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Mechanisms of intermolecular dephasings revealed in the time-resolved coherent anti-Stokes Ra-
man scattering (CARS) spectra of a molecular ensemble are theoretically studied by deriving the mi-

croscopical expression for the scattered photon intensity averaged over the heat-bath variables. The
intermolecular dephasing means the decay of the intermolecular coherence created by the pumping
process, i.e., a linear combination of the vibrational Raman transitions of the molecules at different
sites. The intensity of the time-resolved CARS is expressed in terms of time-development matrix
elements of the intermolecular coherence. An equation of motion for the intermolecular coherence
is derived by using the projection operator method. The structure of the intermolecular-dephasing
constant is clarified. The intermolecular-dephasing constant consists of the sum of population de-

cay constants and the intermolecular pure dephasing constant that originates from an elastic in-

teraction between the relevant molecules and a common heat-bath mode. The intermolecular pure
dephasing constant is expressed in terms of the intramolecular pure dephasing constants and des-
tructive interference of the intramolecular pure dephasings between the relevant two molecules.
The intermolecular-dephasing constant is expressed as the sum of the intramolecular-dephasing
constants of the relevant molecules when there is no common heat-bath mode. Inhomogeneous
effects on the time-resolved CARS spectra are also investigated. A degree of the structural order is
introduced to qualitatively express the inhomogeneity of local structures in the molecular ensemble.
The microscopic expression derived in this paper has taken into account both incoherent and
coherent optical processes in the thermally distributed molecular ensemble.

I. INTRODUCTION

Recently, with the development of ultrashort time-
resolved coherent-scattering spectroscopy, ' " ultrafast
dynamics in various molecular ensembles with random
configuration have been studied both experimentally and
theoretically with great interest. The time evolution
of two molecules interacting with each other at various
positions can be directly observed by using such a
coherent spectroscopy. For example, the time evolution
of intermolecular vibrational coherence of the relevant
molecules in liquids has been detected by time-resolved
coherent anti-Stokes Raman scattering (CARS) in which
terahertz quantum beats appears as a result of the
creation of the intermolecular vibrational coherence. ' '"
By analyzing such a time-resolved spectrum, in principle,
one can obtain information on the mechanism of the in-
termolecular dynamics. ' ' However, in analyzing the
time-resolved spectrum, there still remain several subjects
to be clarified from the theoretical viewpoint. One of the
main subjects is related to the mechanism of the vibra-
tional dephasing of the intermolecular coherence: is the
dephasing constant measured by the time-resolved CARS
method simply given by a sum of the intramolecular de-
phasing constants of the relevant molecules, i.e.,

where I ~,~';. ;; . denotes the dephasing constant of the
intermolecular vibrational coherence between vibrational

transition (i~j) of molecule a and that (i'~j') of p.
Constant I", , (I ~J'.; ) represents the intramolecular-
dephasing constant of the vibrational transition between i
and j (i ' and j') of individual molecule a (P). The
intramolecular-dephasing constant consists of the popula-
tion decay and pure dephasing constants. The former
and the latter originate from the molecule —heat-bath
inelastic- and elastic-scattering processes, respectively.
We would like to know under what condition the expres-
sion for the intermolecular-dephasirlg constant denoted
just above can be used. More rigorously speaking, we
would like to know how the intermolecular pure dephas-
ing constant which originates from the elastic interaction
between the molecular pair of interest and the bath mode
is involved in the intermolecular-dephasing processes.

The purpose of this paper is to theoretically study the
mechanism of the intermolecular-dephasing processes
which are refIected in the time-resolved CARS spectra,
and to clarify the role of the bath modes in the
intermolecular-dephasing processes. For this purpose, it
should be noted that the conventional treatment for the
CARS signal, which is based on the evaluation of' the
third-order nonlinear polarization averaged over the
heat-bath variables, cannot be used. In other words, in
taking account the intermolecular-dephasing effect on the
time-resolved CARS spectra, the bath mode averaging
procedure has to be carried out for the signal intensity
but not for the amplitude of the CARS. Recently,
Hanamura and Mukamel, ' and Mukamel and Hanamu-
ra' have derived an expression for the photon-echo sig-
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nal from an ensemble consisting of a two-level system
with spatial correlations based on the stochastic theory.
The signal intensity is averaged over the stochastic vari-
ables.

In the next section, we first derive an expression for the
scattered photon intensity of the time-resolved non-
resonant anti-Stokes Raman (ARS) processes of a mul-
tilevel molecular ensemble by using the perturbative
density-matrix method. The density-matrix method is
based on the quantum-mechanical theory. Each molecule
in the molecular ensemble is assumed to consist of Ra-
man active vibrational modes. The density operator for
the scattered photon is given by tracing out the resulting
expression over both the variables of the heat-heat modes
and those of the incident radiation fields. In this deriva-
tion, effects of both incoherent and coherent photon-
molecule scattering processes are taken into account. We
call the incoherent component incoherent anti-Stokes Ra-
man scattering (INARS) in this paper. The CARS pro-
cess is expressed in terms of the time evolution of the
molecular pair density matrix in the Markov approxima-
tion, and on the other hand, the INARS process is ex-
pressed in terms of the time evolution of a one-body
molecular density matrix. These time evolutions are con-
veniently described on eight-time point Liouville space
Feynman diagrams. Secondly, we derive an expression
for the intermolecular-dephasing constant from the mi-
croscopic viewpoint. The equation of motion of the re-
duced, molecular pair density matrix is derived by using
the projection operator method. ' ' It is shown that the
intermolecular-dephasing constant cannot be expressed
as in Eq. (1.1) when the constituents interact with each
other through a common bath mode.

In Sec. III, a qualitative discussion on the mechanism
of the intermolecular-dephasing processes is given based
on the time-resolved CARS expression derived in Sec. II.
The structure of the intermolecular pure dephasing con-
stant is evaluated in the Markov approximation. A
molecular ensemble with one Raman active transition
and that with two Raman active ones are treated. Effects
of the environmental inhomogeneity of the molecular
pairs on the time-resolved CARS spectra are discussed as
well.

II. THEORY

In this section we first derive an expression for the in-
tensity of the photons scattered from both incoherent and
coherent fourth-order optical processes of a thermally
distributed molecular ensemble, and secondly obtain the
equation of motion for the intermolecular coherence
within the second Born approximation.

A. Intensity of time-resolved ARS

We consider the time-resolved ARS from a molecular
mixture which consists of two kinds of multimode mole-
cules, a and P interacting with ensembles or perturbers,
that is, a heat bath and radiation field as shown in Fig. 1.

In the CARS process, the radiation fields are assumed
to create a linear combination of the Raman active vibra-

tional transitions, that is, the intermolecular coherence
between molecules al and P located at position rr and
r in the mixture, respectively. Two-coincident laser
pulses (I,II) with central frequency (wave vector) co,(k, )

and co»(k») are sent into the molecules to create the in-
tramolecular coherence between the initial states Iaj
(Ia'I) and vibrationally excited states IcI (Ic'I) in the
electronic ground state via the virtual intermediate states
I bI ({O' I). This stimulated Raman scattering process
creates the intermolecular coherence between the in-
tramolecular coherences, a~c and a'~c'. By applying
the third pulse with co,(k», ), which is generated from the
same source as pulse laser I, to the mixture after time de-
lay ~, the photons with kz are scattered.

On the other hand, in the INARS process the pumping
pulses create the intramolecular coherence between the

(o)

(c) (c')

(&)

FIG. 1 (a) Model for the time-resolved anti-Stokes Raman
scattering (ARS) from a molecular mixture with two kinds of
multilevel molecules a and P. The circle at site rI and cross at
r encircled with dashed ellipses represent one of the molecular
pairs rejected in the CARS spectra in the mixture. Two coin-
cident laser pulses (I, II) with wave vectors (ki kgb) as pump
pulses are driven through the molecular ensemble. The large
circle represents the spatial coherence volume which is created
by the pump lasers. After time delay ~, the third pulse (III) with
kI» is applied to the ensemble as the probe pulse. The coherent
scattered photons with kz are induced. (b) Schematic represen-
tation for the interaction between the molecules and the radia-
tion fields in both nonresonant INARS and CARS processes. In
the nonresonant CARS process, the pump pulses (I, II) create
the intermolecular coherence between two Raman transitions,
a~c and a'~c' at di6'erent sites l and m, respectively. In the
INARS process the pumping pulses create the intramolecular
coherence between two states associated with the Raman transi-
tion at each site. The real and virtual states are represented by
the solid and dashed lines, respectively.
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Raman active vibrational states [c] ([c']) of molecule a
(P) via virtual intermediate states [b] ([b']).

The total Hamiltonian H is given as

~MB +~R +~MR (2.1)

where HMB denotes the molecular Hamiltonian including
the heat-bath variables, IIR the radiation field Hamiltoni-
an, and HMR the molecule-radiation interaction Hamil-

n n&

HMa= g VP+ g V~ +H. c. ,
1=1 m=1

where

(2.2)

tonian. We assume that there is no interaction between
the heat bath and the radiation field. Within the dipole
approximation and making use of the rotating-wave ap-
proximation, the interaction Hamiltonian is given as

Vp= —g /Mb, T'b, E i exp(iki'ri) X gM,'bT', bE ii+ exp( ik—«r&)
b Q c b

—g +Md, Td, Td, E iii exp('kiii'rt) X XM,dT', dEs 'exp( —iks. r&) .
6 c Q d

(2.3)

i' p T(t)= [ V(t),pT(t)],at T (2.4)

The term V ~ is obtained by exchanging subscripts of M,
T, and r between a and a', b and b', c and c', and l and m
in Eq. (2.3). The suffix l(m) denotes the numbering of
molecule a(P). The term M,'& denotes the matrix element
of the electric-dipole moment between states v and k of
lth molecule. We have neglected the photon polarization
effects in this paper. The term T,&(—:lv)(kl) is the tran-
sition operator from A, to v states, and E„(—=c«b „)and(+)

E ~
' refer to the radiation field operator of laser field II

and scattering photon field S, respectively.
The density operator for the total system pT(t) is

satisfied with the equation of motion,

where the density operator with the overtilde denotes
that in the interaction picture, and V(t), the dipole tran-
sition operator in the interaction representation is ex-
pressed by

V(t) =exp[i (HMB+Hii )™]HMR
X exp[ —i(HMB+Hii )t/fi].

n

= g V, (t)+ g V~ (t)+H. c.
m =1

(2.5)

(2.6)

In the perturbative density-matrix method, the total den-
sity operator for the ARS process, including the in-
coherent four-photon process p'T'(t), is given in expand-
ing pT(t) in terms of photon number (4) as

p'T'i(t)=[ f «'"][V(ti).l:V(t»', [V(t», [V(ts)p. ( —-)]], ]],
where

(2.7)

. f' dt"'. =(1/ih')'f' dt, f '
dt, . f '

dt, f '
dt, , (2.8)

and pT( —~) is the density operator for the total system
at the initial time t ~—~, and is assumed to be given by

I

heat-bath mode

pcs '(r, Ak, t) = (Tr~[Tr ~ 'T'(t)] )„, (2.1 1)

pT( —~ ) =p~( —~ )ps (
—~ ~p~ ( (2.9)

pM( —~), ps( —~), and p&( —~) in Eq. (2.9) stand for
the density matrices of the molecules, the heat bath, and
the radiation field, respectively. We assume that the vi-
brational degrees of freedom of the molecule at each site
in liquid are in thermal equilibrium before the excita-
tions, ' and pM ( —oo ) is given as

n a

where Tr;„and ( ),„denote the averaging over the vari-
ables of the incident fields and those of the heat bath, re-
spectively. Parameter ~ represents the time interval be-
tween pumping and probing pulse lasers, and
6k=k& —

k&&+k&&&
—k, . The population of the scattered

photons W~Rs(r, hk, cos, t) with frequency cps at time t
can be expressed using the Schrodinger picture of the
density operator for the scattering field p &~ '(r, b,k, t), as

p ( — )=Qp ( — ) +p ( — ).
l=1 m=1

(2.10)
WARs(r~ ~k~~s~ ) = & ~s Ips"(& ~k t) l~s & (2.12)

The heat bath is in thermal equilibrium and the scatter-
ing photon field is in the vacuum state.

The density operator for the scattering field ps' '(t) can
be derived from the total system density operator p'T'(t)
by tracing out both the variables of the molecules and the where

WiNARs(r ~s

+ Wc~Rs ( r, hk, cos, t ), (2.13)
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n

O', NARs(r, cps, t)= g f dt' ' . g (O'I(tp )f ((tp )OI'(tp )V I(tp )p ( —oo)p~( —oo)p~( —oo)
1=1

I pj

X V I ( t, ) Pi(t', ) P', (t, ) P'
i (t„, ) )Av

n&

+ g f dt'" . Q(Vt'(tp )f's(tp )P'~(tp )P~(tp )p& (
—~)

m =1 IPj

(2.14a)

and

n n

lVcARs(r& kk, cps, t)= g g f dt "' & ( 0'1(tp~ ) V I ( tp~) P I ( tp ) t
~ ( tp )p (

—~ )pz( —co )pz ( —~ )
1=11'=1

I P j
1%1'

Xp ( — )Vl (t, )VI (tp, )V ((tp. )O'I (tp. ))Ava&,

"I3 "P
+ g g f dt'" g ( f ~ (tp )P ~ (tp )V~ (tp )P'~ (tp )pp ( —~ )p~( —~ )

m =1 m'=1
I P j

mmmm'

n p
(8)+ g g ' f dt ' g [( P'~(tp )P'~(tp )P'~(tp )VI(tp )p (

—oo )ps( —~ )
1=1 m =1 IPj

Xp~( —oo)pp (
—oo)t (tp, )V (tp, )0' (tp )

m

X V~ (t, ))Av+c. c.j,
1

(2. 14b)

where ( )Av denotes the averltging over both variables of
bath modes and radiation fiefds; Notation g(pj in Eqs.
(2.14) means that we divide the time sequence
t8 ( t7 ( t6 ( (t, into any two pairs
(tp (tp (tp (tp ) and (t, (t, (t, (t, ) and sum

4 3 2 1

up all pairs. This procedure yields SC4=70 terms (35
terms plus the Hermite conjugate terms).

The intensity of time-resolved ARS is defined as

and

CARS(+ ~k)

n
Q

Itt (r)exp(i d k r&&),
1=11'=1

1&l'

IARS(& ~k)= f d~s f dt
~

lVARS(r ~k ~s~t)
~n sT Bt

INARS ( r ) +ICARS ( r& ~k ) (2.16)

n& n&

+ g g I (~)exp(ihk z),
m =1m'=1

mAm'

ItNARS(r) g It(r)+ g I (r)
m =1

(2.17a)

where b T denotes the time range of observation of the
scattered photons. The integration over mz means that
we detect the photons without any frequency resolution,
which allows us to adopt a 5 function form for the time
correlation function of the scattered photons. This
reduces 70 terms in Eqs. (2.14) to 20 terms. Making use
of Eqs. (2.3), (2.5), and (2.6), I&NARs(r) and IcARS(w, hk)
are expressed as

n n&

+ g g I& (r)exp(ibk ri )+c.c
1=1 m =1

(2.17b)

respectively. The first and second terms in the right-hand
side of Eq. (2.17a) represent the total populations of the
photons emitted independently from molecules a and /3,

respectively, and independent of the incoming wave vec-
tor. The optical process associated with the two terms is
an incoherent process. The magnitude of the two terms
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is proportional to the number of the excited molecules,
that is, n and n&, respectively. It should be noted that
the incoherent optical process contains the microscopical
information on the intramolecular dynamics induced by
the heat-bath mode such as the intramolecular dephasing
and coherence transfer. The first, second, and third
terms in the right-hand side of Eq. (2.17b) denote the to-
tal existence probabilities of the scattered photons due to
the creation of the intermolecular coherence between the
same kind molecules a (P) at different sites l (m) and l'
(m '), and that between different kinds of molecules ct and
13, respectively.

In the case where n, n&)) I within the laser spot, the
magnitude of the three terms is approximately propor-
tional to the square of the excited molecules number,
namely, n, n&, and n n&. We can see that the coherent
optical process contains the information on the inter-
molecular dynamics induced by the interaction between
two molecules through the heat-bath mode because each
term II&(r), I .(r), and II (r) in Eq. (2.17b) depends on
the states of two molecules at different sites. Terms II(r)
and II (r) can be expressed as

10

I, ( )r=2Re y J/(r) (2.18a)

and

10

II (r)= g K/ (r), (2.18b)

respectively. After averaging Eqs. (2.18) over the heat-
bath variables with the aid of the Liouville space Feyn-
man diagram ' as shown in Fig. 2 and within the fac-
torization approximation, ' we can easily reduce J/(7)
and K/ (r) to, for example,

(a)

g-s i te

Ib& g6 ld & g) Ia&

g-site

m-si te

la&

&a I

&al

Ic&

&c'
I

t3
I a'&

t~
Id& la&

lI[ S
&d'I

= t

FIG. 2 Liouville space Feynman diagrams for time develop-
ment of both intramolecular and intermolecular coherence in
the ARS process. The diagram (a) which corresponds to Eq.
(2.19a) represents time evolution of intrarnolecular coherence of
a single molecule nI in the time-resolved INARS process. The
intramolecular coherence from the right- to left-hand side with
initial condition p ( —~). The upper and lower lines represent
the time development of the ket and bra vectors, respectively.
Each wavy line represents the photon-molecule interaction.
The intramolecular coherence between the c and c' states is
created after the irradiation of pumping pulses (I, II) and
evolves for period t3 —t4. The diagram (b) which corresponds
to Eq. (2.19b) represents the time evolution of the intermolecu-
lar coherence between two molecules a~ and P in the time-
resolved CARS process. The upper and lower two lines are as-
sociated with representation for the time evolution of in-
tramolecular coherence of the molecules a, and /3, respective-
ly. These lines are connected through the incident laser fields (I,
II, and III) indicated by wavy lines. In the case in which there
exists the interaction between two molecules a, and P through
a common heat-bath mode, the four lines are connected with
each other as well. The intermolecular coherence evolves from
the right- to the left-hand si.de with initial condition
p ( —~ )p ( —~ ). The intermolecular coherence between~m

a~c and a'~c' states is created after the irradation of pumping
pulses (I, II) and evolves for the period t3 t4.

af g X X X X X X XI aMad~dc~cb~baMab™b'c™c'd™d'a
b' b c' c d' d

tl t2 t4
X f' «, f ' «, f dt, f '

dt4f
'

dt, f '
dt7&EI,+, '(t2)EItt'(t3))(EIt '(t4)EI,+'(t6))

X (E I+'(t5)E ', '(t7)) [((ha IG&(t6 t7)Iba )) ],„[((c—a IG&(t, —t6)Ica )) ],„
X [ « cb'I G&(t4 —t, ) lcb')) ]„[((cc'IG, (t, —t, ) Icc')) ],„[((dc'IG~(t2 —t3) I

dc')) ],„[((dd'I G~(t, —t2) ldd')) ],„

(2.19a)

and

aKI' (r) = f «—g g g g g g g gI.'I.-.ItI.'dMd, M,'bMb'. M. ,d,Md-, ~,-,b,~b.
6 c d a' b' c' d'

tl t4
X f' dt, f dt, f '

dt, f dt4f dt5 f dt6f dt7(EItt (t2)EItt (t3))

X (E '„'(t4)E It (t6))(E I (ts)E I '(t7) )G™,a., b (t6 —t7)G™„,, (t5 tb)—
ba:a'c' 4 5 ca a'c' 3 4 ca:a'd' 2 3 da:a'd' 1 2 (2.19b)
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=exp[ —(in&, +I &„.i„)(t,—t )], (2.20)

where co& and I & .&, denote the transition frequency and
the intramolecular-dephasing constant between the in-
tramolecular coherence k+-+v, respectively. '

The term G™i,,&.(t, —t )in Eq.. (2.19b) represents the
time-development matrix element of the intermolecular
coherence between v ~k and el~= -6& from t to t, in the
presence of the molecule —heat-bath interaction and is
defined by

G' i .,s(t, t )—

The terms', ' and (E I '(t, )E I+'(t ) & in Eqs. (2.19a) and
(2.19b) denote the population in the initial state a of
the molecule n and the incident laser field correlation
function, respectively. The matrix element
[((XulG&(t; —t~)lk, v&&],„ in Eq. (2.19a) is that of the
propagator of the intr amolecular coherence between
A,+-+U states of molecule u in the presence of the
molecule —heat-bath interaction from time t to t;, which
is given under the Markov approximation as

[((AvlG, (t; —t, )lou » ],„

HMB HO +H MB (2.23)

H0 =H +HP+H~, (2.24)

where H (His) and Hz denote the Hamiltonian of the
molecules a (/3) and the heat bath, respectively. Hamil-
tonian H MB represents the interaction between the mole-
cules a (p) and the heat-bath mode.

The time evolution of the total system is determined by
the Liouville equation for the density operator p( t)

coherence between the Raman transitions, v~A. and
e'~5' at sites l and m, G' z, ., s (t; t —), in the presence of
molecule —heat-bath interaction. This can easily be ac-
complished by applying the projection operator
method' ' to the density-matrix equation of the total
system in the absence of the radiation fields because both
pumping and probing pulses are absent during time dura-
tion of t, —t-. For this purpose, in this subsection we
consider a system which consists of two molecules aI and

p which interact with each other through the heat-bath
mode. The total Hamiltonian without the radiation field
ones HMB is given by

(2.21) at
p(&)=iLp(&), (2.25)

where G& (t; t ), the p—ropagator of the molecular pair
of interest whose constituents are located at sites l and m,
is given as

Gi (r; —t )= ex. p[ iL NTB(t;
—r)], — (2.22)

with L MB=[H M™B, ] jfi. The equation of motion for

G&, ., s (t; —
i&) is given in the next section.

The diagram (a) shown in Fig. 2 is the Liouville space
Feynman diagram representing the time evolution of the
intramolecular coherence of molecule o. in the INARS.
The upper line (the lower line) stand for the time develop-
ment of the bra(ket) vectors of the molecule a, and both
lines are connected through the incident laser fields (I, II,
and III) indicated by wavy lines and through the heat
bath as well.

The diagram (b) in Fig. 2 stands for the time develop-
ment of the intermolecular coherence between molecules
ai and p in the time-resolved CARS process. The
upper and lower two lines are associated with representa-
tion for the time development of intramolecular coher-
ence of molecules a& and p, respectively. These lines
are connected through the incident laser fields (I, II, and
III) indicated by wavy lines. In the case in which there
exists the interaction between two molecules a& and p
through a common heat-bath mode, the four lines are
connected with each other as well.

The other diagrams are depicted in Figs. 3. The terms
corresponding to these diagrams can be easily reduced by
using the seven-time point Liouville space Feynamn dia-
grams as well.

B. Equation of motion for the intermolecular coherence

We are now in a position to find the equation of motion
of the intermolecular coherence for pair molecules, i.e.,

(s +iL )p(s) =p(0), (2.27)

where p(0) [—:p' '(0)p'~'(0)p' '(0)] is the density opera-
tor p(t) at t =0. It is assumed that the molecules and
heat bath are in thermal equilibrium.

Introducing projection operators

and

Pii:—p' '(0)Trs (2.28)

Qs—:1 Pii— (2.29)

in which P s =Pji, Q ~=Qii, and QsPIi =PiiQ~ =0, Eq.
(2.27) yields

[s +i (L +L&)+'(X(s) &„]p &(s) =p &(0),

where

(2.30)

p &(s)=Trs[p(s)] (2.31a)

and

(2.31b)

Operator R(s) in Eq. (2.30) represents the self-energy
operator and satisfies

where L represents the Liouville operator of the total sys-
tem.

Applying the Laplace transformation,

p(s) = J dt exp( st)p(t—), (2.26)
0

to Eq. (2.25), we obtain the equation for p(s) in the s
space
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g($) =lL MB LLMBQB ~ Qei( )s+i( + f3+Le)
(2.32)

where I. 'Me= [H MB, ]lfi. Within the second Born ap-
proximation to the molecule —heat-bath interaction, Eq.
(2.31b) can be expressed as

(&(s)&„-Tr, L Ma . ~ MBp' '(0)
s+i (L +Lit+ e)

(2.33)

Performing the inverse Laplace transformation of Eqs.
(2.30), we obtain

8 ~
P

p p(t)= —i(L +Lp)p p(t)

where

—f dp(R(p) &„p p(t —p),
0

Making use of the displacement operator

we can rewrite Eq. (2.34) as

(g(p)&,„= f dp(R(s)), „exp(sp) .

(2.34)

(2.35)

(2.36)

(a)

tP-site

(al &bl &c'I &d'I

t~

g-site

&bi

t4

&c'I

g-si te

&a I

t7

Ib& Ic)

la& lb& lc & Id&

Id& Ia)

&bl &c'I &d'I &al -6

jP-site

Ia&

&al &bl (c'I

Ib& fc & Id&

&d'I

g-s i te

&a I

la& Ib&

&bl

lc&

&d'I (a I

t~

t
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FIG. 3 (a) Other diagrams JI" for the time development of intramolecular coherence of the single molecule a&. (b) Other diagrams
KI for the time evolution of intermolecular coherence between two molecules ai and P . The diagrams conjugate to those shown in

Figs. 2 and 3 are omitted.
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Bt p t'(t)= —i(L +Lp)p t'(t)

—f dp(X(p)), „exp( —p )p t(t) .
0 at

(2.37)

Within the lowest order of (R(p) ),„, Eq. (2.36) can be ex-
pressed as

p t(t —p)=exp[ —i(L +Lt)p]p t(t) .

Substituting Eq. (2.38) into Eq. (2.37) yields

p p(t)= —[i(L +Lp)+f'(t)]p t,(t),at

where

(2.38)

(2.39)
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f'(t)= f dp(R(p)), „exp[ i—(I. +I.g)p, ] . (2.40) jp~j pq

The equation of motion for the intermolecular coher-
ence between two transitions at sites a and /3, i ~j and

I

G', , (t) =((J.ig, i.jglp. g(t) )),
is given as

(2.41)

where

Qp npG g„,, (t)= [i~—,,g, , , +r-;,g,, ,„,(t)]G g„,(t)+ XXXX
(p ppqaqp)W(j ai pi j p)

I g,". (t)G g . (t), (2.42)

CO;.; . —CO. CO; +CO.Ji'~ J Ja ~a ip jp

and the summations are carried out excluding the case (p Wj,p gWi g, q Wi, qgW jg).
The second term in the right-hand side of Eq. (2.42), I g. .. , . .. ,(t), is expressed as

J, ,', (t.)=((j ig, i j glI (t)lj ig, i j g))
1

2 dP exP —i~, , P V', , P V'
t

mp

(2.43)

+ g g exp( i co,—, p) ( V.', , V', , (p) ),„
1

aJp' a p aJ/3' a P a P' aJP
lp

—[( V,.
'

J, , , (P)V,.',.. J,. )„+(V,.', J, V,', , ,
. (P)),„] (2.44)

where

, (p) = (j i gl exp(ipHs /A')HMBexp( —iJJHJJ I&)lm. m g & (2.45a)

and

, =co +co.,
—(co; +co. )

lp'i Jp Ja tp a Jp
(2.45b)

The real part of the term r,g;;; (t) represents the intermolecular-dephasing rate between two «an»ttons, t ~J. and

i '&~- -j'&. The imaginary part of the matrix element refers to the time-dependent frequency shift.
The term I' g; . . (t) in Eq. (2.42) is expressed as

r,;;,',„„(t)= —((j.ig, i.jg I &(t)
I p~ g, q.q g &&

dp V V exp( ice—, , JJ, )( V', , (p)V', , )„5, 6, ,
g2 O

~ ~ m m:p pp j i pm m
p

m m pp pp
~v iaqa j pqp

ma m'
p

+ g g exp( —iu', , p)( V',
&

t, V' t, , (p) )„
qaq/3 lal/3 qaqp lalp lalp laJ p

1

X 6 6, , —[exp( —i co, , p) ( V', , (p) V', , ),„JaPa Ja p'/ al p qaqp aJ p Ja p'I a/ p

+exp( —ico, . p)( V', . V. , (p) &,„]
qaqp iaJp qaqp aJp Ja p'~a~p

(2.46)

The real part of the term l,g ', ~ .(t) denotes the mag-
nitude of transfer between two intermolecular coher-
ences, i ~j and i& j&, and p ~q and p&~q& be-
tween two molecules, and is called the time-dependent in-
termolecular coherence transfer rate.

III. RESULTS AND DISCUSSION

In Sec. II, we have first shown how both the incoherent
and coherent third-order nonlinear optical processes, that

I

is, INARS and CARS, are taken into account on the
same ground. This has been accomplished by expressing
the intensities in terms of the scattered photon numbers
in unit time. It is clear that only the CARS process can
be treated by using the ordinary, semiclassical method by
which the third-order nonlinear polarization is evaluated.
Information on the intermolecular dynamics such as
intermolecular dephasing and intermolecular coherence
transfer is directly rejected in the time-resolved CARS
spectra. ' '" Second, we have obtained the equation of
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motion for the intermolecular coherence that the self-
energy operator of molecular pair of interest is derived
under the weak molecule —heat-bath interaction.

In this section, erst we clarify the structure of the
intermolecular-dephasing constant within the Markov
approximation. It is shown that the intermolecular-
dephasing constant is not given by Eq. (1.1) when the
molecular pairs are correlated with each other through a
heat-bath mode. For this purpose, we consider two cases.
In one case there exists a common heat-bath mode be-
tween the relevant two molecules, and in the other case
two molecules are uncorrelated. In the former case, the
interaction Hamiltonian H Mz is, for simplicity, assumed
to be expressed as

(3.1)0 MB ~aB +HPB

where A''B (HpB) denotes the interaction Hamiltonian
between molecule a (P) and heat-bath mode. We omit
the direct interaction between molecules a and P through
the heat-bath mode, i.e., H '

pB =O.
In the latter case, H MB is expressed as

and RB are operators of the molecule e and heat-bath
mode.

A. Structure of the intermolecular-dephasing constant

~ ~up(d)
ji,i'j 'j:i,ij'' (3.3)

where I „-.„and I,p.'."', ,'' are the population decay and
the intermolecular pure dephasing constants, respective-
ly, which are given by

j (B;)I &/. , B;IH.'B lm. ,Bf & I'
f2

Bi Bf m a%i a

Within the Markov approximation, the
intermolecular-dephasing constant related to the coher-
ence decay between i ~j and i p~j p Raman transitions
is given by taking the real part of Eq. (A4) and letting
t —+~ as

r.. .,... , j.=Re«j ip, i jplf'(~)jlip, i j p&&

~ MB HaB +H/3B (3.2) X5(CO B., B) (3.4)

It is assumed that H'
B is given by V RB in which V

f');~;",',;;,=, y yp(B;)I(&J. ,B;IH.'BIJ.,Bf &
—&/. ,B;IH.'Bl/. , j &)

B,. Bf

+(&ip, B; H pBI/p, Bf & & J p B'IH /3B I Jp Bf &)I ~(EBB ) (3.5)

In terms of the intramolecular-dephasing constant defined as

~jiji = p(~ii ii +~jj jj )+~ji ji

where

(3.6)

, y yj (B;)I(&j.,B;IH.'Blj.,Bf &
—&/. ,B;IH.'BI/. ,Bf &)I'&(~B B,),

B,- Bf

Eq (3.3) can be rewritten as

I ap I 0. + I p I ap(interfere)
ji,i'j 'j:i,ij'' jij:i ij'':i'j ' ji,i'j ':ji,i'j '

(3.7)

(3.8)

where the I z,
p""". "interference term of the intramolecular pure dephasings between molecules a and 13 is defined as

1;;pI',"';;" '= & &p(B;)(&j.,B; IH.'B Ij.,Bf & &/. ,B; I .'B I/'. , f &)
B B

X ( &j p, B; IH pB I J p, Bf &
—

& i p, B; IH pB Ii p, Bf & )a(~B B ) . (3.9)

Equation (3.8) indicates that in the presence of the com-
mon heat-bath mode the magnitude of the
intermolecular-dephasing constant is less than that of the
sum of the intramolecular-dephasing constant by the
magnitude of the interference term I,p'".

". ,','."'. We can
say that the intermolecular-dephasing constant is not
simply given by Equation (1.1) in the case in which the
two molecules are correlated through the common heat

bath. In other words, the Auctuations of the transition
frequencies of the molecular pair interfere with each oth-
er through the common heat-bath mode.

We confine ourselves to the intermolecular-dephasing
constants for the ensemble consisting of the same kind of
molecules with one Raman active mode that with two
Raman active ones as shown in Fig. 4. In the former
case, the intermolecular-dephasing constant for the tran-



2426 M. HAYASHE, M. SUGAWARA, AND Y. FUJEMURA 43

sitions i~j at site l and i~j at site l is given by

ji,ijj:i,ij 2 ' ii:ii jj:jj ii:ii + jjj:j ) (3.10)

In this case there exist no intramolecular and intermolec-
ular pure dephasing effects in the dephasing constant.

In the latter case, the intermolecular-dephasing con-
stant for i~j transition at site l and i+-+j at site l is given
by

ll' i 1 1 1' 1'r„'„.„„=,(r„.„+r„,, +r, ,
',

, +r,,'.„), (3.1 1)

and that for the transitions i~j at site l and i ~k at site
l' is expressed as

ll' i 1 1 1' 1' 11'(d)r„'„.„,„=,(r„,, +r„,, + r, ,
',

, +r„'„.,„)+r, ,
',„.. .„.

(3.12)

In the case in which two molecules are uncorrected,
the intermolecular pure dephasing constant reduces to

(3.13)
I2-site

(b)

From Eqs. (3.3), (3.6), and (3.13), we obtain

~op ~0. ~ ~p
J' I J:J' 'J J~JI ' J:I J

which is same as Eq. (1.1).

(3.14)

B.Inhomogeneity due to intermolecular-dephasing process

where

~jj jj +~i i':i'i' (~tr';ii +~j'j':j'j') (3.15)

xp
CO m +COB Cc) i COB

a f a I

, (3.16)

In this section we consider the inhomogeneous effects
on the time-resolved CARS spectra from the molecular
ensemble. The imaginary part of the diagonal matrix ele-
ment of the intermolecular coherence,
((j i&,i j &lI (~)lj i&, i j j3&&, which represetns the fre-
quency shift 6;~ '. , ;.' creates the inhomogeneity of the
transition frequency shift co;~. -. between molecules a and

P in the molecular ensemble. The frequency shift
6;P, '. ;; ' is expressed as

b .. .", .„,', = Im ((j i p, i jii l r( ~ ) lj i p, 2 j p &&

FIG. 4 (a) Model for the intermolecular-dephasing process in
the case in which the ensemble consists of the same kind of mol-
ecules with one Rarnan active mode. After the pumping pro-
cess, the intermolecular coherence i~j (1 -site) and i ~j ( l' -site)
is created. (b) Schematic diagram for the intermolecular-
dephasing process in the case in which the ensemble consists of
the same kind of molecules with two Raman active modes.
After the pumping process, the intermolecular coherence be-
tween i+ j (I site) and i~j (I -site), i ~k (l site) and i ~j (l site),
and i ~j (l site) and i~k (l' site) are created.

where P denotes Cauchy's principal value. From Eq.
(3.15), we can see that the intermolecular pure dephasing
process does not contribute to the frequency shift in our
model for the molecule —heat-bath interaction. There ex-
ist various values of AJ J J J depending on the distance
between the constituents of the molecular pairs (aP). For
the randomly distributed molecular ensemble, the inho-
mogeneity of A,~''. , ;' is characterized by a Gaussian
distribution function.

We consider two cases for the molecular ensemble. In
case (1), the ensemble consists of only the same kind of
molecule, a, and in case (2), two kinds of molecules a and
I3. In case (1), the time-resolved CARS spectra are ap-
proximately expressed from Eq. (2.17b) as

ICARs(7, 6 k ) —g g exp[ —( I ".;,' '. , ;.j + id J, , j, j. ..j, )2 ]exp(ib k.r», ).
1&1'

(3.17a)

=g g exp( —I j;; '.j;; 'r)exp(ihk r» )+g g exp[ —(rj', ,',' j. .. '+id" )r]exp(ibk. r» ). ,
1&1' 1&1'

(3.17b)

where b (=bJ„J'.J, , J) is the dlrerence of the Raman
11' q

transition frequency shift between molecules at site l and
I' and 6 =HAJJ jj 6,-,-.„The first term of the right-hand
side in Eq. (3.17b) represents the contribution of the

homogeneous subsystem in the molecular ensemble of the
time-resolved CARS spectra. The second term refers to
the contribution of the subsystem with local structures.
We assume that 6" is distributed with Gaussian function
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F (g~~ )=, exp
(2~)' o.

(gll' gO )2

20' ~
(3.18)

where 6 and o. , which denote the mean value of 6"

and its dispersion, respectively, are proper to the ensem-
ble. The intermolecular coherence decay constant in Eqs.
(3.17) is assumed to be given as
I -, , '. .;; '=I;.;+I;.'., ', neglecting the intermolecularll' 1 l'

pure depending constant, for simplicity. After averaging
Eq. (3.17) over b, , the intensity is given by

(3.19)

2

Ic~Rs(r, bk)-Re exp( 2I ~, J—, r) ' 3 .+8 exp —id 'r+ 1
2

2

Ic~Rs(r, b,k)-Reexp( 2I J, .; J
—r) ~ 2 +8 exp — ib, r+ 5(hk),

2

where 3 and B are the square of the number of molecules in the homogeneous subsystem and that in the subsystem
with the local structures, respectively. We call 8 l(A +8 ) the degree of the structuval order in the ensemble in this
paper, which is a measure of the magnitude of the local structures in the molecular ensemble and can be determined
from the time-resolved CARS spectra by extrapolation.

In case (2), the intensity is similarly given by

0

+Re exp( —21, ,'r) ' 2&+B&exp — i b &r+p . 0 ~&a
2

o 2

+2Reexp[ —(iso~~ +I J~ . . ')r] ' A &+8 &exp — ib, &r+ '5(bk) . (3.20)

The first and second terms in the right-hand side of Eq.
(3.20) refer to the contribution of molecular pairs aa and
P/3 to the time-resolved CARS spectra, respectively. The
third term represents the contribution of the molecular
pair a/3. A & and 8 t3 are the product of the number of
molecules a and that of molecules /3 in the homogeneous
subsystem of the molecular mixture and that in the sub-
system with the local structure, respectively. We can
determine the ratio 8 &I( A &+8 tJ) which represents
the degree of the structural order in the molecular mix-
ture from the time-resolved CARS experiment by extra-
polating the amplitude of the quantum beat. Thus,
analyzing the time-resolved CARS spectra for disordered
systems such as the molecular liquids and liquid crystal,
we can obtain the information on the inhomogeneity of
the structure from the microscopic points of view.

Finally, it is interesting to apply the theory developed
in this paper to studying the microscopic information on
the laser-induced collective motions and that on the
structure of the molecular ensembles in ultrashort time
regions.

In summary, in this paper, to study the mechanism of
the intermolecular-dephasing processes we have derived
the expression for the intensity for the ARS from a
thermally distributed molecular ensemble by taking into
account both incoherent (INARS) and coherent (CARS)
optical processes from a microscopic point of view. Our
general expression for the intensity of the CARS is given
in terms of the time-development matrix element of the
intermolecular coherence of the two Raman transitions
between molecules a and /3. The diagonal and of-
diagonal matrix elements represent the intermolecular
coherence decays and transfer, respectively. The time de-

velopment is conveniently expressed on the Liouville
space Feynman diagram in which the basis set is given by
four vibrational states associated with the two Raman
transitions. We have derived the equation of motion for
the time-development matrix element of the intermolecu-
lar coherence by using the projection operator method in
the case in which the relevant two molecules interact
with heat-bath modes. Within the Markov approxima-
tion, we have clarified the structure of the
intermolecular-dephasing constant in the presence of the
correlation between the relevant molecules through a
common heat-bath mode. The intermolecular pure de-
phasing constant appeared in the intermolecular-
dephasing constant as a result of the elastic interactions
between the relevant molecules and common heat bath.
The intermolecular-dephasing constant is expressed in
terms of the intramolecular-dephasing constants and in-
terference of the intramolecular pure dephasing between
the two molecules of interest. On the other hand, if there
is no correlation between the two molecules, the
intermolecular-dephasing constant is equal to the sum of
the intramolecular-dephasing constant associated with
the relevant molecules. The inhomogeneous eA'ects on
the time-resolved CARS spectra are also considered. The
degree of the structural order is introduced to qualitative-
ly express the inhomogeneity of molecular ensemble.
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APPENDIX: STRUCTURE
QF THE INTERMEDI. ECULAR-DEPHASING RATE

In this appendix, we rewrite Eq. (2.44) in terms of Eq. (3.1). Making use of Eq. (2.45a), Eq. (2.44) becomes

]I,;P;, ~;; J (t)=
2 dp G~(p) g +exp( i—to, . , p)~ V, ,

~

—V, , V
Q2 O m mp. J lp J lp. m mp l Jp'l Jp J lp'J l p

ma m p

+G~( —p) g g exp( —tao. . . p)~ V, , ~

—V, , V
I

laJ p.lal p laJ p.lal p laJ p.laJ p Jal p.Jal pa lp

where V, , = (j i
& ~ VM ~

m m f3 &. G~(p) in Eq. (A 1), the correlation function of the heat bath, is defined as
Jal p.mam p

Ga(p) = g yI (&;)I &&;I&, lap & I'exp(im„p) .
B,. Bf

(A2)

p(8,. ) represents the population in the initial state 8, of the heat bath and to& z =to& —
co& . Dividing the summation inf I f

Eq. (A 1) into four parts,

m ' m Wi ' ' m Wi ' =-' m =i ' ' m =ia mp a a mp@ip a a mp=lp a a mp&lp a a mp=lp

me finally obtain the structure of the intermolecular-dephasing rate as

(A3)

I J, ,'i, i, ,'J (t) =
2 dp G~(p) g g exp( i to—, , p) ~

V
A2 m mpj ip j ipm mpma+Ja m Wi

+ g exp( ito,—. p)~ V
m Wj

+ g exp( —iro, p)~V, ,
~ +~V, ~

—V, , V
Ja'p:Jal p aJp' aJp Ja p'Ja p

mpWip

exp( ito. —. ., p)~ V,
~

+ g exp( iro, t p)—
~ V,

l ~i ' aJP aP aJP aP l ~i a a laJp laJp
a 'a lp&Jp a a

+ g exp( —iso, .p)l V, , ,
I'+

I V, aJp' aJp Ja p'Ja p aJp aJp
lp&jp

(A4)
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