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Optical pumping of the electronic ground state of molecules has been investigated under condi-
tions of plane, elliptically, and circularly polarized light broadband excitation. The analysis has
been performed assuming arbitrary angular momentum values, and applying the apparatus of polar-
ization moments, the latter forming the coefficients in the expansion of the density matrix over irre-
ducible tensor operators, including simplifications due to asymptotic limits for large momentum
values. In addition to accounting for the external magnetic field, attention has been also given to
the dynamical Stark effect arising from the absence of coincidence between the centers of the excit-
ing line and the absorption line. An alternative classical description is also proposed using multiple
moments as coefficients of the expansion of a classical quasidensity of states over spherical harmon-
ics. The equivalence of both approaches of description in the limit of infinitely large angular mo-
ments is demonstrated, and the meaning of the origin of coherence is clarified, as well as its destruc-
tion by the magnetic field in the classical description of the system.

I. INTRODUCTION

In 1950 Kastler predicted! and later effected? a method
of creating a nonequilibrated population of magnetic sub-
levels, as well as sublevels of hyperfine structure (HFS) of
an atomic ground state. This method made studies of
magnetic moments possible, as well as studies of
hyperfine interaction, disorientation cross sections,
energy-level shifts, and other atomic characteristics. For
a review, see, e.g., Refs. 3—5, and references therein.

In the case of molecules, even after the appearance of
lasers, as a result of certain prejudices discussed in Ref. 6,
optical pumping (alignment) of the rovibronic ground
state (RVS) was only begun in 1969.%7 Further work led
to registering and studying interference phenomena in
systems of degenerate ground-state sublevels (Hanle
effect®), of nondegenerate sublevels (beat resonance),’ and
of quantum beats in the kinetics of transient processes.'®
Application of these methods to molecules in sodium,
potassium,and tellurium vapors made it possible to deter-
mine summary effective relaxation cross sections and
magnetic g factors of corresponding dimers in the fixed
RVS. Optical pumping was applied to sodium-dimer-
containing beams!! in order to register resonance signals
between HFS levels of Na,(X IE; ) and to determine the
HFS constants.

A description of the signals of optical pumping and the
interference of magnetic levels of RVS is by no means a
trivial problem for molecules with a high value of angular
momentum (J >>1, as a rule). This applies also to essen-
tial peculiarities of the balance between radiational and
collisional processes. The main stress in the present work
has been placed on an analysis of the origin of alignment
and orientation of angular moments in the electronic
ground state under the effect of light absorption, as well
as on a study of this effect in laser-induced fluorescence
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(LIF). It is necessary to point out that there exists a large
number of works (cf., e.g., Refs. 12—16, and sources quot-
ed therein) in which methods are worked out for the
determination of parameters characterizing alignment
and orientation in the electronic ground state for diatom-
ic molecules by means of polarization studies in LIF.
However, in these works it is not the mechanism of the
appearance of anisotropy in angular moments that is dis-
cussed, but rather methods of testing of already existing
alignment or orientation.

In the framework of the present studies we pay atten-
tion to the interaction between laser radiation of wide
spectral composition and molecules in the presence of an
external magnetic field. The intensity of laser radiation is
considered such that the rate of optical pumping should
be comparable to that of ground-state relaxation. In or-
der to analyze such processes Cohen-Tannoudji!® in 1962
obtained equations of motion for the operator of state
density (statistic operator). A further development of this
approach!®!” made it possible to obtain and analyze
equations of motion for the expansion coefficients of the
density matrix over irreducible tensor operators. These
coefficients are usually called polarization moments
(PM’s), and they are directly connected with alignment
and orientation of the ensemble of particles. Equations of
motion of PM’s are conveniently expressed in a compact
form, as proposed by Okunevich.’

The primary aim of the present work is to obtain maxi-
mally complete equations of PM motion for states with
arbitrary angular momentum values (Sec. III). In addi-
tion to spontaneous and stimulated processes, collisional
relaxation, and relaxation in external magnetic fields, we
must also consider the influence of the dynamical Stark
effect'® under broadband excitation. This effect arises
from noncoincidence between the centers of the excita-
tion contour and the resonance transition frequency. Ex-
plicit expressions are given for the calculation of PM’s in
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the case of elliptical polarization of the exciting light.

However, in states with high-angular-momentum
values, as is the case in most experiments with dimers un-
der discussion, there are possibilities of simplifying the
problem. Indeed, the conservation of angular momentum
is most simply accounted for in the interaction between
light and the molecule, if we employ asymptotic expres-
sions'® for J— o in the coefficients of moment addition.
At the same time there exists a consistently classical
method of description for such states. It is based on the
evolution of the classical density-of-states probability.?%?!
However, such an approach does not make full use of the
simplifications following from symmetry properties of the
system. As already pointed out by the authors of the
above-cited papers,?>?! this disadvantage can be over-
come by expanding the classical density of probability
over spherical functions. In the present work (Sec. V)
equations of motion have been obtained for the
coefficients of such an expansion. The above approach
has been compared with equations of PM motion through
which we can discuss the concept and physical meaning
of coherence in the classical limit J— co. In the analysis
of the equations obtained, the mathematical operations
have been performed comprehensively for a large number
of cases occurring in experimental practice. This makes
it possible to apply the results thus obtained directly to
the analysis of experimental data.® !° As examples, de-
grees of polarization or of anisotropy of radiation have
been obtained for different excitation conditions at arbi-
trary J values, accounting for effects of optical alignment
and orientation of the ground state.

II. GENERAL EQUATIONS
OF DENSITY-MATRIX MOTION

When a set of molecules is illuminated by a laser beam
that causes a rovibronic transition, cf. Fig. 1, an anisotro-
py is created in the spatial distribution of the angular mo-
menta J'' and J' in ground and excited molecular states.
If in this process some prevailing plane of molecular rota-
tion is created, then the set is aligned. If the set possesses
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FIG. 1. Scheme of optical pumping in the case of diatomic
molecule optical transitions between separate rovibronic levels
(B w",J")— (B, J)—(B",v{,J}) where v denote vibration-
al numbers of the ground state 3’ and the excited state 3'.

helicity, it is said to be oriented. The degree of orienta-
tion and alignment of molecules in both excited and
ground states can be determined by means of an analysis
of the intensity and polarization of LIF J'—J{'.

For analyzing the interaction between light and the
molecular gas according to the scheme shown on Fig. 1,
we shall use as a basis the equations of motion of the den-
sity matrix in the |JM ) representation.!® In this repre-
sentation the existence of molecular alignment means
that the probability of finding the molecule in a state M
(or —M) differs from that of finding it in a state with
different M’ (or —M'). In the case of molecular orienta-
tion the probabilities of finding the molecule in states M
and —M differ. The equations of motion of the density
matrix f.,, for the excited state and @, for the ground
state have the following form, in the approximation of
the broadband excitation line:!”
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Frequencies w; and w;. are equal to the Zeeman splitting
of magnetic sublevels in excited and ground states in an
external magnetic field B. The quantlzatlon ax1s z is

MM
chosen along B. The constants 'y}, ' and 7/”‘“1 deter-

mine the relaxatlon rates of the excited and ground
states, but F determines that of spontaneous back
transitions.

The factor

2 ’ ”n 2
rp=~ﬁ§|(1 71177 Y 12e2i(eq) 2)

determines the absorption rate, while

[<J’ |r||J" I%e%i(w;)
Os= ﬁ2 f —wy

do, 3)

is the frequency shift as a result of dynamic Stark
effect.!®22 Here (J'||r||J"’) is the reduced matrix element
for the J''—J' transition, cf. Fig. 1, e is the electron
charge, o is the resonance transition frequency, and w; is
the laser frequency with spectral intensity density i(w;).
The unit vector e,, entering into the dipole transition ma-
trix element (M e, -r|u), describes the polarization of
the exciting light. The term A5, characterizes the iso-
tropic relaxation of the ground state in interaction with
the thermostat formed by molecules not affected by opti-
cal action. The viability of such an approximation in cer-
tain circumstances is justified by the results of Ref. 23.
System (1) is formulated under the assumption of excita-
tion by means of a line of wide spectral range, i.e., when
the equations do not contain any dependence on the ve-
locity of particle motion.
The LIF intensity in the J'—J} transition, cf. Fig. 1,

with polarization e, is determined by the excited-level

matrix fyu2*

I=I, 3 fumeM'lesrip){ulefriM), 4)
MM

where I is a proportionality coefficient.

Let us consider the following example. Let the set of
molecules be excited by a light wave that is polarized
along A4,,n=0, +1, in a cyclic system of coordinates!’

Ag=A4,, A =F(A4,%id,)/V2. 5
This means excitation by light either plane polarized
along the z axis, or circularly polarized and propagating

along the z axis, cf. Fig. 2.

MM
Let us assume that T, <<Tne '=T, T, >y”'”‘—7/,

FMM =0. The relation between the rate constants, as
adopted here, is typical for a number of experiments on
diatomic molecules, cf., e.g., Refs. 7-10, 23, and 25. Let
o= =wg=0, which indicates an absence of external
magnetic field, and let the Stark shift be of zero value.
Under such conditions there will be no coherence in the
magnetic sublevel system, i.e., only diagonal elements of
the density matrix differ from zero. It thus becomes pos-
sible to obtain ¢, for ground state J” under conditions
of stationary excitation, by applying the Wigner-Eckart
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FIG. 2. “Standard” scheme of the geometry of plane polar-
ized (ey) or circularly polarized (e. ;) excitation. The intensities
of the registered LIF are 1,1, or Is,I,, respectively.
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Here XZFP /y and Cj. ’;T:,’ are Klebsch-Gordan
coefficients. Substituting (6) into the excited-state equa-

tion (1a), we have

Fusmprn < Pul CTLT? 7
Since the magnetic sublevels of the excited state J’ are in-
coherently populated, it is possible to represent the inten-
sity of LIF with polarization e, in the transition J'—J7,
cf. Fig. 1, and considering (4), in the following way:

n+ 2
I°<2f,,+ny+n2[ ey J ;z+7711 nln] ’ ®

where (e )y are the cyclic components of the polariza-
tion vector in the LIF.

Let us apply standard geometry of observation, cf. Fig.
2. For plane-polarized excitation we have calculated the
dependence of the degree of plane polarization
P=(I,—1I,)/(I;+I,) and of anisotropy of polarization
(or degree of alignment) R =(I,—1I,)/(I;+2I,) on pa-
rameter Y for all possible types of dipole transitions. For
circularly polarized excitation we shall search for the y
dependence of circularity C=(I;—1I,)/(I,+1,), where I
is the intensity of the LIF possessing the same circularity
(i.e., polarized along the same circle) as the exciting radi-
ation, and I, possessing opposite circularity. Table I
presents the obtained results. For the sake of comparison
formulas are presented for weak excitation, when y—0,
as given in Refs. 26 and 27. Separate columns show lim-
iting values for infinitely large angular momentum J — oo
and for very strong excitation y— . For certain types
of molecular transitions, values P of the degree of polar-
ization at arbitrary J values are presented in Refs. 6 and
28. An estimate of the effect of parameter x on the polar-
ization of LIF is frequently of principal importance; cf.,
e.g., Refs. 6, 7, and 29.

In solving the system of equations (1a) and (1b) in more
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TABLE 1. Expressions of polarization characteristics of radiation under conditions of optical pumping for various types of transi-
tion: R (J), degree of anisotropy; P (J), degree of plane polarization; C(J), degree of circularity; J being the quantum number of the
intial level, P1,Q1,R 1 denotes absorption; P{,Q|,R |, emission. Summation is made over M from M= —Jto J.
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the simplifications arising from symmetry properties of =2 X f o(To )y »
the problem. This procedure we are now going to apply. K=00=-K ©)
2J" K
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III. EQUATION OF PM MOTION k=0g=—«

For the solution of the system of equations (la) and
(1b) and for calculating LIF intensity (4) we shall further The expansion coefficients fg and ¢j give us the PM
use the expansion of the density matrix over irreducible  values. Their physical meaning is as follows: £ and ¢
tensor operators Tg:24 are the populations of the corresponding levels, while
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TABLE 1. (Continued).
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other fQ and <pq coincide to within a factor accuracy 2K +1
K
with the mean values (J, ) or {(J,') of the Q and ¢ cyclic (T um="5777 27 +1 Civik—o - (10)

components of the full angular momentum of molecules
in state J' or J". For example,
(Jo)=(—1J’ J’+1)f1 The PM values satisfy the
relations  fo=(—1) fK and @7 =(—1)% " )*.
Formation of PM of even range K,k=2,4, ..., is usual-
ly called alignment, and that of odd range
K,k=1,3,..., orientation.

The tensor operators are normalized, according to Ref.
24, in such a way that

A substantial advantage of such an expansmn lies in the

M
fact that the relaxation matrices Tyl |, M, and y”‘“‘

are diagonal in many cases and do not depend on Q and
g. This holds, in particular, in the present case under dis-
cussion, namely for isotropic collisions.

Let us now apply the expansion (9) to the system of
equations (1a) and (1b): taking into account the ortho-
gonality of the tensor operators, we obtain
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The first term in the above equation describes absorption, the second describes the Stark frequency shift effect of the
transition on the PM of the ground and excited states, and the third corresponds to stimulated light emission. The
fourth term describes the relaxation of the PM at rates I'x, 7, and their external magnetic-field dependence.

The coefficients are

K J
’ 3/2
KpXx— (2J'+1) E%;X+l)(2KI-/+;1)(_1)X+1 X 1 , (12)
27"+ 1DV22K +1) . J
o g xe — 1= DFHX QI+ DRXADREHD) e X « )1 1 X 13)
+ - 2 (2K+1)1/2 JII JII JII JII JII J/ Py
, . n rn K
C . =(—1Y'ttetlor+ D2+ 02y, , (14)
x JoJ 1
[
while the coefficients ¥ 4 {§" and “F¥X are obtained from  y=3r/4.

A%< and KFX* by interchanging J"" and J' in (12) and
(13). The quantities inside the curly brackets are 6j and
9j symbols. The irreducible tensor product is defined as

(I)(X)®f(K) K — C¥ X ‘I)XfK . (15)
q XEKQ ™ EJQ
£Q
The Dyakonov tensor®* ®F
1 q
X y— _ X
‘I’g(ea)—(z—XT)I/ZE( 1) 2e,h(eql)"‘Cl,f’ll,qz (16)

919,

characterizes the polarization of the exciting light. Here

e, are the cyclic components of the polarization vector of
l

the exciting light e, .

Let us now consider the problem of finding the tensor
<I>§ in an explicit form at an arbitrary polarization of
light. In similarity with Ref. 13, let us assume that exci-
tation takes place along the z axis, cf. Fig. 3, and that the
plane-polarized light beam with polarization vector e,
forming an angle ¥ with the x axis is passed through a
quarter-wave plate in which the “fast” axis s is parallel to
the x axis. After passing through the quarter-wave plate
the light becomes elliptically polarized and characterized
by the tensor <I>’§Y with components ®J=—1/V3,
®y=(1/V'6)sin2y, @®L,=0, ®j=-—1/V30, ®1,=0,
®2%,=(1/2V'5)cos2p. The ellipticity parameters are
determined by the choice of angle ¥. In special cases we
have ¥ equaling either O or 7 /2, and the light beam is
plane polarized. In the case where O <y < /2, light is
polarized along a left-hand ellipse; and in the case where
w/2<y<m, it is polarized along a right-hand ellipse,
becoming left circular at ¥y=m/4 and right circular at

For an arbitrary direction of excitation, determined by
the spherical angles 6 and ¢ and for the situation when
the axis of the quarter-wave plate forms an angle a with
the plane containing the exciting beam and the z axis, the
tensor <I>‘§" can be found by rotating the physical system
by the Euler angles a, 6, and ¢. In the rotated system,
@’5" can be expressed through the components d)’g, in the
initial system by means of Wigner D matrices!®

¢’§Y=%‘,(—1)5+§'[D§§'(a,9,¢)]*(1>§. (17)

Table II presents general expressions for @é and values

FIG. 3. Case of elliptically polarized excitation with applica-
tion of a quarterwave plate with its “fast” axis s; e, is the vector
of the plane-polarized light falling on the plate.
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TABLE II. General expressions and numerical values of the Dyakonov tensor <l>§ characterizing the state of polarization of light at a certain beam
direction. For plane-polarized light the spherical angles 6, ¢ determine the direction of the polarization vector e,; in other cases, the direction of the

light beam, a, 6, ¢ forming the Euler angles. Angle 1 is determined in Fig. 3.

Polarization

Plane

Circular
Right

of 0=0 0=u/2,p=0 O=u/2,p=mw/2

0=m/2, p=m/2

@3 - - - -
0 V'3 V'3 V3 V3
) 0 0 0 0
®! 0 0 0 0
1 0 0 0 0
@2 2 1 1 3cos?9—1
0 V30 V730 V30 V30
ip
@? 0 0 0 sin6 cosd >~
v's
i
2 0 0 0 —sin@ cosfE—
1 ‘/5
1 1 . e2i®
P2 0 —_— —_—— sin26 =
? 2V's 2V's 2V's
1 1 T
2 0 — — sin?0——
2 2V's 2V'5 275

1 L L __
3 V73 V73 V3
cosf
— 0 0 sl
6 V6
1 i . el®
0 —_— —_— sin@ =
2V3 2V'3 2V'3
1 i . e e
0 = = —sinf =
2V'3 2V'3 2V'3
_ 1 1 1 _ 3cos?9—1
V30 2V'30 2V'30 2V'30
ip
0 0 0 —sinf cosf——
2V's
Zip
0 0 0 sin@cosBe —
2V'5
1 1 5, ekie
0 _—— —_— —sin“0 —
4V's 4V's 4V
1 1 . e ke
0 - — —sin?0——=
4V's 4V's 4V

for the most frequently occurring special cases of the po-
larization of light. In the case of plane-polarized excita-
tion the angles 6 and ¢ in Table II characterize not the
direction of propagation of the beam, as in all other
cases, but that of the plane-polarization vector e,. The
form of the tensor <I>’§Y for unpolarized light can be found
in Ref. 24.

As may be seen in Table II, plane-polarized light can
be described by a Dyakonov tensor <I>’§Y in which only
even-range components differ from zero. In this case, if
there is a coincidence between the center of the excitation
line with the spectral transition frequency w, which is
equivalent to stating equality to zero of the value of wg in
expression (3), only the PM ¢g, fg of even range can be
formed. This follows from the circumstance that for the
coefficients KX« «p¥K K 4 XK' and *4X¥ as determined
from formulas (12) and (13), the rule of even values of the
sum of their upper indices must be valid. Hence, in the
case of plane-polarized excitation, and in the absence of a
dynamical Stark effect, only the alignment of the ensem-
ble must take place.

For calculating the signals we observed, it is necessary
to perform expansion over irreducible tensors also for
LIF intensity (4) (Ref. 24)

K
> (—Drfe%,, (18)

1
(2K+1)(
0=-K

2 1 K
I=IO 2 J’ J' JII ]
K= 1

0

where Q’é determines fluorescence polarization in this

case. Thus, in the situation under consideration, only
plane-polarized radiation will be observed, since
P <Ref3.

In the presence of the dynamical Stark effect we have
w70, i.e., in Eq. (11) there appear terms containing
coefficients ¥ 4 X', * 4 X They must, on the other hand,
satisfy the requirement of odd values of the sum of the
upper indices, cf. (13). This means that in the presence of
an external magnetic field we have w;+0, w,;+70, and in
Egs. (11), under the effect of plane-polarized light, in ad-
dition to the PM of even range, the PM of odd range are
also formed. Hence, simultaneously with the alignment
of the ensemble, orientation also takes place. It manifests
itself in fluorescence through circularity C « £}, differing
from zero value if observed along the z axis, cf. Fig. 2.
Such a transition of alignment into orientation is a purely
quantum effect, since in the classical limit of high angular
momentum values J— o the coefficients X4 X', ¥ 4 X«
assume zero value and vanish, as will be shown further
(22).

IV. ASYMPTOTIC EQUATIONS OF PM MOTION

For molecular states large angular momentum values
are typical.®® On the one hand, this complicates the solu-
tion of the system of equations (11a) and (11b), since at
large absorption rates I', a large number of different
PM’s can be generated, K <2J’, k<2J". On the other
hand, the addition coefficients of angular momentum be-
come simpler, since asymptotic expressions may be
used.!® In particular,
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TABLE II. (Continued).
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Polarization

Circular
Left
6=0 0=m/2, =0 O=7/2, p=u/2 Elliptical
1 1 1 S 1
V3 V3 V3 V3 V3
1 cos6 1 .
= 0 0 — ——=sin2y cosf
Ve Ve ve
0 - -t —sinf el? 1 sin2y sinfe '?
2V3 2V3 2V73 2V3
0 -1 -t sin6 < e - sin2¢ sinfe ¢
2V3 2V3 2V3 2V3
1 1 1 3cos?9—1 1 .o
- —_— e - — (3 sin%0 cos2a cos2y—2 cos20+1)
V30 2V/30 2V/30 2V/30 2V30 v
ip 1 .
0 0 0 —sin@ cosf—— — = [cos2y sinB(i sin2a —cos2a cos@) +sinf cosOle '?
2V's 2V's [cos2y ]
—igp 1 .
0 0 0 sin@ cosf5— = [cos2y sinB( —i sin2a — cos2a cosO) +sinf cosOle ~'¥
2V's 2V's [coe2¢ ]
0 - L_ —1—_. —sin%6 eZif —l:[( 1+ cos?0)cos2y cos2a + 2i cos® cos2y sin2a —sin%6]e %
4v's 4v's 4V's 4v's
0 — 1 - —sin20< ~2i¢ ~l—:[( 1+ cos?0)cos2 cos2a— 2i cosf cos2y sin2a —sin?Qle ~ 2P
4v's 4v's 4v's 4V's
+b+d+
a b c - (—1)° e CTp » (19)
d+R e+R f+R (2R )V(2c +1)172 %

where a=f —e, B=d — f,y=d —e, R >>1, and

{a b+R c+R (@a—b+cla—e+fNct+d—el—b+d+[)

(@a+b—clMlate—f—c+d+e)(b+d—f)

d e+R f+Rr|[=(TD?

where

1 when X=0

¢=a+d+min(b +e,ct+f), sgnX= ;__1 when X <0 .

Using an expansion of 95 symbols into a 6j-symbol series, we obtain

ab c 5 a bcl|d e fllg h i
d e fi=3(—1%2y+1) Fiylleynrlly adl
g h i Y

which enables us to show that at a large-angular-momentum limit

L, L,L L,L
1 2 273
A%

1=t ¢, =1,

(1/2)sgn(c +f—b—e)

(2R)—1—|b+e—c-ﬂ

lb+e—c—fl ~
(20)

(21)

L L,L L L,L L L,L L L,L L L,L
1 273 ™1 273 ™1 273 "1 273 71 273 —
Fao=tpni=m gl =t g = tighais =

A(2LZ+1)1/2(21;3+1)“2CLZO CkO
- (2L1+1)1/2 1a1—a%L,0L,0 »

where A=J’'—J", the system of equations (11a) and (11b) assumes the form
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f' 5 :sz KsXK{q)(X)®¢(K)}g _ Fp 2 KSXK‘{
X,k K’

s=—Tp3 S (®Xge"}r+T, 2 ST DN fENE — (v —iga )@y + T ydi,Bog fE+ME8,08,0 -

X«

As can be seen, along with the simplification of
coefficients in the asymptotic limit (23) the effect of the
dynamic Stark effect on the produced PM’s disappears.

The rate of approach of coefficients (19) and (20) (Ref.
19) to their. limit with increasing R can be used for
finding that the error in the values of the coefficients in
Eqgs. (23a) and (23b) is of the order J ~!. As a result of the
asymptotic approximation, a number of coefficients in
Egs. (11a) and (11b) coincide [cf. (22)], which raises con-
siderably the symmetry of the system of equations (23a)
and (23b) and simplified their solution. If the equations
are solved numerically, it may prove useful to use the
dependence

372

2L;+1 L3SL2L| ‘ (24)

2L, +1

L1SL2L3:(_1)L2

The expression for LIF, as obtained in a similar way, will
be of the quite simple form, in comparison with (18),

K
>

0=-K

2
I=I(—D¥ 3 (K+1)*ckXo,, (—Derfok,,
K =0

(25)
where A'=J'—J7.

V. EQUATIONS OF MOTION
OF PROBABILITY DENSITY

Along with the equations of motion of the PM’s, a clas-
sical analog of the density matrix, the probability density
p(Q,1),Q={0,¢]} is frequently used for the description of
molecular processes. The physical meaning of the ex-
pression p,(Q,t)dQ (where a=J' or J'' denotes its be-
longing to the ground or excited state) consists in the
probability that at moment ¢ the angular momentum J is
positioned within the steric angle d Q=sin6d6d¢. For
the situation under discussion, Ducloy?*3! employed
differential equations of motion of probability density p,,
in the analysis of the nonlinear interaction of resonance
laser radiation with particles possessing a large angular
momentum; a similar approach was concerned in Ref. 32.
If we include in the system of equations from Ref. 20 the
disorientating collisions which have not been considered
there, then this system assumes the following form:

pPHOO=T, [ Gy(0,07p,.(0',00d0
—T,G,(Q)p(Q)
—J T(0,0,0, 040 ~ 0, aa o Q1)

(26a)

(X £KNK
Ve [ o —
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k " iQuwy )fé‘ , (23a)

(23b)

pr(Q,t)=—T,G,(Q)p;(Q,1)

+T, f G1(Q,0,(Q,1)d

—J

+ fnyr“,, Q,Q ) (Y, 1)dQY + A, .

(Q,0")p;(Q,t)dQ —w,m aa py(Q,t)

(26b)

Here the terms that are proportional to G,(Q) and
G,(Q,Q') characterize absorption, while those propor-
tional to G,(Q) and G{(Q,Q') represent stimulated light
emission. Functions I'(Q,Q’) and y(Q,Q’) describe the
decay of states under the effect of radiational and col-
lisional processes. The dependence on initial Q' and final
Q orientations of momentum J shows that these same
constants describe processes that do not change the full
probability of finding the particle in the given state or, in
other words, disorientating collisions. The constant w,,
where a=J',J", is the Larmor precession frequency of
the corresponding angular momentum in the external
magnetic field, while the terms w,(3/9¢)p, determine the
rate of change of p, as a result of this precession. The
function T, ;.(€Q,Q’) describes the decay of level J’
through the radiational transition J'—J". Finally, A .,
similar to the terms in (1b) and (11b), represents the rate
of the population of level J'' in isotropic collision with
the molecular thermostat.

Let us compare the asymptotic equations for PM’s
(23a), and (23b) and Egs. (26a) and (26b) for probability
density. To this purpose we expand p,(Q,¢) over spheri-
cal functions>?

© K
PAQ=4m)"2 T T QK +1)2H pK(0YEN(Q) .
K=0Q0=—K

(27

The phase of functions Yko(Q) is chosen after Ref. 19,
and the expansion is performed in such a way that the
multipole moments apg are covariant with the spherical
functions Yy, and are proportional to the mean value
( Yko ) in state a. The physical meaning of _pJ amounts
to the full probability of finding the particle in state a
and apQ is proportional to the Q th cyclic component of
the mean angular momentum of a separate molecule.

Let us carry out an expansion of equations [(26a) and
(26b)] over spherical functions, and consider separately
the summands entering into these equations. At the di-
pole transition in absorption and in stimulated emission it
is possible to neglect the twist of J due to the absorption
or emission of a photon by the molecule, owing to the
negligible value of the photon’s angular momentum, as
compared to that of the molecule. This means that

Gi(Q,Q)=G,(Q)8(Q—Q")=G(Q)
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and

G1(Q,0)=G,(Q)8(Q—Q')=G(Q) ,
and

Cpp(Q,Q)=T;;(2)8(0—Q) ;

here (2 — Q') is a Dirac delta function and, according to
Refs. 20 and 31, the function describing the angular

dependence of absorption and emission can be calculated
as

G(Q)=le,n;_;l*, (28)

where n;._, is a unit vector directed along the dipole
moment of the molecule transition. For a transition of
the Q type, n,._, is directed along J, while for P-or R-
type transitions it rotates either clockwise or anticlock-
wise looking from the end of J. In laboratory coordinates
we have

G(Q)= |3 (—1%e,)_ oDy y(9,6,0) |* . (29)
Q

If we consider relaxation terms containing I'(Q,Q’) and
7(Q,Q’), we notice that at isotropic collision these func-
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tions are dependent on angle © between the direction of
vector J before the collision (determined by angles
Q'={6,¢'}), and after it (determined by angles
Q=1{6,¢}), but that they do not depend on the concrete
values of these angles. It is then convenient to expand
functions I'(©) and ¥(©) over bipolar harmonics.!° For
instance,

o K
PO=3 vk S YeolQ)Yip(Q) . (30)
K=0 0=-K

Using formulas (28) and (29) and the well-known depen-
dence!®

I Y @y,
_ QL+DV?L+D'? 100 im,
(47)1/2(2ll+1)1/2 1,01;0 lLymylymy >

(31)

(@)Y, (2)dQ

it is possible to obtain a system of equations for the
coefficients of multipole expansion of the initial equations
(26a) and (26b),

|
k QX+ 1K +1) ko oo , , .
7P Q_FPX’ZK’ 472K +1) CESk0(1G X yp X E— (G P ;p K} ) —(Tk —iw,Q )P (32a)
LK QX+1)2K'+1) ko x) (K'NK X)g (KNK
Po= pr§’ ar(2K+1) Cxoxo({G V@ pp 2 1o —{G V@ p " '} g) (32b)

(Y~ iwmQ )J”pIQ( + Ly J'p’é + AIQ(‘SKOSQO .

These equations, both in form and content, are very close
to the asymptotic equation for PM’s (23a) and (23b).
Their basic difference consists in the description of the
exciting light. The multipole moments G é, as introduced
in (32a) and (32b), are obtained as a result of multipole
expansion of G(Q) similarly to (27), while the tensor <I>é(
is used in (23a) and (23b) for describing the exciting radia-
tion. Both magnitudes are connected in the following
way:

1 X0 X
SraECin-aet. (33)

If the coefficients in the multipole expansion of J,pg are
known, it is possible to calculate the intensity of LIF in
the J'—J{ transition

1=10fﬂ,p(mc(mdn

Gf=(—1?%

2 K
=I,(4m) "2 S QK+1) 3 (—19%p§GE,, (34
K=0 0=-K
where, in this case, G(Q) determines the angular depen-
dence of the radiational transition and may be calculated
after (29), if the index J'—J' in the Wiegner D function
is replaced by J' —J 7, cf. Fig. 1.
Since the magnitudes apg represent multipole moments

f

in the continuous distribution p,({), the latter may be
depicted graphically** for a given set of multipole mo-
ments ap’é. Thus, for instance, Fig. 4 shows isometric
projections of the function p,(£) in three cases, when the
spatial distribution of the angular momentum is de-
scribed by a minimal number of multipoles (or, which is
equivalent, polarization moments). This figure illustrates
rather clearly the physical meaning of PM’s in the classi-
cal limit of a large angular momentum. Figure 4(a) corre-
sponds to a situation when, as a rule, the ensemble is said
to lack coherence, i.e., @ =0. This function is symmetric
with respect to rotation by any angle around the z axis.
In the other two cases, Figs. 4(b) and 4(c), coherence is
produced in the ensemble, i.e. Q70 (in the quantum ap-
proach Q =AM, shows between which magnetic sublev-
els coherence has been produced). For distributions of
this kind the z axis forms an axis of Qth-order symmetry.
This result means that, in the case of the classical ap-
proach to a particle ensemble. coherence may be treated
from the pont of view of the symmetry of the probability
density p,(Q). Such a procedure is useful for the visual
interpretation of experimental results and calculations
performed in the PM approach.

It ought to be noted that the statement about the pres-
ence or absence of coherence in a particle ensemble is
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FIG. 4. Isometric projections of functions p,(Q) which characterize the spatial distribution of angular moments of a state at a
given set of expansion coefficient values ap§ in expression (27). (a) Values o03=1, ,03=0,3. (b) pJ=1, p}=—p%,=0,15. (c)

aP8=1, ip3=ap* ,=0,15. The remaining .o} values equal zero.

rather conditional in a number of cases and depends on
the choice of the coordinate system. Thus, in Fig. 5(a), a
distribution of angular momenta of a molecule is shown
at excitation by light which is plane polarized along the y
axis. A Q type of absorption is considered, and it is as-
sumed that ', <<Tx=T, v, =y, I;p=0;=0;=0.
The z axis is a second-order axis of symmetry in this case
and, accordingly, we have coherence in the system be-
tween AM;=Q =2.

Figure 5(b) shows a distribution, as obtained by looking
from the end of the y axis. It may be seen at such a turn
of the coordinate system, if we wish the z axis to coincide
with the initial position of the y axis after transformation,
that the distribution of angular momentum must be
symmetrical with respect to the z axis, i.e., there will be
no coherence in the ensemble.

Figure 5(c) shows the same distribution of angular
momentum at switching on an external magnetic field. In

)
() %%';/ (d)

FIG. 5. Distribution of angular momenta J at Q1 excitation
by light plane polarized along the y axis. (a) Isometric projec-
tion of distribution in absence of external magnetic field. (b)
Same as (a), viewing from end of y axis. (c) Isometric projection
of distribution in the presence of the external magnetic field for
the ratio between the precession frequency and the relaxation
rate equaling w, /T’ =0,5. (d) View of distribution, case (c) from
the end of the symmetry axis in the xy plane.

calculating the distribution of angular momentum the ra-
tio w; /T =0,5 is assumed. The other parameters are the
same as in the first case. This time, looking at the distri-
bution from the end of the symmetry axis positioned in
the xy plane, cf. Fig. 5(d), it may be seen that this axis is a
second-order symmetry axis. Hence, if the z axis is posi-
tioned along the direction under observation, second-
order coherence remains all the same in the system of
molecular particles. The results obtained are in good
agreement with those of quantum-mechanical analysis of
the concept of coherence.®

In conclusion, a few words ought to be said about the
possibility of solving the system of equations (23a) and
(23b) with sufficient accuracy that describes the results of
experimental investigations. The main difficulties here
are due to the existence of an infinite number of intercon-
nected equations in the J— oo limit. However, in calcu-
lating LIF the signal is under the direct influence of only
the PM’s fé( of the excited state with range K <2. These
are directly linked with the PM’s of the ground state ¢
of range Kk =4 by the radiational field, as may be seen
from Eq. (23a), for which the triangle rule must be valid
for the indices of coefficient XS**. The PM’s of higher
range affect the LIF signal only indirectly. Therefore, as
experienced in the case of solving, with the aid of a com-
puter, the system (23a) and (23b),%¢ it is sufficient for
I“%/I“K,I‘p /7= 10 to take into account the PM’s ¢ and
fo of range K,k =10 for achieving a relative accurancy
of LIF intensity of the order of 1073. The system (23a)
and (23b) generally contains 242 equations, in this case.

The above-mentioned statement is illustrated by Figs. 6
and 7, which present the PM’s ¢ of various range « as
dependent on the parameter Y =T, /y, which determines
nonlinearity, for the case 'y =T'>>T,, T, =0;=w,-
=0, yY.=v. Applying plane-polarized light, the z axis
was chosen along the e, vector, while in the case of circu-
larly polarized light, it was chosen along the direction of
propagation of the light beam. The figures demonstrate
that the absolute value of the PM’s decreases with an in-
crease of range «, which permits one to use a relatively
small number of PM’s in the calculation.
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FIG. 6. Relative value of ground-state PM ¢§/¢3, k=2, 4,
and 6 at optical pumping by plane-polarized light, as dependent
on pumping parameter Y=I",/y. (a) Q1 transition type; (b)
P1,R 1 transition types.

VI. CONCLUSION

Optical pumping (alignment, orientation) of a certain
initial (lower) level of a molecular electronic ground state
by excitation of laser radiation of wide spectral range is
by no means anything extraordinary or “exotic.” It is
rather a situation sufficiently frequently observed in reali-
ty. To a smaller or larger extent it generally takes place
in absorption of laser radiation by diatomic molecules. A
description of the process has been given for arbitrary an-
gular momentum values for a model which accounts for
all radiational processes, interaction with an external
magnetic field, dynamical Stark effect, as well as relaxa-
tion processes in relaxation constant approximation. It is
assumed, at the same time, that there is an absence of
dependence of absorption on coordinates and velocities of
particles interacting with light. In other words, the re-
laxation process, in the course of motion through the ex-
citing laser beam and in collisions can be described by a
single constant of the summary process. A situation,
when this cannot be done, has been analyzed in Refs. 37
and 38 by us. Another assumption consists in the con-
cept of the existence of a “‘thermostat” of states in the vi-
cinity of the emptied level. These states have not under-
gone optical pumping, and “supply” only the population
to the pumped level in isotropic collisions (Fig. 1).

In the absence of an external magnetic field changing
the symmetry of the system, the description of polariza-
tion characteristics of the system, such as the anisotropy
of LIF from the optically pumped level, is sufficiently
simply (for any J value) performed in the JM representa-
tion. It may be seen from Table I, the way in which the
polarizational characteristics of such LIF (e.g., in the
transition J'—JY, Fig. 1) depend on the optical pumping
parameter at various polarizations of the exciting light.

The general case of the presence of coherence in a set

FIG. 7. Relative value of ground-state PM @f§/¢3, k=3,2,
and 1 at optical pumping by circularly polarized light for
P1,R 1 transition type.

of particles is most simply described in terms of polariza-
tion moments. Such a description may be performed, in
principle, for any, including arbitrarily large, values of
angular momentum J. In a number of cases this is neces-
sary, despite the highly complex nature of the equations
at J>>1. Thus, if a high accuracy of absolute values is
required in the calculation of polarizational characteris-
tics of radiation, it proves impossible to pass over to the
asymptotic limit, owing to a low convergence of certain
types of transition, even at values of J =50. This can also
not be done in the calculation of such specifically quan-
tum phenomena as the dynamic Stark effect. Neverthe-
less, in a wide range of interference signals (level crossing,
quantum beats, etc.) and for typical molecular states it is
fully sufficient to give a description using asymptotic for-
mulas for coefficients of moment addition. While
preserving all the advantages of a clear interpretation of
effects, the asymptotic approach proves to be consider-
ably simpler. It has been found (Figs. 6 and 7) that one of
the peculiarities of the situation under study consists in
the fact that, in the ground state, PM’s are “readily”
formed in the range higher than 2, even at relatively
small pumping parameters.

On the other hand, in such a ‘classical” limit as
J— o, a quantum-mechanical description, according to
the correspondence principle, may be successfully re-
placed by the classical one, in terms of probability density
and expanding over multipole moments. Both ap-
proaches being equivalent [cf. Egs. (23) and (32)], in full
accordance with the correspondence principle, we obtain
a definite advantage of imaginability. This makes it pos-
sible to ‘“‘visualize” the manifestation of multipole mo-
ments of various ranges in the distribution of angular
momentum (Fig. 4), as well as to clarify, the manner in
which coherence and symmetry are connected, cf. Fig. 5.
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