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Sum rules and electron-electron interaction in two-center scattering
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The role of target-electron —projectile-electron interactions in projectile-electron loss is examined
in the framework of the plane-wave-Born-approximation. The summation over target-electron
states, which typically uses the closure approximation, is refined by using a sum rule for stopping
power due to Bethe. The resulting expression for the cross section is compared with other
modifications of the closure approximation and with the experimental H +H electron-loss section.

I. INTRODUCTION

The ionization (or excitation) of the projectile in an
ion-atom collision is, in the most frequently studied sys-
tems, due to the direct Coulomb interaction between the
target nucleus and the projectile electrons. However, the
target electrons can also contribute to the projectile-
electron loss. The participation of the target electrons in
the electron-loss process can take place in two ways: pas-
sive, when they stay in the ground state and their role in
the process is restricted to screening the nuclear potential
of the target; or active, when the target electrons are ex-
cited and become agents responsible for the projectile-
electron loss. ' These two effects of the target electrons
on the projectile-electron loss have been called screening
and antiscreening, respectively, ' and, more recently, the
active effect has been recognized as a two-center scatter-
ing correlation. Experimentally these effects have been
studied with interest.

The calculation of the screening-antiscreening effects in
ion-atom collisions has been carried out usually in
the plane-wave-Born-approximation (PWBA) frame-
work. ' '" In this case, in the cross section, there occurs
a product of two form factors, one connecting the initial
and the final electron states of the projectile, and the oth-
er playing the same role for the target electrons. Be-
cause, in general, the final state of the target is not mea-
sured, it is necessary to consider all the possible target
states which are excited by the projectile-
electron —target-electron interactions. This is a compli-
cated task to carry out for many electron targets. In this
case, closure has been used for calculating the cross sec-
tion summed over all the possible final states ' to obtain
manageable results.

Anholt noted one defect of the closure approximation,
namely that it does not take into account the threshold
effect in the antiscreening (electron-electron) part of the
cross section. If the target electrons were completely
free, this threshold would be sharp and would be given by

—,'IU )I

where U is the projectile velocity and I the excitation or
ionization energy of the projectile. Essentially because of
the momentum distribution in the target, the threshold is
smeared out, as shown in the calculations of Ref. 1. To
reintroduce the threshold in the closure approximation,
Anholt proposed to multiply the antiscreening part of the
cross section by o, (v ) ltr (v ) where o, (v ) is the
electron-induced and crz(v ) the proton-induced projectile
excitation or ionization cross section. Although ad hoc,
this procedure gives a good agreement with the Bates-
Gri%ng calculations' away from the threshold which is
artificially sharp.

Hartley and Walters' have proposed a different
method for summing over the states of many-electron
target atoms. In essence, they represent the initial target
states by hydrogenic states with state-dependent effective
nuclear charges (finally reduced to valence electron states
in ls orbitals with a common effective nuclear charge)
and assume that target ionization is the predominant
mode of excitation. The latter assumption makes their
method especially applicable to rare-gas targets and
indeed they obtain a good agreement with accurate calcu-
lations by Bell and co-workers' ' for H excitation and
electron loss in collision with He atoms.

II. THEORY

Within the PWBA, the use of the closure approxima-
tion to calculate projectile ionization is possible only if
the summation over the final projectile states is inter-
changed with the integration over the momentum
transfer. Unfortunately for this procedure, the minimum
momentum transfer depends on the excitation energies of
the target electrons. A usual approach to circumvent
this difhculty is to take some kind of average over all the
possible excitation energies; ' ' this procedure, however,
can lead to poor results, specially at energies below the
cross-section maximum, as mentioned above (see Ref. 3).

The purpose of this paper is to consider more carefully
this averaging procedure in order to obtain a consistent
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approximation for the projectile ionization (or excitation)
cross section keeping the same philosophy as the closure
method, which is to avoid the need for considering indi-
vidually all the possible excited states of the target, as the
Bates-GrifBng method does.

Our starting point is the generalization of the theory of
Ref. 1 developed by McGuire, Stolterfoht, and Simony
for He atoms as given by Anholt. Assuming for simpli-
city that the projectile carries only one electron, the cross
section for excitation or ionization of this electron is
given by

o f= g f dq IFf(q)l
(u /up ) &

qmin

2
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In the above expressions gf(r) and g, (r) represent the
final and initial states of the projectile, ())„and pp the final
and initial states of the target, r, is the coordinate of the
ith target electron, Ef, E„E,, and Eo are, respectively,
the corresponding energies of these states, Z2 is the tar-
get atomic number, v is the projectile velocity, and
vo=e /A is the Bohr velocity, and q is the momentum
transfer to the projectile electron. We are considering
the case where the final target state is not observed and
consequently the sum in Eq. (1) is over all possible target
states n.

Let us define

fE —E,
qo

with

F,f(q)=&nfl "lq, &

E„—Eo
q, =

and rewrite Eq. (1) as (q;„=qp+q„):
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The first term in Eq. (5) corresponds to the approximation of neglecting q„as compared to qp. '" The sum over n
was interchanged with the integral over q because qo does not depend on n and can be evaluated using closure and fol-
lowing the same steps as Ref. 3. In the second term of Eq. (5) the sum is over n %0 because with n =0 the integral over
q would vanish. We obtain
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where 2 represents the sum over n WO in the second term
of Eq. (5),
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Then, we have

(9)

This sum is usually approximated by a single term with
q„replaced by an average value when the closure method
is adopted. It is our purpose to obtain a more accurate
approximation for it. Before doing so, we note that the
first term in Eq. (6) is the screening cross section and the
remaining terms give the antiscreening cross section.

To simplify the notation, let us define

IF,,(q)l'
f(q)=

q

qo+&nf dq f(q)g„(q),
n(WO)

(10)

h(q):—g g„(q)
n(xo)

where the following sum rules are associated with the
function g„(q):
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p(q)—= g q„g„(q)
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where advantage is taken of Eqs. (11) and (12).
To go further we choose Aq as

z2aq2

2mv
(12)
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The last identity can be obtained using Bethe's sum rule
for stopping power. '

Let us introduce some effective momentum transfer
Aq, independent of n, which will be determined later.
Equation (10) can be rewritten as

qo+Aqf dq f(q)g„(q)
n(XO)

Then, Eq. (14) can be rewritten as [if the argument is not
specified, then b, q =Aq(qp )]

qo+Aq
dq f(q)h(q)

qo

+f(qp+bq)h(qp+bq)[bq(qp+Aq) —bq] (16a)
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qo+hq qo+Aq+p
=- f dq f(q)h(q)+ f dq f(q)h(q)

qo+6=I dq f(q)h(q),

(16b)

(16c)
Because of the negative sign in front of Aq, we consider

that qn
—Aq is small when compared with qo+Aq, so

that we can approximate Eq. (13) by
qo+b, q3 -=f dq f(q)h(q)

qo

+ g f (qp+bq )g„(qp+ bq )(q„—hq )
n(WO)

qo+hq= I dq f(q)h(q)

+f(qp+hq)[p(qp+bq) —bq h(qp+bq)], (14)

5=hq(qp+bq(qp)) . (17)

Substituting Eq. (16c) into Eq. (6) and using Eqs. (8),
(9), and (11)we obtain

where p=Aq(qp+Aq) —b, q and 5=6,q+p. Note that
bq(qp+ bq ) means bq as a function of qp+ Aq(qp ).
Then,

2
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with 6 given by Eq. (17) and

Z2Aq /2mv
bq(q)= (19)

(19). Thus,
2

hq(q) —=
2mv

and, from Eq. (17),

(20)

Equation (18) is our main result. The first term in this
equation corresponds to the screening contribution and
the second one to antiscreening. If 5 is set equal to zero
in Eq. (13), the results obtained using the closure approxi-
mation are recovered.

In order to obtain some insight about the role played
by 6 in the integration limit, let us consider the low-
velocity region, where qoa ) 1 and where a is the target
radius. In this case, a reasonable approximation for bq
can be obtained neglecting the scattering factor in Eq.

2

5
~ + qo

2mU 2mv
(21)

Using Eq. (4a), we obtain

2mU 2mU

2

(22) .

where AE =Ef —E, .
From Eq. (22) it can be seen that when —,'mv becomes
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I I I I I I I I I I I I II) I I I shows the results from the present calculations [Eq. (18)].
It can be seen that the present results are very similar to
Anholt's but with a smooth transition to the region
where the contribution from antiscreening is negligible.
The experimental points are from Refs. 16—18. It should
be noted that the data from Refs. 16 and 18 include the
capture channel which partially contributes to the devia-
tion from Bates and Cxriffing's calculations, specially for
energies below 100 keV. Even so, the PWBA is not valid
in the intermediate- and low-velocity range, below ap-
proximately 100 keV in this case. ' The only reason we
use the Ho+ Ho system is to illustrate the direct compar-
ison with Ref. 3.

III. CONCLUSIONS
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smaller than AE, qo+6 becomes significantly larger than
qo. The increase of qo+6 reduces markedly the contri-
bution due to the antiscreening term as the projectile ve-
locity decreases below v'2b, E Im . Considering the target
electron as "free" in the projectile frame, the antiscreen-
ing contribution to the ionization is possible only if the
target electron kinetic energy is larger than the ionization
energy. Consequently, for projectile velocities such that
—,'mU (AE, the contribution from antiscreening should
be negligible. The parameter 6 assures this behavior for
the antiscreening term.

As an example of the above formulas and procedures,
Fig. 1 displays the results for the H+H system. ' In this
case the exact PWBA result, Eq. (1), can be computed
and it is shown by the thick solid curve. The closure ap-
proximation [Eq. (18) with 5=0] is represented by the
chain curve. The screening contribution [first term in Eq.
(18)] is shown by the dashed curve. Comparison of the
chain and dashed curves indicates that closure is a good
approximation at high energies but is unable to repro-
duce the exact results at lower energies, which clearly
comes only from the screening term. The dotted curve is
Anholt's calculation showing the "kink" ' artificially
generated in this procedure. Finally, the thin solid line

FIG. 1. Results from projectile ionization in H+H col-
lisions. See text for the meaning of the various approximations.
Thick solid curve (a) is the exact result (PWBA). Chain curve
(b) is the closure approximation and the dashed curve (c) is the
contribution due to screening. The dotted curve (d) is Anholt's
calculation and the thin solid curve (e) shows the result from
the present work [Eq. (18)]. Experiment: open circles, Ref. 16;
solid circles, Ref. 17; crosses, Ref. 18. The two lowest energy
points of Ref. 16 have been omitted because they appear to be
incorrect (see Ref. 17)~
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APPENDIX

In this appendix it is shown that at high velocities
(bE/2mv ((1) the proposed lower integration limit for
the antiscreening term corresponds to the free-electron
case.

The minimum momentum transfer for free-electron
collisions is given by'

&2mE
qmin

= &2m (E—b,E )

AE AE
2mu

AE—=q 1+0 + 0 ~ ~

2Ptk U

(Al)

On the other hand, the approximation given by Eq.
(Al) can be easily obtained from Eq. (22) by keeping only
terms up to first order in 6E/2mU inside the large
parentheses.

From the above results it is clear that the failure of the
closure approximation at energies lower than the cross-
section maximum comes from the averaging procedure of
q, adopted by this method. When a more discerning
averaging procedure is considered, such as in Eq. (18),
better results can be produced in all energy ranges with
little computational effort and, more importantly,
without the need of introducing additional terms which
do not emerge naturally from the basic theory.

In the Appendix we also show that the lower limit
qo+5 found for the antiscreening term [see Eq. (18)] is
nearly equal to the minimum momentum transfer for pro-
jectile electron loss by free electrons. The use of such a
lower limit was suggested by Hartley and Walters' and,
here, finds a natural explanation.
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