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Experimental investigation of the collision of Feigenbaum cascades in lasers
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We have experimentally checked on a CO, laser with modulated losses the universality law set by
Oppo and Politi [Phys. Rev. A 30, 435 (1984)] for the collision of Feigenbaum cascades. The scaling
properties of the first three period-doubling bifurcations are in good agreement with their predic-
tions, but fast passage effects and a limited signal-to-noise ratio impose severe limits on precise

quantitative measurements.

The period-doubling cascade has appeared as the most
popular scenario of transitions towards chaos since it
may be easily identified and occurs in many nonlinear sys-
tems.! One of the most striking results is that the bifur-
cation points corresponding to successive bifurcations
asymptotically follow a universal rule. Let u, be the
value of the control parameter at the bifurcation from the
regime with period 2" !T to that with period 2"T.
Feigenbaum stated that (u,_,—p,)/(u,—p,+1)=5,
asymptotically tends to a universal number
6=4.6692. .. .

In some dynamical systems, chaotic bands are delimit-
ed on both sides by period-doubling cascades and a
second parameter allows one to control the width
(domain of existence) of these chaotic bands. Oppo and
Politi demonstrated that for any sufficiently small but
nonzero chaotic window, the first convergence rates §,
stay close to 8!/2 while at larger n’s they asymptotically
reach 8.2 By changing a second parameter v until the
chaotic regime disappears (v=v,), the number of bifur-
cations showing a rate 8!/ diverges to infinity. They
gave the theoretical function for the universal function
6, (v—v,) which describes the growth of the convergence
rate from 8!/ to & versus n and v—v,. This function
which is valid for suitable small ¥ >0 and large enough n
is given by
8!2F(w8" ) —F(¥8")

F(v8")—8 12F(ws"*1) '

8, (¥)=

where
F(x)=V'1+x and v=v—v, .

At v=wv,_, the curve representing the evolution of the con-
trol parameters in the (u,v) plane is tangential to the
chaotic region.

For that purpose, we have used a CO, laser containing
an amplitude modulation (AM) electro-optic modulator.
This system was chosen since it displays colliding Feigen-
baum cascades with an easy control of the collision.
Moreover the high stability achieved in this system al-
lows one to obtain reliable measurements of at least the
first three bifurcation points.

It should be noticed that in spite of its universality,
there have been relatively few experimental checks of the
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geometric convergence that was mostly exhibited on nu-
merical simulations. In the experiments, because of tech-
nical noise, it is often very difficult to obtain periodic re-
gimes with a period longer or even equal to 2* T, making
the asymptotic check impossible.

A modified version of the laser with modulated losses
has been used for these experiments.>* An electro-optic
modulator together with a ZnSe Brewster angle plate
have been inserted in the laser cavity. The polarization
state of the laser radiation changes according to the volt-
age applied to the electro-optic modulator and the Brew-
ster plate acts as an output coupler for the part of the
laser field perpendicular to the incidence plane.’ The am-
plitudes of the dc and ac voltages applied to the modula-
tor are the two control parameters.® Bifurcation dia-
grams have been recorded with the dc bias of the modula-
tor as a control parameter while the modulation ampli-
tude acts as the second parameter which controls the col-
lision of the two cascades. The dc bias plays a double
role: it increases the cavity losses but, as the response of
the modulator is nonlinear, it also alters the sensitivity to
ac modulation. The modulation frequency is chosen
coincident with the resonance of the device of 640 kHz
and periodic sampling of the laser output intensity at that
frequency has been used to obtain bifurcation diagrams
such as those reported in Fig. 1. In this kind of diagram,
a periodic response synchronous to the modulation ap-
pears as a single value branch. When the laser responds
with a period equal to n times the modulation period T, n
different branches are obtained.

The presence of the 167 periodic regimes is an indica-
tion of the good stability of the laser, which is a necessary
condition for experiments such as those considered here.
By varying the modulation amplitude, it has been possi-
ble to draw a two-dimensional parameter space diagram
of the dynamics of the laser as shown in Fig. 2. Bifurca-
tion diagrams similar to those of Fig. 1 correspond to
straight horizontal lines in this diagram. For a modula-
tion amplitude V,. larger than critical value V,=2.94 V,
chaos may be observed and for the largest modulation
voltages used in our experiments, the two period-
doubling cascades are decoupled. Experiments in which
the bifurcation diagrams are recorded versus V,. as the
(main) control parameter would correspond to the
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FIG. 1. Bifurcation diagram of the laser with modulated losses with the dc bias as control parameter (60 < V3. <460 V) and a fixed

modulation (V,, =3 V).

straight vertical lines and would not lead to colliding cas-
cades.

From bifurcation diagrams such as that of Fig. 1, it is
very easy to extract the values ¥V, of the bias voltage cor-
responding to the bifurcation from 2" ~! to 2"T periodic
regimes and to deduce from sets of bifurcation voltages a
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FIG. 2. Parameter space diagram for the laser with internal
modulation. Bifurcation diagrams as reported in Fig. 1 corre-
spond to horizontal straight lines. They intersect the chaotic re-
gion for V. larger than 2.94 V.

value of §,. Unfortunately, in experiments it is hardly
possible to explore more than three or four values of V,,,
of which one or two values of 8, can be extracted. Obvi-
ously the evolution of §, versus n cannot be considered
on the basis of experimental data. Consequently, to
check Oppo and Politi’s theory, we have plotted §,
versus (V,.—V,)/V, which is somehow equivalent to ¥
of their theory and measures the offset from criticality.
Figure 3 reports the comparison between the values of §,,
deduced following this procedure and those provided by
the theory. The horizontal scale has been adjusted to fit
the data since the proportionality between ¥ and
(Vae—V:)/V, is unknown. It is remarkable that at criti-
cality (¥=0), the experimental value of §, is close to the
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FIG. 3. Plot of the ratios 8, of the widths of the first three
periodic domains vs the modulation voltage in reduced units for
the direct cascade ([J) and for the reverse cascade (¢). The
solid squares (B) refer to the theory of Oppo and Politi.
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theory 8!/2=2.16... . Similarly, in the limit of well-
separated cascades, we find a value close to that of the
Feigenbaum constant.

The accuracy in the experimental measurements of the
convergence rate is limited by several factors. (i) The rule
for the variation of & is valid asymptotically and the ex-
perimental measures could be made only for the first
three bifurcations. (ii) As a consequence of this, the con-
trol parameter was varied on a finite range in which its
effect on the laser parameters is highly nonlinear. This
finiteness of the changes in the control parameter togeth-
er with the nonlinear correspondence between the control
voltage and the laser losses induces systematic deviations
from Oppo and Politi’s predictions. Eventually (iii) the
postponement of the bifurcation points induced by the
sweep of the control parameter is reduced if very slow
sweeps are used.”® However, this requirement becomes
more and more stringent as higher-order bifurcations are
examined. Although sweeps as slow as 15 sec, i.e., 10’7,
were used, some postponement of the last bifurcation
could not be avoided. As a result of this, the evolution of
the dynamics is different for the two sides of the chaotic
region and this is responsible for the difference of the &
values for the two sides. Faster sweeps indicate that this
could explain that our experimental values are down-
shifted by a factor of about 10-20 %. Slower sweeps did
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not prove helpful in providing better data because the
stability of the laser parameters gets worse as the sweep
duration becomes longer.

The theory of Oppo and Politi on the collision of
Feigenbaum cascades appears to describe qualitatively
well the experimental observation on a CO, laser with
modulated losses although the asymptotic limits n—
and ¥—0 are far away from the domain that can be
reached in experiments. Some quantitative discrepancies
can be explained either by these experimental limits or by
fast passage effects. The results reported here also pro-
vide the first experimental observation and characteriza-
tion of the collision of period-doubling cascades in a non-
linear optical system. Other such collisions should also
be obtained in other systems such as the laser with a
saturable absorber’ and corresponding experiments
would be helpful to support by additional experimental
results the universality of their theory.
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FIG. 1. Bifurcation diagram of the laser with modulated losses with the dc bias as control parameter (60 < V. <460 V) and a fixed
modulation (V, =3 V).



