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Recurrence relations for multipole radial integrals in the semiclassical Coulomb approximation
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It is shown that in the semiclassical (WKB) Coulomb approximation the radial integrals for mul-

tipole transitions in nonhydrogenic atoms obey simple recurrence relations. As a result, any such
integral can be analytically expressed in terms of Anger functions plus an algebraic part proportion-
al to sinus, where s =v' —v is the difference between the effective principal quantum numbers of the
states involved. We retrieve, in particular, various formulas established previously for dipole, quad-
rupole, and octupole transitions.

For many radiative transitions between Rydberg states,
the semiclassical (WKB} form of the Coulomb approxi-
mation provides quite accurate results. Explicit analyti-
cal expressions in terms of Anger functions have been de-
rived for dipole, quadrupole, and octupole radial matrix
elements. ' Here we show that these expressions obey
simple recurrence relations similar to those known for
the hydrogenic case.

In the semiclassical Coulomb approximation, the radial
integral for a multipole transition of order I. reads'

A~ = (vl ~r~~v'1')

aL
du 1 —6 cosu cos

7T 0

where a is the Bohr radius, u is the eccentric anomaly,
/=su —se sinu —kP —(s —k )w, s =v' —v, k = l' —l, and

and

r= 1+ eco8s, +=s(8'+Esin 8), gk =g+kp

Notice that for 8=0 one has P =sr, y=0, while for 8=m.
one has / =0, y =a.s. On the other hand, the differentials

dr= —esin8d8, dy=srd8, mdiv= —(1—e )' d8,

readily follow from Eqs. (3) and (6).
Recurrence relations satisfied by the integrals I„z are

easily obtained on using the identity

cosfk cosfk+1cosk+slnlkk+1sln(jk

Taking into account Eq. (7) and integrating by parts a
few times one arrives at

cosu —e . (1—e )'r sinu
cosP=, sing =

1 —e cosu '
1 —e cosu

From Eq. (2) we obtain further

(1 —e )' dudP=
1 —ecosu

(2)

(3)

I„+, I, =aI„k+bI„k &+c' 'I„jk+d,
I„+) I,

= —aI, k
—bI„k + ) +c ' 'I„)k +d,

where [for brevity we put ri=(1 —e }' ]

a =n/sg, b =no/ski,

(9a)

(9b)

By setting u =sr 8, one can rewrit—e Eq. (1) in the form

%1 =( —1)"a I +, „(s,e),
where

1I„„=— d 8 r"cospk,
0

c' '=(k+n )g/s, d =(1—e)"

Notice that for k=n one has c' '=0 in Eq. (9a), while
k = ngives c'+ '=0 in Eq. (9b—). Linear combinations of
Eqs. (9a) and (9b) yield other interesting relations; for in-
stance,
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2I„ I, +e(I„„+,+I„„,) 2—rl I„,k
=0 .

To start the recurrence one can use

SinusIpp=J ( se) I1 p=
ITS

I, ~, = J, ( —se)+21J,'( —se) ——1 sin~s
77$

(12)

(13)

where J, (z) denotes the Anger function. From the in-
tegral representation of the latter, one has indeed

—f d0cosy=J, (
—se), (14)

1
d 8 sing sin8= J,'( —se)

77 0

Accurate numerical values of the Anger functions may be
obtained most conveniently from their rapidly conver-
gent series expansions.

An obvious consequence of Eqs. (9)—(13) is that any in-
tegral I„k, and therefore %L, can be expressed in terms
of J„J,', and an algebraical term times (sinvrs )/mrs. A few
specific cases are worked out below.

(i) Dipole transitions (L=l). Setting n =1, k =1 in

Eq. (9a), n =1, k = —1 in Eq. (9b), and using Eqs. (12)
and (13), one finds

I2 ~1 =+ (I, ~1+eI, o ) + ( 1 —e)
S7/ 77$

which will be needed below.
(ii) Quadrupole transitions (L=2). We set n =2, k =0,

in both Eqs. (9a) and (9b), add the two expressions, and
use Eq. (16) to get

I30 (I2, I2—, )+(1—e)
$'g 'TTS

2 J ( 1 )2
2 stupors

S
S 'TTS

(18)

For n =2 taking k =1 in Eq. (9a) and k =—
in conjunction with Eqs. (13), (16), and (17),
two auxiliary quadrupole functions:

1 in Eq. (9b)
further give

2 2 Sin&S
I3 +1 = (I2 +1+eI2 p)+ I1 ~1+(1 e)

SXf
' ' S 77$

3 22 —g J ~ g 277 Jt
gS E'S $ S

+ (1—e)— +(2e+1) ~ . (19)
gS ES ITS

Finally, for n =3, k =+1, Eq. (11) provides the radial in-
tegrals relevant for the case l' —l =+2:

I3 ~2 ———I3 ~I —I3 0+ I2 ~I
2n'

1 sin~s=+—J, ——J,'+ 1 —e+—
QS S CS 77$

(16)
S Se S e S &S eS

4 —2e+ (1—e) + +2(e —2e —2)
2

E $ g S

sin~s

EI20= (I2 1 I2 1)+1I1 o

e J, ~ ( 1 )
sln7rs

S 7TS
(17)

Hence we recover the results established previously by
Davydkin and Zon. ' Similarly from Eq. (11) we obtain
the auxiliary dipole function (forbidden by selection rules)

(20)

Equations (18) and (20) are in complete agreement with
the formulas derived in Refs. 2 and 3.

(iii) Octupole transitions (L=3). We are now prepared
to derive explicit expressions for octupole radial in-
tegrals. For instance, from Eqs. (9a) and (9b) we readily
obtain for n =3, k =+1:

3E 3 sln&$
Id ~1=+ (I3+2 I3 p)+ I2~i+(1 —e)—

2$ 'g ' ' S ' &S

6 5g+
3 2

+—J, —J,' + ( 1 —e) —(2e —6e —5 ) + e —e+g 3 2 1 — 2 6 q sin~s
6 ES CS KS

(21)

By using Eqs. (11), (18), and (21), we further get the auxi-
liary function

Ic o= — (Ic, +Ic —1)+el —Is,o

Equation (11)can be applied again to obtain

I4 +2 — —I4 +, —I4 0+ I3 + I

2~'
(23)

J, + J,'+ (1—e) —3(2e+ 1)
3g 6e 3 1

S

sin~s I4 +3 — I4 +2 I4 +1+ I3 +2
2n'

E
(24)

(22)
Substitution of Eq. (23) into Eq. (24) finally gives for the
radial integrals with l' —l =+3 the following result:



43 BRIEF REPORTS 2537

2 2 2~2 4~2
4+3 — I4+i+ —I4O+ I3+2 2 I3+I

2 2 5

3(5e —12) +6 +(4—e )
e$ eS es

J-
S

12g4 +6(4—3e ) +3(7e —12) J,'2 1

2$ E S S

+ (1 e) +—(2e 6e —13'—+8@+12) +3 (1 —e)(e 4e —8e —4)
3
—+2(e —4)

6' $ E s 6 $

sinus
(25)

The expressions in Eqs. (21) and (25) have been derived
recently by a direct calculation. Needless to say, when s
is a nonzero integer the sine terms in all the preceding
formulas disappear and the Anger functions reduce to or-
dinary Bessel functions. It is easily checked that the
simplified expressions so obtained for I = 1,2, 3 are
equivalent to the hydrogenic results of Heim, Trautmann,
and Baur.

While it is obvious from Eq. (5) that I„k(s,e) remains
finite when $~0, this limit is not readily worked out
from the explicit analytic expressions derived above. The
reason lies in the singularities of individual terms that
must cancel before the final result is reached. Fortunate-
ly enough I„k(O,e) can be calculated by straightforward
integration for general n and k. A simple alternative
procedure is to start from

I„o(0,e) =—f d 8(1+@ cos0)"= ri "P„(1/g), (26)

obtained by multiplying Eq. (9b) by s and letting s~O.
This gives in particular

and

I„+,(O, e)= —(e/n )r)" 'P„', (1/g) (28)

where P are the Legendre polynomials, and then use the
recurrence relation

r

In k+1(O~&)= + In —1 k(O~e) In k(O~e)
k g 1

I„(0, )=e(1/n)t)" 'IP„'(1/t)) —[(n +1)/(n —1 )])jr'„',(1/g)I . (29)

For low values n =2—4 one recovers in this way various special formulas relevant for the dipole, quadrupole, and octu-
pole hydrogenic matrix elements given in Ref. 5.
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