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Theory of an atomic beam splitter based on velocity-tuned resonances
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We develop the theory of an atomic beam splitter in which a monoenergetic beam of two-level
atoms is incident normally to a classical standing-wave light field. The incident atomic wave func-
tion can be split into two coherent components with transverse momenta +(2n+1)Ak using
velocity-tuned resonances, where n is the order of the resonance. We discuss the cases of zero- and
first-order resonances in detail, and show that the velocity-tuned resonances are renormalized due
to a high-frequency Stark shift. Numerical results that display the eff'ects of a finite momentum
spread in the incident atomic beam are presented.

I. INTRODUCTION

There has been considerable recent interest in develop-
ing matter-wave interferometers employing neutral
atoms. Potential applications include ultrahigh sensitivi-
ty accelerometers and gyroscopes as well as high-
resolution spatial spectroscopy. ' One of the major chal-
lenges in the design of such interferometers is to obtain
large enough scattering angles that the atomic wave func-
tion becomes truly spatially separated. In simple-minded
atomic beam splitters using, say, the near-resonant
Kapitza-Dirac effect, the scattering angle is of the order
of Ak/mu, where k is the wave number of the light, m the
atomic mass, and U its velocity. For typical atomic veloc-
ities of the order of hundreds of meters per second and
visible light, this corresponds to very small angles,
indeed. There are, however, a number of ways out of this
difficulty, the most obvious one being to reduce the atom-
ic velocity. Another recently proposed technique uses
multiple-beam interactions with three-level atoms. In
the so-called Bragg regime of atomic diffraction, strict
energy-momentum conservation limits the scattering or-
ders to a few well-determined values. Specifically, if the
atoms enter the electromagnetic field with a transverse
momentum mAk, they are effectively coupled only to the
state with transverse momentum —mkk, and the evolu-
tion between these two states is governed by a
Pendellosung-type oscillation. However, the frequen-
cy of oscillation of these solutions scales as (0/hco)2
where 0 is the Rabi frequency and Ace the atom-field de-
tuning, making this method impractical since one needs
to have Ace))Q to minimize the effects of spontaneous
emission. In this paper, we discuss an alternative method
based on the concept of Dopplerons, or velocity-tuned
resonances. ' In Doppleron resonances, the field fre-
quency is chosen such that moving atoms use Doppler
shifts to satisfy energy conservation in multiphoton tran-
sitions between electronic states. We show that this tech-
nique presents the advantage of leading to an effective

separation of the atomic wave function over time scales
considerably shorter than those involved in
Pendellosung-type scattering. However, it also suffers
from a number of difficulties, especially for high-order
Dopplerons. In particular, the atom-field detuning must
be chosen very accurately. For realistic atomic wave
functions with a finite beam profile, this can lead to a
severe breakup of the scattered wave function.

This paper is organized as follows: Section II presents
the basic model used to describe the interaction between
a two-level atom and a classical standing wave, and devel-
ops the equations of motion for the atomic probability
amplitudes in momentum space. It then reviews the ki-
nematic argument first advanced by Pritchard and
Gould to determine the location of the Doppleron reso-
nances. Section III considers the situation of an atomic
beam splitter, using both zeroth-order and higher-order
Dopplerons. The kinematic resonance condition is
corrected to account for a Stark shift resulting from in-
teractions with nonresonant electrotranslational levels.
These corrections are shown to be negligible for zeroth-
order Dopplerons, but become essential in higher-order
cases, where they imply stringent constraints on the
atom-field detuning. So far, the discussion is concerned
with plane atomic wave functions. Section IV relaxes
this limitation, and shows how the narrow resonance con-
dition derived in Sec. III can lead to a breakup of the
atomic wave function for atomic beams of finite extent.
Finally, Sec. V is a summary and conclusion.

II. BASIC MODEL AND THEORY

In this section we give the basic model used to describe
an atomic beam splitter using Doppleron resonances.
The pertinent equations are developed in Sec. II A, and a
kinematic picture of the Doppleron resonance condition
is given in Sec. II B.
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A. Model and equations
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where a(x, t) and b(x, t) are the wave functions for the
upper and lower electronic states of the two-level atoms,
A~=coo —~ is the atom-field detuning, k =co/c is the
light wave vector, and 0 is the field Rabi frequency. The
time variable t appearing in Eqs. (1) is the retarded time
in a reference frame moving at velocity U, along the z
axis. Physically, this implies that U, is assumed to be
large enough that it can be described as a classical vari-
able, and that the light field turns on "abruptly" at t =0.
By "abruptly, " we mean sufficiently fast to take 0 as a
constant in Eqs. (1), but also slowly enough for the effects
of the gradient force in the z direction to be negligible.
We also ignore the effects of spontaneous emission from
the upper to lower electronic level.

It is convenient to consider input atomic wave func-
tions corresponding to transverse momentum eigenstates.
This allows us to expand the upper and lower state wave
functions as spatial Fourier series over transverse
momentum eigenstates '

The atomic beam splitter under consideration is illus-
trated in Fig. 1. A monoenergetic beam of two-level
atoms of mass m, electronic spacing Acoo, and traveling at
velocity U, along the z axis is incident normally to a
monochromatic classical standing-wave light field of fre-
quency co. The electric field is polarized in the transverse
y direction. In the rotating-wave approximation and in
the coordinate representation, the atomic evolution is
adequately described by the pair of coupled Schrodinger
equations,

the situation where the atoms are injected in their upper
electronic state and with no transverse momentum, j =0
i.e., for the initial conditions

a (0)=5)o, b (0)=0. (3)

dao
1 (5a)

da Qi =j co&aj+ (b &+b—+&), j=2,4, 6
dt (5b)

db,
i =(j to~ bee)b +—(aj—, +a +, ), j=1,3, 5, . . . ,R J 4

(5c)

where coR =6k /2m is the recoil frequency. Note that,

In this case, the atom-field interaction can only produce
new scattering orders (transverse momentum eigenstates)
corresponding to integer multiples of Ak, the quantum of
transverse momentum exchanged between the atom and
the field in elementary absorption and emission processes,
and the expansions given by Eqs. (2) are valid. Then, for
example, ~aj(t)~ is the probability of finding the atom in
its upper state with transverse momentum jhk at time t.

Substituting the expansions of Eqs. (2) into the
Schrodinger equations (1) yields equations for the time-
dependent amplitudes a~ (t) and b, (t). For the initial con-
ditions (3), we have the symmetries

a, (r)=a, (r), b, (r)=b, (r),
with j = 1,2, 3, . . .. Furthermore, the various amplitudes
couple according to the scheme shown in Fig. 2(a). That
is, for example, a2 couples directly to b, and b3 only.
Thus we need only consider even values of j for a, and
odd values of j for b . By making use of these proper-
ties, we obtain the system of equations

a (x, t)= a (t)e'~", b (.x, t) = (i)e»kx
J {a)

Such an expression is particularly appropriate to describe
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FIG. 1. Geometry of the proposed atomic beam splitter. The
atoms enter the standing-wave light field in their excited state
~a ) and have longitudinal velocity U, .

FIG. 2. (a) Coupling scheme between the excited- and
ground-state amplitudes a, and b, . (b) Bare energies E, of the
various states of the system. In both of these figures j even cor-
responds to the excited state of the atom and j odd to the
ground state.
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in comparison to Eqs. (Sb) and (Sc), the right-hand side of
(Sa) involves a factor 0/2 as opposed to II/4. This is be-
cause ao interacts with both b& and b

&
and these ampli-

tudes are equal according to Eqs. (4).
In this paper, we concentrate on the use of Doppleron

resonances to operate an atomic beam splitter. The con-
cept of Dopplerons, or velocity-tuned resonances was
originally introduced by Kyrola and Stenholm, who
considered situations in which the atoms have an initial
transverse momentum satisfying ~p ~

& &iiik, so that the
atomic velocity remains essentially unchanged in absorp-
tion and emission processes. This approximation
amounts to neglecting the effect of atomic recoil and
effectively dropping the kinetic energy terms in Eqs. (1).
Kyrola. and Stenholm did, however, retain the first-order
Doppler effect by employing a convective derivative
[d/dt +(p„/m)c)/Bx] in place of the time derivative in
Eqs. (1). In contrast, our work assumes that the atom ini-
tially has zero transverse momentum, and it is therefore
essential to retain both the first-order Doppler effect and
atomic recoil, as described fully by the kinetic energy
terms in Eqs. (1). In other words, we have to consider the
full electrotranslational states of the atom instead of elec-
tronic states only.

B. Kinematic picture

The solutions of Eqs. (5) have been studied in detail on
resonance by several authors, both theoretically ' and
experimentally. ' In the limit that the recoil frequen-
cy is negligible compared to the Rabi frequency, the solu-
tions are given in terms of Bessel functions, and the
spread in atomic transverse momentum increases linearly
with time. Similar results are found in the highly de-
tuned case ~b.co/Q~ &&1.' However, when the effects of
atomic recoil are retained the growth in the spread in
atomic transverse momentum becomes bounded. ' In
particular, when the atomic recoil frequency becomes of
the order of the single-photon Rabi frequency (we shall
quantify these statements in the following sections) it be-
comes possible to limit the atom scattering to only a few
scattering orders. In this sense atomic recoil can be seen
as a phase-matching constraint which limits the prolifera-
tion of scattering orders.

The other parameter of central importance to our dis-
cussion is the atom-field detuning Ace, as it can be used to
control the occurrence of certain types of atomic process-
es over others. On resonance, single-photon processes
dominate, and the scattering orders correspond to trans-
verse momenta which are integer multiples of Ak. Far
off-resonance, in contrast, only virtual transitions be-
tween the upper and lower electronic states take place,
and the scattering orders corresponding to transverse
momenta which are integer multiples of 24k, dominate.
In general, if an m-photon process is dominant, the im-
portant scattered components are at integer multiples of
mkk. However, if atomic recoil is effective, then it is
possible to limit the scattered components to +m Ak.

In this paper, we consider specifically nth-order Dop-
pleron resonances, which correspond to atom-field in-
teractions for which (2n +1) elementary emission or ab-

sorption processes occur. For atoms initially in their
upper state, the scattered components at +(2n + 1)A'k are
therefore necessarily in their lower state. With the above
discussion in mind, a kinematic picture of the conditions
under which Doppleron resonances occur can be ob-
tained by using the simple model discussed by Pritchard
and Gould. The bare energies (without the atom-field
interaction energy) of the various states of the system can
be written as

=[(2n +1) —1]coii . (9)

III. ATOMIC BEAM SPLITTER

In this section we analyze atomic beam splitters using
both (a) zeroth-order, and (b) first-order Doppleron reso-
nances. We comment on the use of still higher-order
Doppleron resonances in Sec. III C.

A. Zeroth-order Doppleron resonance

In this case the atomic wave function, which is initially
given by Eq. (3), is to be split into two coherent com-
ponents, both corresponding to the atom being in its
lower elextronic state, and with transverse momenta
+6k. To analyze this situation we truncate the equations
of motion (5) beyond j & 3, which yields

c&o Q
i =—b, ,2

db,
i =(co~ bco)b, +—(ao+ai—),

(10a)

( lob)

gap A
i =4' a +—bR 2 4

(10c)

Note that we need to retain the amplitude a2 since it is
coupled directly to bi. According to Eq. (8), the atom-
field detuning for the zeroth-order Doppleron resonance

E =j fico~+ [1+(—1)J]A'coo/2,

where j even (odd) corresponds to the upper (lower) state.
These states are illustrated schematically in Fig. 2(b).
The nth-order Doppleron resonance occurs when

Eo E2 +) =Am

or for the atom-field detuning

b,co'„'=(2n +1) co~,

where the subscript n labels the nth-order Doppleron res-
onance. The reason for the superscript will become clear
in the following sections. If this condition is satisfied,
and assuming that the atomic recoil is suN. cient to con-
strain the scattering orders, the initial atomic wave func-
tion will then be split into two coherent components cor-
responding to transverse momentum eigenstates with mo-
menta +(2n +1)irik. Finally, for future use we define the
effective detuning from one-photon resonance for the
nth-order Doppleron resonance as

5„=(Eo E i )fi ci) =—hen'„' co—~—
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This equation gives a corrected value for the resonance
condition of the zeroth-order Doppleron resonance as

b.coo = b, coo '+ b, coo"=co~ [ 1 —( 0/Sco~ ) ] . (12)

The first-order correction hero"= —co+(A/Schiz ) arises
from the coupling of b, to a2, and can therefore be seen
as a renormalization of the resonance condition predicted
from the kinematic picture. In the field of high-
resolution spectroscopy the shift of a resonance due to in-
teraction with nonresonant levels is referred to as a high-
frequency Stark shift. ' For the case considered here
the level a2 is nonresonant due to the effects of atomic
recoil. We therefore interpret the shift in the zeroth-
order Doppleron resonance condition as a Stark shift due
to coupling to neighboring electrotranslational states.
The theory will be valid if this first-order correction is
small, which requires

is Acoo '=co&. Under this condition we see from Eqs.
(10a) and (10b) that the amplitudes ao and b, are phase
synchronous, whereas a2 is clearly phase mismatched. It
then follows that az is nonresonant and can be adiabati-
cally eliminated by setting da2/dt =0 and solving for 02.
Equation (10b) then becomes

db,
i =(co~ 0,'/6—4~~ —&co)b, +—~0 .

0/Scoz =1 [Fig. 3(a)] it is clearly seen that the higher
scattering orders are being resonantly excited. In con-
trast, for 0/8~+ 4, I'2 becomes less than 1%, and the
zeroth-order Doppleron resonance can be used as an
effective atomic beam splitter.

The width of the zeroth-order Doppleron resonance
can be obtained from Eqs. (10a) and (11) by setting
Aco= hcuo+6co, where 6co is the detuning from resonance.
By solving these equations as a function of 5co one finds
that the zeroth-order resonance has a width 5co=QO&.
Note that the first-order correction

~
b,co&"

~

=(0/Sco~)QO, is considerably smaller than the band-

1.0

0.8

0.6

0.4

0.2

0/Sco~ ((1 . (13) 0-
1.0

This condition also guarantees that the higher amplitudes
with j 2 do not become significantly excited.

Under conditions of zeroth-order resonance Eqs. (10a)
and (11) can easily be solved for ao(r) and b, (t). We can
then obtain expressions for

~
a (to) ~

and
~
b

&
( t )

~= b, (t)~, which are the probabilities for finding the
atom with transverse momenta 0,+1. A simple calcula-
tion yields

0.8

0.6

0.4

~ao(t)~ = cos (Ao, t/2), (14a) 0.2

and

(14b)
0

1.0

where the effective Rabi frequency for coupling from ao
to b, (or b &) is Qo&=Q/&2. This implies that the
effective field causing transitions from ao to b+, is 1/i/2
of the applied field. For an interaction time t;„,=sr/Ao&
the incident atomic wave function splits into two
coherent components with transverse momenta +6k.

To corroborate these predictions we have solved the
full set of coupled equations (5) with up to 20 scattering
orders. The results are shown in Fig. 3 where the proba-
bilities P = ~a ~, j even, and P = ~b (t)~, j odd, for
finding the atom in the various scattering orders are plot-
ted as functions of Qt/2. The detuning was chosen as
that for the zeroth-order Doppleron resonance, Eq. (12),
and results were obtained for various values of 0/8coz,
which according to Eq. (13) should be much less than l.
As shown in Fig. 3(a) and 3(b), the probability Pz=P
of finding an atom with a transverse momentum +24k
can exceed 10% for Q /8'~ )—,'. In particular, for

0.8

0.6

0.4

0.2

0

FIG. 3. Probabilities P, of finding the atom with transverse
momentum jAk as a function of the dimensionless time Qt/2,
under conditions of zeroth-order Doppleron resonance and (a)
0/8'~ =1, (b) 0/8'& = 2, and (c) Q/8'& = 4. The value of j
is displayed beside each curve.
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B. First-order Doppleron resonance

For the case of the first-order Doppleron resonance the
incident atomic beam wave function can be split into two
coherent parts of transverse momenta +3A'k. To analyze
this case we truncate Eqs. (5) beyond j ) 5, which yields

dao Q
i =—bi,

dt 2

db,
i =(co„—hei) )b i +—(ao+ a~ ),

(lsa)

(15b)

width 5', since we require that 0/8coz &
—,
' for an

effective atomic beam splitter. Therefore, the results
shown in Fig. 3 are essentially the same whether or not
we include the renorrnalization due to the high-frequency
Stark shift. In the following sections we shall see that
this is not the case for higher-order Dopplerons.

In order that ao and b& be phase synchronous, we require
that the diagonal terms in Eqs. (19) be equal. This yields
the first-order Doppleron resonance condition

ba), =bcmf'+bee', "'=9'„[1—(II/16'~ ) ] . (20)

0/16'~ &&1 . (21)

Therefore, as with the zeroth-order resonance, the reso-
nance condition is renormalized due to the coupling of
the amplitudes of interest, ao and b&, with the non-
resonant amplitudes. Again, this can be interpreted as a
high-frequency Stark shift due to nonresonant electro-
translational states. However, in contrast to the zeroth-
order Doppleron, where we have seen that the correction
Acro" is of little significance, for the first-order Doppleron
the inclusion of the renormalization is of central impor-
tance, as shall be seen below. Note that our analysis is
only valid if this correction term is small, which requires

da2 0=4coza2+ (b, +—b, ),
dt 4

dbms Q
i = (9coi, b, co)b ~+——(a2+ a~ ),

(15c)

(15d)

This condition also guarantees that the b &, a&, and higher
amplitudes with j 4 do not become significantly excited.

Under conditions of first-order Doppleron resonance
Eqs. (19) can easily be solved for ao(t) and b~(t) to give

da4 0
i =16') a +—b

dt 4
(15e)

and

~
ao(t) ~

= cos (Qo~t /2) (22a)

We retain the amplitude a4 since it is coupled directly to
bi. Equation (8) gives the resonance condition for the
first-order Doppleron Ace', '=9'~. Under this condition
we see from Eqs. (15a) and (15d) that the amplitudes ao
and b& are phase synchronous, whereas the remaining
amplitudes b&, a2, and a4 are phase mismatched. We
therefore adiabatically eliminate these amplitudes using
b,co=A, co', ' in Eq. (15b), which yields

8'~ —0/4 b i ~ ao
(16)

4 b,—II /4 —4' i, a ~

and

a 4 (17)

a2

0, /32co~

—Q /512co~

—0 /512co& ao
—n/16m, b,

(18)

Substituting Eqs. (17) and (18) into Eqs. (15a) and (15d),
and setting b,co=6,coI '+hco'i" in Eq. (15d), yields

1 0
bq, (19a)

1024
.«0 1 0
l

dt 64 Q)R
ao—

dbms
l

dt
ace' "+ 5 0

256 cog

1 Q
2048 -. "

(19b)

Note that from Eq. (17) the magnitude of a~ is of order
e=Q/coi, . Equation (16) can easily be inverted to yield

b, and a2 as functions of ao and b~. If we perform this
inversion and retain only terms up to order e we obtain

~b, (r)~'= ~b, (r)~'= —,
' sin'(A»r/2), (22b)

where the effective three-photon Rabi frequency for cou-
pling from ao to b& (or b &) is given by

1 0
2V'2 16'~

(23)

Here, following the notation introduced in Sec. IIB, we
have used the effective detuning from one-photon reso-
nance 6&=8coz. Taking account of the fact that the
effective field is I/&2 of the applied field (see Sec. III A),
Eq. (23) is the standard result for the effective three-
photon Rabi frequency. ' ' Therefore, for an interaction
time t,„,=rr/Qo~ . the incident atomic wave function is

split into two coherent components with transverse rno-
rnenta +36k.

Figure 4 shows numerical results for the probabilities
P of finding the atom in the various scattering orders as
functions of fit/2. In Figs. 4(a) and 4(b) the detuning
was chosen as that for the first-order Doppleron reso-
nance, Eq. (20), and the values of 0/8coz used were (a) —,

'

and (b) —,. As shown in Fig. 4(a) the probabilities P, z of
finding an atom with transverse momentum +8k, and
+2iiik can exceed 20% for 0/16coz )—,'. In contrast, for
Q/16coii & —' [Fig. 4(b)] P, 2 become less than 1%, and
the first-order Doppleron resonance can be used as an
effective atomic beam splitter. Note, however, the
difference in time scales in Figs. 4(a) and 4(b). It follows
from Eq (23) that, for a fixed Rabi frequency 0, the in-
teraction time t; ~

=m /003 required for an atomic beam
splitter scales as (0/16coz ) =(90/166,co), where we
have used the zeroth-order Doppleron resonance condi-
tion. This scaling is much more favorable than for an
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Figure 5 shows ~a ~
(dashed line), ~b

~
(solid line), and

the initial probability density (dash-dotted line) as func-
tions of p /Ak for the zeroth-order Doppleron resonance.
The parameters used are the same as in Fig. 3(b), and for
an interaction time O, t;„,/2=2. 3. This is the time for
which the system acts effectively as an atomic beam spli-
tter [see Fig. 3(b)]. The two examples shown in Fig. 5
correspond to (a) b, k/k =

—,', and (b) b,k/k =
—,', whereas

5ko/k =
—,'. For the case shown in Fig. 5(a), b,k =5k/2,

the input wave function is split as expected into two
coherent components with mean transverse momenta
+8k. Note that there is relatively small probability of
finding the atom in its excited state. In contrast, for the
case shown in Fig. 5(b), b,k =25k, and only the central
portion of the incident atomic wave function is scattered
by the Doppleron resonance, there now being a
significant probability of finding the atom in its excited
state. In this case the input spread in transverse momen-
turn is larger than the spatial frequency bandwidth of the
system, and this leads to breakup in the scattered wave
functions.

Similar breakup phenomena also occur for high-order
Dopplerons but are much more severe, as rejected in Eq.
(28). Recalling that 0/16coit & —,

' for the first-order Dop-
pleron to be effective as an atomic beam splitter, this im-
plies that the input spread in transverse atomic momen-
tum must, obey b, k/k &0.02 to avoid breakup. This is
clearly a very stringent requirement on future experi-
ments in this direction.

Figure 6(a) shows the probability densities
~
a

~
and

~
b

~

as functions of p /Ak for the first-order Doppleron. The
parameters used here are the same as in Fig. 4(b), and the
interaction time is Qt;„, /2=70, for which the system acts
effectively as an atomic beam splitter [see Fig. 4(b)]. The
portions of the figure labeled (a) and (b) correspond to the
excited- and ground-state wave functions, respectively.
Here we have chosen bk/k =0.1, whereas 5k!k =0.02.
Thus excessive breakup occurs in the scattered wave

functions. This is illustrated in Figs. 6(b) and 6(c), where
we show enlarged views of the regions around p„=0 and
3irtk from Fig. 6(a). Note in Fig. 6(b) that only the very
central portion of the incident wave function is scattered
by the Doppleron resonance. This is also evident in Fig.
6(c), where the scattered wave function has a width of
around 0.02, in excellent agreement with the predicted
spatial frequency bandwidth.

V. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed an atomic beam spli-
tter using Doppleron, or velocity-tuned resonances. %e
have derived resonance conditions for nth-order reso-
nances, and shown that they differ from those derived
from a simple kinematic argument by a correction that
can be interpreted as a high-frequency Stark shift. For
higher-order Doppleron resonances, the width of the res-
onance becomes extremely narrow, setting stringent re-
quirements on acceptable initial momentum spreads. If
these requirements are not met, the atomic wave function
undergoes a severe breakup as the atom interacts with
the electromagnetic field. Although it limits the practi-
cality of using Doppleron resonances in an atom inter-
ferometer, this breakup can be understood as a spatial
filtering of atomic momenta. As such, it represents a spa-
tial counterpart of conventional high-resolution spectros-
copy, and might also provide a basic element to prepare
highly monochromatic atomic beams. These possibilities,
as well as a full three-dimensional picture of the problem
and an analysis of a complete atom interferometer, will
be the subject of future work.
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