix element evaluated with this final-state
wave function has the form

22/3y 1/6
(e r)„,. =4C(2m'~ )'/

(a +k )

X [ —Ai'(go)+g*Ai(g'0)] . (20)

Substituting this matrix element into the expression (2)
for the cross section, the result is

6mcos (2F.
)
'

o. =o.
o g ~

—Ai'(go)+g Ai(go)~
n=0

(21)

exp(iEt)
(22)

where o-0 is the cross section in the absence of the fields.
In order to complete calculations according to Eq. (21),

we have to evaluate y defined by the expression (6). As in
the case of a pure electric field, ' we start from the Feyn-
man expression for the propagator (the time-dependent
Green's function) and get

co&exp i Et —
—,', I' t

y =ik+(2vri ) 2t'/ sin(cutest/2)

/2f "dn= ' f" "d~
0 COg —oo 2

(28)

we obtain exactly the same result as in the 8 =0 case. '

This limit was obtained by Du' for the case g =0.
Thus the case of small y is essentially equivalent to the

case of a pure electric field, i.e., the cross section has
small ripples, which can be described by a periodic func-
tion of P=2k l3F. Therefore we can define the charac-
teristic scale of the electric-field-induced oscillations near
threshold as

E„,= —,'(3vrF) (29)

If y ~ 1 we can expect that the modulations become deep,
especially between the first and second Landau thresh-
olds. Physically it means that due to the presence of the
magnetic field the problem becomes effectively one di-
mensional. Figures 1 and 2 illustrate this point.

The importance of the rescattering effect according to
expression (19) can be estimated by evaluating the param-
eter

the magnetic field, the electric field, and rescattering
effects. If the parameter

COg

(2F )2/3

is small, go in the sums of Eqs. (19) and (21) may be con-
sidered as a continuous variable. Making the substitution

2k
t =

S (23)

where the principal value of the integral should be taken.
Then we deform the path of integration in order to

have it pass through the saddle point,

Q COg5=
(2F )

I /3
(30)

In order to have an essential inAuence of the magnetic
field on the rescattering effect, we should have 6 ~ 1 or

in the direction of steepest descent,

arg(t t, )= ——. — (24)

After this deformation of the path we have to add the
contributions of the poles of the integrand lying on the
real axis 2.0—

K{

2~1 1=1,2, . . . .
COg

(25) 1.5—

The contribution of each pole is defined by the expression

exp[i(Et& —,', F tl ))—
yl =+~i ( —1)'

(2vrit, )'" (26)

and we have a plus sign for tI & t, and a minus sign for
t& ) t, . In order to eliminate the singularity t ' near
the origin it is useful to perform an integration by parts
as in the case B=0.' Then the integration can be car-
ried out easily with ordinary computer precision.

B. Discussion and calculations

Analysis of the expressions (19) and (21) allows one to
make some conclusions about the relative importance of

L
0

1 0—
U
8
N

o 0.5—
U

0 00.0 0. 1 0.2 0.3

enerc}y (rneV)

0 4 0.5

FIG. 1. Photodetachment cross section for H in parallel
fields of B=1 T and K=20 V/cm. The corresponding cyclo-
tron frequency is co& =0.117 meV/A' and the scale of electric-
field-induced oscillations defined by Eq. (29) is E„,=0.072
meV. Dashed curve, the case of a pure electric field of 20
V/cm. The photon polarization is parallel to the fields.
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FIG. 2. The same as in Fig. 1 for B=20 T, F=100 V/cm
(~& =2.3 meV/A, E„,=0.21 meV).

FIG. 4. The same as in Fig. 3 for B=200 T, F= 100 V/cm.

(2F)'/'
COg-

a
(31)

Earlier we obtained' that at B =0 the rescattering effect
is noticeable for hydrogen if F ~ 1 MV/cm. According to
(31) this leads to B =4X 10 T. Since such a high field is
unrealistic for laboratory experiments, we will consider
here smaller electric fields. However, the electric field
should not be too small since the oscillation factor P
should not be too large. Otherwise, finite experimental
energy resolution would not allow the observation of the
electric-field effects.

Some examples are presented in Figs. 3 an . h3 and 4. The
dashed curves in the figures do not include the rescatter-
ing effect and represent the results of the theory
d 1 d b Du. ' We see that the rescattering effectdeve ope y u.
becomes noticeable at very high magnetic fields of about

60 T. For lower fields the results of our theory and the
theory of Du are essentially the same.

The region between the first and second Landau
thresholds is of special interest. From Eq. (21) we see
that at an energy defined by the equation

Ai'($0) =0 (32)

the cross section turns out to be zero if we do not take
into account the rescattering term. (The contribution of
the terms with n &0 is negligible well below the second
Landau threshold. ) The inclusion of the rescattering
effect makes the cross section nonzero at any energy since
—Ai'+ Ai is a complex function of the real argument
E. The cross section at the energy defined by Eq.

1 g 11S
E . ,32) is

proportional to the rescattering factor g~ . Note that
the denominator in the expression (19) for g strongly
reduces this factor and it is not so large as we would ex-
pect by putting y =0 in Eq. (19).

0.007
III. PHOTODETACHMENT

IN PERPENDICULAR FIELDS
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A. Theory

The essential feature of this case is that the
Schrodinger equation is not separable in the cylindrical
coordinates. However, the variables can be separated in
Cartesian coordinates and this property was used by
Blumberg, Itano, an Larson in order to take into ac-
count the effect of the motional Stark field for the process
of photodetachment of S ions in a magnetic field.

We start here from the same approach and consider
first a free electron in perpendicular fields. Choosing the
vector potential in the form '

ener gy (rneV) = —B A =3 =0,x y, y z (33)

FIG. 3. Photodetachment cross section in parallel fields of
B=60 T and F=30 V/cm. Solid curve and dashed curve, wit
and without the inclusion of the final-state interaction between
the electron and the atom, respectively. Fy, — (34)

we obtain the magnetic field in the z direction. Choosing
then the scalar potential in the form
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Mgy E

Bx

B'—2Fy ——
By

82
~(o) —E~(o)

BZ2

(35)

can be written now in the form

Ip x lp z

(2')' (2mp )' f„(y),
1//4

we obtain the electric field in the y direction.
A solution of the Schrodinger equation

electron with the atomic residue, we have instead of (36)

2~a~'„"(0)
~1

—
) ~10) " G( —)(r P)+ (43)

GE '(r o) = & 1 dp. f.(y )f.(o)e "
gE ( )(z )

n

where u is defined by the same expression as y in the case
of parallel fields.

Let us complete now the frame transformation for
G' '. As in the case of parallel fields, we start from the
spectral representation of G'+':

COg l

(2n 1)1/2 exp

XH„[COE (y —
yO )],

COg

(y —yo)

where

(44)

yo=
Px F

2

where H„is a Hermite polynomial and

and

p„F F2E„(p„)=E—E„— +
2cog

(45)

2g Jdp ~(e r)f, ~
(39)

where the matrix element is taken at

The x-dependent part of the wave function is normalized
to 5(p —p„') and the z-dependent part to
5(p, /2 —p,

' /2). With this normalization the total pho-
todetachment cross section can be written in the form

gE(z)= exp(i&2E ~z~),
2E

(46)

where for E (0 the value of &2E lies on the positive
imaginary axis.

Near the origin for the odd part of GE (with respect
to y ~—y) we have

f„(0)f„'(0)sinppy
GE' '(r, p) = dp„

21T +2E (p ) Pp
p' =E—E.n

p

2coz
(40) Xe ip +i+2E (p )zn x (47)

fi(P) iPX iPZ

p, ' (2~)'" (2~p, )'" ' (41)

The relation (40) defines the upper limit of the integration
over p for a given n. The additional factor 2 in the ex-
pression (39) corresponds to the two possible signs of p,
in the final state.

As in the case of parallel fields, let us complete first the
frame transformation for g' '. We will be interested in
the case when the photon polarization is parallel to the
electric field. In this case the final-state wave function
should be odd under the transformation y ~ —y, and we
get near the origin

Let us rewrite the expression (47) in spherical coordinates
and extract the p-wave part:

f„(0)f„'(0)h= g dp„+2E„(p )

We combine now the expressions (41), (43), and (48) in or-
der to evaluate the matrix element of the dipole operator
for the case when the photon polarization is parallel to
the y axis. We obtain

where

2p F F2
2~n+ Px .

Cc)
(42)

ia „(0)h*
(e r)&; = f„'(0)+

( )1/2( —2+k2)2 1+au*

(50)

With the inclusion of the final-state interaction of the
I

Substituting this result into (37) we finally obtain

3g O (co~ /F)[E —c„+(F/2o)~)] f„(0)h*
di. [2E„V,)) '" f„'(0)+ia

1+au *

Using the explicit expressions for f„(0)and f„(0)following from (37), it is convenient to define a new variable,

(51)

1/2 1/2~a yo
Px F

2
Q)g

(52)
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Then

30 P COB fn
k (2F)' &

" dg
(53)

where

F COB1/2

0n 3/2 (E En )
2coB

f (g) ~—1/4(2nn1) —1/2e —
g /2H (g)

(54)

(55)

B. Discussion and calculations

The integrand in (53) falls off very rapidly for
exceeding the classical turning point (2n+1)'/. There-
fore the upper limit of integration is effectively given by

g,„=A(2n+1)'/ (56)

g„=/I (2n + 1 )
' (57)

If n, „obtained from Eq. (57) is not very large
(n,„~10), the evaluation of the sum of Eq. (53) does not
present any difficulties. However, for large n, f„(g)be-
comes a very rapidly oscillating function and the stan-
dard expression for the Hermite polynomials fails to give
the correct numerical result. In this case we should use
the quasiclassical expression for f„:

1/2
2

sin f p(g')dg'+ —,(58)

where

where A is some reasonably large number. The upper
limit of n values which contribute essentially to the sum
in Eq. (53) may be obtained from the equation

CO21/
„ f„(0f„/d g)

(2 F)1/2 (g g )1/2
(61)

We see that large n do not contribute to the sum since the
term f„(df„/dg)averaged over the oscillations is equal
to 0. But even for small n the integral in Eq. (49) is non-
negligible if only g„is close to 0 since f„(df„/d g) is an
odd function of g. So near the first Landau threshold we
should have

F
3/2

COB

1/2
COB COBE —— ( }
2 F (62)

From (51) and (61) we also can see that in order to get a
noticeable reseat tering effect the parameter

5/4
Q COB

71=
(2m.F)' (63)

should be non-negligible. The 1atter requirement leads
approximately to the same restrictions on the F and 8
fields as in the case of parallel fields. For example, in the
case F=20 V/cm, 8=60 T we have i'd=0. 877. Howev-
er, the condition (62), which in this case is equivalent to

B ( F
1/2

COB

leads to a very sma11 energy region near the Landau
threshold where the rescattering effect is noticeable. In
the case F=20 V/cm, 8 =60 T we have

p(g)=(2n+I —g )'/ (59)
COB

E — +0.0066 meV .
2

(65)

Using the expression (58), the integrand can be averaged
over the rapid oscillations. In particular, for the most
important integral entering Eq. (53) we have

I df. /d gl'

)
1/2

(2n+ 1)

7T max(g, —(2n+ 1) )

2
'1/2

(60)

and the crossed term with the integrand proportional to
f„(df„/dg),equals 0 in this approximation.

If g„is close to the right turning point, (2n +1)'/, the
expression (58) may fail to give the correct result. In this
case a more precise representation off„through the Airy
function can be used. However, in general, these particu-
lar cases give a small contribution to the sum of Eq. (53)
and may be ignored.

As similar approach can be used to evaluate the sum of
Eq. (49). It can be rewritten in the form

2

[2(E—s„)]'/2 f dg (67)

and o. becomes infinite at each Landau threshold, as was
shown by Blumberg and co-workers. ' Clark and Craw-
ford pointed out that the cross section becomes finite

So in the case of parallel fields, the rescattering effect is a
more universal feature since it appears in a much wider
energy range.

We will not discuss the rescattering effect for the case
of perpendicular fields any more but turn to another in-
teresting feature observable at Landau thresholds. Let us
consider the cross section (53) in the limit of zero electric
field. According to (54) we have in this limit

F. &E„
F. &r.

„

and only open Landau channels contribute to the sum of
Eq. (53). Hence, in the case h =0 we have
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with the inclusion of the final-state interaction of the elec-
tron with the atomic residue. However, in our case this
inclusion (making h&0) does not make the cross section
finite. The point here is that for F=O the system ac-
quires cylindrical symmetry and the z component m of
the angular momentum becomes a good quantum num-
ber. Since we are considering the case of laser polariza-
tion perpendicular to the z axis, ~m ~

= 1 in our case and
the zero-range potential does not affect the final state. In
order to make the cross section finite at Landau thresh-
olds we have to include scattering for higher partial
waves (with I ~ 1). However, from Eq. (53) we see that in
the case FWO the cross section is finite everywhere even
in the framework of the zero-range-potential approxima-
tion. The same effect can be observed in the case of
parallel fields when the photon polarization is perpendic-
ular to the fields. '

It is remarkable that even a very small electric field
strongly reduces the threshold singularity. Figure 5 illus-
trates this point. We have chosen a small electric field of
2V/cm and 7 V/cm. The latter value corresponds to the
experimental conditions discussed in Refs. 1 and 5 when
the electric field appears due to the thermal motion of the
negative ions with the most probable velocity vo =7 X 10
cm/s. However, it should be mentioned that the thermal
motion leads to a random distribution of the electric field
within the limits from 0 to about 10 V/cm corresponding
to a random orientation of the velocity vector and
Maxwell distribution of v. The calculations of Ref. 5 in-
clude the averaging over these distributions and also take
into account the photon frequency distribution due to the
Doppler effect. Such averaging leads to disappearance of
the oscillatory structure due to the electric field. In our
case in which the electric field and the photon frequency
are fixed, we obtain this structure, which is more pro-
nounced than in the case B=0. In Fig. 6 the comparison
of two cases B=1 T, F=15 V/cm and B=0, F=15
V/cm is presented. The electric-field-induced modula-
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FIG. 6. The same as in Fig. 5 for F=15 V/cm. Dashed
curve, the case of a pure electric field of 15 V/cm.

tions are deeper in the case BWO, although they are not
as deep as in the case of parallel fields. For F=50 V/cm
the magnetic field of 1 T almost does not inhuence the
structure and we again have "ripples" instead of deep
modulations.

It should be mentioned in conclusion that the values of
the electric field discussed here could not be obtained as a
motional electric field in a beam experiment, since the cy-
clotron radius of such motion is too small. For example,
it equals 1.5X10 crn for H and v=1.5X10 cm/s
(corresponding to F=15 V/cm). Therefore in a real
beam experiment one has to obtain a negative-ion beam
propagating in the direction of the magnetic field with
the external electric field imposed in the perpendicular
direction.

Another option is to deal with a relatively fast ion
beam moving in the direction perpendicular to the mag-
netic field. But in this case the motional electric field
would be larger than that considered above. For exam-
ple, Krause deals with a 1.3-keV 0 beam in a magnetic
field of B=0.126 T. The corresponding motional electric
field is 155 V/cm. Krause eliminates this field using the
EXB filter. Without using this filter the magnetic-field
effects would be completely suppressed by the motional
electric field (as in the Los Alamos experiment' ). In or-
der to observe effects due to both fields, the motiona1
electric field should be strongly reduced but not eliminat-
ed completely.

IV. LIMITATIONS OF THE MODEL

I I I0.00 0.05 0. 10 0. 15 0.20 0.25 0.30 0.35

energy (meV)

FIG. 5. Photodetachment cross section in perpendicular
fields. Solid curve, B=1 T and F=7 V/cm. Dashed curve,
B=1 T and F=2 V/cm. The photon polarization is parallel to
the electric field.

We have presented here the results of calculations of
photodetachment of H in parallel and crossed electric
and magnetic fields using the zero-range-potential ap-
proximation for the electron-atom interaction. This mod-
el needs modifications when dealing with the l&0 elec-
tron in the initial state, since the zero-range potential
cannot bind the l&0 electron. Such modifications were
discussed by Wong, Rau, and Greene for the case of a
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the electron correlations and the strong-laser-field effect.
Both effects were taken into account in the many-
electron, many-photon theory recently developed by
Nicolaides and Mercouris. ' In order to estimate the
importance of the electron correlations and the multipho-
ton effect we present in Fig. 7 comparison of our results
with the results of Mercouris and Nicolaides for the
one-photon detachment of H in an electric field of 232
kV/cm. Mercouris and Nicolaides present the one-
photon ionization rate 8'as a function of the photon fre-
quency. Using their ac field peak intensity I=3.5 X 10'
W/cm we can calculate the corresponding photodetach-
ment cross section

2%co

I
FIG. 7. Comparison of our results (solid curve) for B=O,

F=232 kV/cm with the results of the many-electron, many-

photon theory of Mercouris and Nicolaides (Ref. 24) (dashed
curve).

pure electric field and by Gurvich and Zil'bermints and
Crawford for the case of a pure magnetic field. Another
important modification in this case has to do with the
Zeeman splitting for the initial state which was taken into
account by Blumberg, Itano, and Larson for the process
of photodetachment of the S ion in a magnetic field.

The limitations of our model also include the neglect of

The agreement is reasonable, although the reason of the
suppression of the electric-field-induced oscillations at
higher energies in ab initio calculations is unclear. The
difference in the absolute magnitudes of the cross sections
indicates the role of the electron correlations and the
strong-laser-field effect.
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