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The Schrodinger equation for the S state of the three-body system with arbitrary charge and mass
has been solved directly using finite-element analysis. In this analysis, the wave function is approxi-
mated piecewise using polynomial interpolation functions. The energy and wave function converge
to their exact values as the number of elements is increased. In contrast to standard variational cal-
culations, the error in the expectation value of physical observables is comparable to the error in the
energy. Results are reported here for the helium atom and the muonic molecular ion ddp+.

I. INTRODUCTION

The standard approach to solving few-body problems
in atomic and molecular physics is the variational
method. Trial wave functions are constructed from
parametrized Hylleraas- and Slater-type functions and
the energy is minimized. This method is undeniably the
most efficient means for obtaining highly accurate ener-
gies.

However, the variational method does not solve the
Schrodinger equation; it minimizes the energy. Thus,
while the variational wave function is optimized in the re-
gion of the continuum where the contribution to the
Hamiltonian is large, there is no reason to expect this
wave function to be equally well determined in other re-
gions of space. Indeed, if the error in the energy is one
part in 10, the average error in the wave function is one
part in 10 in the region where the probability density is
large; the wave function may exhibit much larger local-
ized error elsewhere. Consequently, if one uses a varia-
tional wave function to calculate the expectation value of
an operator, the accuracy of the result can be much less
than that for the energy, particularly if the integral re-
ceives a large contribution from a region of space where
the probability density is low. For example, variational
values for the 6 function of the interparticle distance are
notoriously poor unless the correct cusp behavior is ex-
plicitly built into the trial wave function.

Unlike the variational approach, the finite-element
(FE) method offers a direct means for solving the
Schrodinger equation for few-body problems. By approx-
imating the wave function piecewise via locally defined
interpolation functions, it is possible to obtain a wave
function that is accurate over the entire continuum.
Hence the FE wave functions are well suited for calculat-

I

ing physical observables and other matrix elements.
Note that the success of this method does not rely on the
nature of the potential and that additional interactions
can be incorporated directly into Hamiltonian.

In this paper we report results in which the FE method
is used to solve the Schrodinger equation for three-body
Coulomb systems. The FE wave functions are found to
be uniformly accurate over the continuum, as evidenced
by the fact that the error in non-Hamiltonian expectation
values is equal to the error in the energy.

In the next section, we provide a brief summary of the
finite-element method; more complete details are given in
Refs. 1 and 2. In Sec. III, we compare FE results for the
helium atom and the muonic molecular ion ddt+ with
those obtained using the variational method and the
correlation function hyperspherical harmonic (CFHH)
method. '

II. FINITE-ELEMENT SOLUTION
FOR THE THREE-BODY SYSTEM

The Schrodinger wave function for a three-body sys-
tem with total angular momentum J and z component m
may be written as

2J+1
[D (R)]*,g, (p, g, c st), (l)

s =1
where [D (R)]*, are the coefficients of the irreducible
representation of the three-dimensional rotation group
and y, are functions of the three coordinates p, g, and
cosy which specify the relative configuration of the three
masses. g is the distance between particles 2 and 3, p is
the distance between particle 1 and the center of mass of
particles 2 and 3, and cosy =p g.

The functions g(p, /cosy) can be obtained by solving
a set of 2J+1 coupled equations. For the special case
J =0, we have (dropping the indices on g)

l ~X ~X l t)X ~X

p Bp Bp M t)g' Bg

ay ay+ (l —cos y) +2y(V E)y p dpi' dgd —cosy
pp Mg t) cos+ t) cos+

(2)

where M and p are given by

m2m3M=
m2+m3

(3a)

m, (m2+m3)p-
m]+m~+m3

(3b)

Atomic units are used throughout, with e =6=m, =1,
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and m& +m2 +m3.
In order to solve Eq. (2) using the FE method, the

three-dimensional space spanned by ~~ d
truncated and discretized into small regions called ele-

enough that the wave function is essentially zero for
p ~ p, or g~ g, . For the special case mz =m3, the wave
unction is symmetric or antisymmetric about the plane
y=0 and the equation can be solved on the d
cos F&0 1 'j

n e omasn
cosy &, 'jwsth the appropriate boundary condition.

In each element X, we approximate the solution to Eq.

TABLABLE I. Finite-element parameters for helium. The number of ele-

ments is 196. The order of FE matrices is 12448.
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(2) with a locally defined basis which is a product of
ourth degree Lagrange polynomials in the p, g, and

coscp,

Ny (p g cost')= g yizv Pi(p)4'J(g)PI, (cosV ) .
ij,k =1

The Lagrange polynomials have the unique property that
the expansion coe%cients g; k are the value of the wave
function at 125 nodes in the element. The nodes are ar-
ranged symmetrically in a 5 X 5 X 5 array.

Substttutmg Eq. (4) into Eq. (2) we obtain a generalized
eigenvalue problem for element X,

lg0

)g0

(c)

Ig0

FIG. 1. Ground-state helium wave function at (a) cosy= —1,
(b) cosy=0, and (c) cosy= 1.

FIG. 2. dd +(J =0p =O, v=O) wave function at (a) cosy=0, (b)
cosy=0. 9, and (c) cosy=1.
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Finite
element
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(~» )

( 13)
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III.. RESULTS
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element

IEI

(r23 )

&

lyly„)
2.121 2.119

2.832

0.7284

0.7284

0.3949

2.1202.120

2.834
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0.7285
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TABLE IV. Expectation values for ddp (0,0) (m =A=e =1). The binding energy c is given in eV. For the

CFHH method, the eigenvalue of the effective Schrodinger equation (0.5312) differs from (H) (0.5311); the

latter, which is generally more accurate, was used in calculating the binding energy given below.

Variational Variational CFHH Finite

(Ref. 5) (Ref. 6) (Ref. 8)

0.5311 0.5311 0.5311 0.5310
325.07 325.07 325.05 324.51

2.120 2.120 2.121 2.119

FE energy can be used to estimate the error in other
physical observables. Excited S-state energies were not
accurate because the grid was truncated at Sao. Howev-
er, additional FE calculations with larger values of g, and

p, and more elements improved the accuracy of the excit-
ed states (and the ground state as well).

For the calculation on ddp+ we used the mass values
m „=206. 7686m, and md =3670.481m, . The
ddp+(J =0,v=0, 1) wave functions (Figs. 2 and 3) were
obtained with 480 elements (Table III). Smaller elements
were needed near y =0 in order to allow an accurate ap-
proximation of the cusp in the wave function when the
muon-deuteron distance goes to zero. Otherwise the re-
sults were extremely stable with respect to variations in
the grid. Values for the energy and geometry for ddp+
(J=O, v=O) are given in Table IV and compared to the
most accurate variational results ' and the CFHH re-
sults. As expected, the results for v= 1 were less accu-
rate since the excited-state wave function is much more
extended in space.

One of the attractive features of FE analysis is the abil-
ity to construct the grid in such a way that more basis
functions can be used where the wave function has a
more complex structure, as in a region of the continuum
where an interparticle distance approaches zero. Note
that this is not the same thing as building in explicit cusp
behavior, a procedure that is necessary to obtain accura-
cy in the variational method. Furthermore, the accuracy
of the FE wave function can be improved locally without
affecting its value elsewhere. This is generally not the

case if one is using global basis functions in a variationa1
calculation.

The advantages of FE analysis are clear. One can ob-
tain accurate solutions to the Schrodinger equation for
simple systems without constructing trial wave functions
specific to the problem at hand. Expectation values ob-
tained with FE wave functions are in genera1 as accurate
as the energy. In one- and two-dimensional FE calcula-
tions on simple systems, extremely high accuracy has
been obtained for ground and excited states. The main
disadvantage of this method is that the FE matrices for
three-dimensional calculations are extremely large. In
order to improve the current results (larger values for g,
and p„ finer discretization) and to extend the analysis to
excited states (JWO), it is necessary to develop new out-
of-core routines to handle extremely large generalized ei-
genvalue problems. We are also investigating the advan-
tages of choosing different coordinates to represent the
three-body system. Finite-element analysis of few-body
systems is undeniably computer intensive; however, it is
the most direct method for solving the Schrodinger equa-
tion.
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