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Helium photoionization between the N =2 and X= 3 thresholds including angular distribution
and resonance properties: A E-matrix L basis-set calculation
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A K-matrix method employing L basis sets has been utilized to investigate the 'P' continuum of
helium between the N=2 and N=3 thresholds (65.4 —73.0 eV). The results include the partial and
total photoionization cross sections, the asymmetry parameters i3, and the positions and the widths
of the autoionizing states. Good agreement is found with the available experimental data for the
N=2 cross section. In agreement with other recent theoretical calculations, at 68.88 eV the total
cross section is predicted to be slightly greater than the recommended value that is generally em-

ployed to normalize the experimental data.

I. INTRODUCTION

There is a growing interest in photoionization process-
es at energies where more open channels have the same
global symmetry; a feature generally associated with the
occurrence of multiply excited autoionizing states. The
theoretical study of these processes requires the descrip-
tion of several interacting degenerate continua which,
especially in the presence of autoionizing states, is a chal-
lenging task. This problem has been generally treated by
close-coupling or related methods, which require the
solution of a large system of coupled diA'erential equa-
tions. Therefore these methods become very cumber-
some when many configurations are required for describ-
ing accurately the electron correlation or when the sys-
tem does not have atomic symmetry. Energy-variational
methods employing L basis sets, on the other hand, are
less aA'ected by these difhculties and their development
appears to be a very promising field. In particular, they
should allow one to exploit all the experience gained with
the electronic structure of molecular systems. Helium
provides a reliable test for the capability of the theoreti-
cal methods to treat problems of these kinds: highly
correlated wave functions are needed to reproduce accu-
rately some fine features of its spectrum, but at the same
time no significant discrepancy between theory and ex-
periment may be ascribed to frozen-core or similar ap-
proximations. Not surprisingly, therefore, the spectrum
of helium between the N =2 and X= 3 thresholds
(65.4—73.0 eV) has been the object of extensive experimen-
tal' ' and theoretical' study in recent years.

For helium, the spin-orbit eA'ects may be safely neglect-
ed, so that the LS coupling is quite adequate and the 'P'
continuum is the only one relevant for the ground-state
photoionization. Between the above-mentioned thresh-
olds, for each MI this continuum is fourfold degenerate,
corresponding to the asymptotic configurations lsd [i.e.,

He+(ls) and a p wave of energy e], 2sep, 2pes, and
2ped. Above 69 eV, this continuum is also highly struc-
tured, due to the presence of five series of resonances,
which, in the independent-electron limit, correlate to
configurations of the forms 3snp, 3pns, 3pnd, 3dnp, and
3dnf. The classification of these autoionizing states has
raised considerable interest and several schemes have
been proposed. This work employs the notation pro-
posed by Herrick and Sinanoglu, as refined by Lin,
which appears to be the best known and most largely em-
ployed. In this scheme, the resonances between the X=2
and %=3 thresholds are conveniently labeled as K, ,
where K = —2, —1,0, 1,2 is related to the Runge-Lenz
vector (an approximate constant of the motion) while n is
an outer quantum number which starts from 3 for ~K

~

= 1

and from 4 for ~K~&1. For conciseness, we have
dropped in the text the further labels N, T, and 3, since
%=3 for all these states, while T and 3 are redundant
when the global symmetry is specified. The label A
(which, for the reader's convenience, has been kept in the
tables) is related to the autoionizing widths, which are
large for A = 1 (series with K =+1 ), small for
2 = —1 (K=0,2), and very small for A =0 (K= —2).
The K = 1 series is easily seen in the photoionization from
the ground state while only the lowest term of the
K = —1 series has been observed. ' The other series are
almost forbidden to autoionize and their experimental
detection in photoionization from the ground state ap-
pears improbable in the near future, with the possible ex-
ception of the 24 resonance.

In previous work, an eKcient L technique has
been developed to treat accurately single-channel prob-
lems also in the presence of narrow resonances. In the
present work, this technique will be extended to treat
many-channel problems through a K-matrix method.
Unless otherwise stated, all quantities are expressed in
atomic units.
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II. METHOD OF CALCULATION

The method employed in the present work is based
upon the energy-variational approach, originally
pioneered by Fano, which may be adapted to the usual
L approach of quantum chemistry. No orthogonality
conditions will be invoked, since the aim is to realize the
fastest convergence with the basis-set size. The method,
similarly to the close coupling employed for atoms, is
essentially a configuration interaction (CI) carried out
with a basis set including localized correlating functions
and (formally) the asymptotic continua of the relevant
channels. By a judicious choice of these basis sets, the re-
sulting secular equation is solved, at a given energy E ly-
ing in the continuum, by the reaction K-matrix tech-
nique, which yields the coupled integral equations (3) for
the half-oA'-shell K-matrix elements. This integral equa-
tion is solved by introducing a discrete quadrature upon
the grid points supplied by a discretized representation of
the "unperturbed" states, which turns the integral equa-
tion into a linear system. The matrix elements at arbi-
trary values of the continuous energy indices are interpo-
lated upon the grid points. The implementation of the
method, although straightforward in principle, requires a
careful consideration of several details, which are ex-
plained in Secs. II C and II D.

A. Choice of the bases

To have a definite notation, let us consider an atomic
system and assume the validity of the LS coupling. The
L, S, ML, and Mz labels of the total system may be con-
sidered specified once for all and will be dropped in the
following.

The formal variational basis set is composed of %+1
subspaces, which are numbered from 0 to N and indexed
with Greek letters. The zeroth subspace is spanned by lo-
calized functions, which are needed to reproduce accu-
rately the bound and autoionizing states and to take into
account the short-range electron correlation in the con-
tinuum states. The subspaces numbered from 1 to N will
be called partial wave channel (PWC) subspaces; in this
case the subspace index specifies the level I=NILISI of
the residual ion and the angular momentum l of the outer
electron; note that several PWC's may correspond to the
same ionic level. These subspaces are spanned by spin-
and symmetry-adapted antisymmetrized products of a
give»on ~t~te

I I&IM M & =lc'&v L s M M ) and a p~~ti~l
L S I I I L S

wave. The lC&IM M ) may be exact or approximate
L S

bound states of the residual ion with energy EI+, which
are assumed to be orthonormal and to diagonalize the
Hamiltonian of the ion. These N PWC subspaces are
conveniently ordered in increasing ion energy EI+: for a
given total energy E, those with EI+ (E (say the first n )

will be called open PWC's and the remaining ones closed
PWC's. In the following, a subspace index a or y desig-
nates explicitly an open PWC subspace (1 to n ), while an
index P denotes an arbitrary subspace (0 to %).

Let Qp be the projector onto the pth subspace, QpHQp
the restriction of the Hamiltonian to this subspace, and
l@pE) its eigenfunctions

QpHQpl @pE ) =E I+pE &

which will be the forrnal basis set for the K-matrix calcu-
lations. For ease of writing, the same notation has been
employed for discrete and continuous eigenfunctions,
normalized to unity and 6(E E')—, respectively.

Note that in the PWC subspaces (13)0) the eigenfunc-
tions of QpHQp have the form

l@pE&=Ql@IM M g( &, E=EI++E

where lg, &
) are bound (e(0) or unbound (E~O)

S
~ ~

~

one-electron functions and Q is a projector for the global
symmetry. The PWC eigenfunctions may be chosen real
(at least for ML =0) and their

l f,&
) behave asymptoti-

S

cally as standing waves.
Clearly, inside each subspace the l+pE ) are orthogonal

and diagonalize the total Hamiltonian, but overlap and
Hamiltonian matrix elements between difFerent subspaces
will in general be nonzero, and thus the corresponding
projectors Qp are not required to satisfy QpQp =5ppQp.
Also, no strong-orthogonality constraints are imposed be-
tween the ion states liI&IM M ) and the waves lg, ~

). It
L s S

should be noted that the ion states i&1M M ) may be
L S

correlated states of arbitrary type.
In the present approach, the correlation effects on the

outer electron are more conveniently taken into account
by employing a large zeroth subset rather than consider-
ing several closed channels. Indeed, a properly chosen
zeroth subset may be considered a resummation of all the
open and many closed PWC subspaces, resulting in an ac-
celerated convergence of the variational expansion.

B. The K-matrix method

Corresponding to the n channels which are open at en-
ergy E, let us consider n real trial functions of the form

I +., &
=

I & .~ &+ X g dE'
I &,~ &P,xi,

p'

where P denotes the principal part of the integral and for
each subset gf denotes the summation over its discrete
part and the integration over the continuous one. The
expansion coefficients are determined by imposing

&ep, lH —Elq. &
=0

for all the basis-set functions l&p.E. ) and this leads to the
system of coupled integral equations

tt 1
KpE, ~E

— g dE Vp, E, p„E„(E)P Kp E„
pl I+pf

= VpE E(E) (3)

where

V, E p-E-(E) &~pE. lH El~pE &—
HpiEi prig ii ESpiri piiF ii

It is easy to show that for real energies the K matrix on
the energy shell K(E) defined by K ~ (E)=K,E E is a
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real symmetric matrix. The states ~+ z ) satisfy

gl'I' ~)= 5 +m gK ~ ~K F ~ 6(E E—'),

&+, lH +.,&=E n. .+~'gK„.,K„.,
X5(E E')—.

These relations are not new, but to our knowledge their
general validity was established before only for orthogo-

A. A,
nal projectors Qi3Q& =6&&Q&, a restriction which may
cause an extreme slowness of convergence in a variational
expansion. The proof of Eq. (4) is given in the Appendix;
Eq. (5) follows immediately from Eqs. (2) and (4).

Two sets of complex orthonormal eigenfunctions may
now be defined by

=
I ~ +,~ )

~ 4„~ ) I [ 1+i~K(E)] 'b. ' —'(E) .

The diagonal matrices b, ' '(E) have— elements
b, ' —'(E) =6 e, where g E is the total phase shift of

~
4 z ), which includes the Coulomb contribution

argI (l + 1 —iZ /k z )
—ml /2. The asymptotic expres-

sion of 4'z') presents ingoing waves in all the open
channels, but an outgoing wave only in the nth channel
and with zero phase shift. Therefore these functions
satisfy the boundary conditions for the photoionization
process, while the states ~%' z') are suitable for describ-
ing the scattering. The scattering matrix S(E) is related
to K(E) by '

S(E)—&
+' 'l+'+'& —~'+'(E) ~ +'(E)

1+i7rK(E)

Note that all the time-consuming steps involve only real
quantities, while the more usual direct determination of
the states ~%" z') requires much heavier calculations with
complex quantities. "'

C. The L basis sets for the PWC continua

with the k values equally spaced according to
k =(j+—,

' )~/Ro so that all these orbitals have a node in

Rp, which in this calculation was chosen to be 200. In
the present case, where the long-range potential is
Coulombic, the diagonahzation of Q~HQi3 on the above
bases yields a set of unit-normalized variational states

~ Pe~ ) which includes accurate approximations for its
lower bound states, a few wave packets in the higher
Rydberg region, many narrow wave packets with closely
spaced energies in the continuum (about one for each
STOC) and a number of broad wave packets at the upper
end of the spectrum.

The
~ P& ) referred to as narrow wave packets are very

accurate inside a sphere of radius about Rp, i.e., in it they
are almost exactly proportional to the continuous 6(E)-
normalized eigenstates ~N&F ) of the same energy
E =E& . If Ro is large enough, the outer orbital of ~gi3 )
behaves as a shifted Coulomb wave in a wide region of
space. The analysis of its behavior in this region yields its
phase shift pe and a normalization constant C&. such
that the C -normalized state Ci3 ~gij ) almost coincides
with the eigenstate ~&b&z ) for r (Ro and its outer orbit-

pj

al might be continued to infinity as an energy-normalized
shifted Coulomb wave. '"' The narrow wave packets fall
oA rapidly" ' ' for r) Rp and this makes the present
treatment similar to an R-matrix approach. Indeed, the
system may be considered "boxed" in a sphere with a soft
boundary at r=Rp and it is no wonder, therefore, that
the variational narrow wave packets are practically coin-
cident with the exact eigenfunctions having a node in R p.
The advantage of our choice is that all the matrix ele-
rnents may be evaluated analytically.

In all the following, the basis-set functions employed
a« ~y@) =C@~gi3, ) with the understanding that C&, =1
for the bound states (including all those in the zeroth sub-
space) and for the broad wave packets. In all the subse-
quent calculations the PWC eigenstates ~&biz ) are never
explicitly needed: only their phase shifts and matrix ele-
ments are required both to compute the observables and
to set up Eqs. (3).

The states referred to as narrow wave packets are such
that, for a11 the matrix elements required by these calcu-
lations,

The spectra of the projected Hamiltonians Qi3HQ&
have been represented by the I, technique developed in
previous work, ' which yields satisfactory representa-
tions of single-channel continua not only for Hamiltoni-
ans like Q&HQ& but also in the presence of strong corre-
lations between the outer electron and the core.

I. representations for the four PWC subspaces em-
ployed in the present case have been obtained by di-
agonalizing the Hamiltonian upon bases of spin- and
symmetry-adapted Slater determinants of the forms
1snp, 2snp, 2pns, and 2pnd. Here 1s, 2s, and 2p are the
exact states of He+ and the orbita1s nl employed to
represent the electron wave 1i include, besides Slater-type
orbitals (STO) and hydrogenic functions, a large number
of STO times a cosine (STOC) functions

y(k(~(r)=X~kIr'e "cos(kr)Y(~(r)

f[o[c„&=&f ~o~v

This is quite obvious when tf ) is a localized state, while
for &C&&.z, H E~C&iz, .3), needed to—set up Eqs. (3), a
comment is appropriate. For /3'=/3" these matrix ele-
ments are analytically dealt with before the discretization
and the final equations are free from the associated diver-
gencies. If /3'W/3", the channel functions differ at least ei-
ther in the ionic state or in the wave angular momentum;
since the ionic states are chosen orthogonal and nonin-
teracting, this means that no long-range integrand con-
tributes to the expectation values of the one-electron
Hamiltonian and of the monopole term 1/r& of 1/rip.
The worst case occurs with the dipole term r & /r &,
which involves contributions of the type
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R„(r) )R, (r) )dr) /r)
0

X R2, (r()R~ (r()r(dr(
0

These integrals, however, are adequately reproduced if
the states are correct up to about Ra=200 (see also the
discussion of Salomonson et al. ). It must also be noted
that each unit-normalized variational state Pp ) may be
associated with the energy interval [ ,'(Epj—+Ep/

& ),

,'(Ep —+
&
+Ep )] in the sense

at least when the integrand f*OC&pz is short range and
weakly energy dependent.

D. Discretization procedure

FIG. 1. Pattern of the matrix P(E) in the first few subspaces.
P(E) is diagonal in correspondence to the states considered
discrete, while it is a superposition of 4X4 matrices along the
diagonal in correspondence to the narrow wave packets.

The key requirement for the applicability of an L
technique is a regular behavior of all the quantities which
are represented upon a finite basis set. The properties de-
pending upon the continuous spectra of the projected
Hamiltonians QpHQp must therefore have a smooth en-

ergy dependence. This implies that the PWC subspaces
must not contain narrow shape resonances, a condition
which is indeed satisfied for helium. If narrow shape res-
onances occur, appropriate single-channel localized rep-
resentations of them should be projected out from the
PWC subspaces and some suitable representations of
them must be included in the zeroth subspace. The K-
matrix technique, through the presence of IC& z) and
P/(E E') in expr—ession (1) of the wave function 4 z ),
takes care analytically of the fastest variations in the ex-
pansion coefficients and this allows the discretization on a
basis set of the type described in Sec. II C.

The integrals in Eqs. (3) have been approximated by
employing a cubic four-point Lagrange interpolation in
the energy range associated with the narrow wave pack-
ets and treating all the remaining variational spectrum as
if it were discrete. The coupled integral equations (3) are
then turned into the following linear system for the ele-
ments K&"' z of its discretized representation:

g [ 1 —V(E)P(E) ]p p 'Kpl" ~~ —VP' ~~
p', j'

where

Vp p,'(E)=(1—6 pp)(&p IpH EIrppi'), —

Vp,
'

~ =(1—5p )(yp, IH EI@ ~)'"", —

and the superscript int denotes matrix elements which, by
virtue of (7), have been interpolated from the grid sup-
plied by the C -normalized narrow wave packets. The
matrix P(E ) takes care of the energy integration and has
the almost diagonal structure shown in Fig. 1. It is di-
agonal with elements Pp, p; =1/(E Ep, ) for the func-—
tions considered discrete (i.e., bound states and broad
wave packets) and it is almost diagonal over the narrow
wave packets, where the overlapping 4X4 submatrices
arise from the four-point interpolation.

Since the contributions from the higher Rydberg series
and from the high-energy spectrum are approximated by
sums over the corresponding

I cpp ), this discretization is
valid only if the contributions from these regions are
small and weakly energy dependent. This means that the
energy E in which we are interested must lie well inside
the region covered by the narrow wave packets. In addi-
tion, a careful representation of many Rydberg states is
necessary for reliable calculations close to a threshold.

E. Computational details

The ground state has been approximated by a large CI
employing STO up to l=6. Since this is a standard cal-
culation, it is sufhcient to compare the calculated
ground-state energy —2.903 5924 with the "exact" non-
relativistic value —2.903 724377 (Ref. 48) and the l =6
limit —2.903 643 88.

The localized zeroth subset has been obtained by di-
agonalizing the Hamiltonian over a basis set of spin- and
symmetry-adapted Slater determinants built with STO
and hydrogenic orbitals up to l =6. This subset contains
accurate localized representations of the bound and au-
toionizing states below the N = 3 threshold up to an outer
quantum number n =8 (these autoionizing states include
three series converging to %=2 and five to %=3). It
contains also a large number of localized wave packets
which are needed to correlate the continuous variational
states and lie above the %=3 threshold.

The present basis set includes all four PWC's
(lsep, 2sep, 2pes, and 2ped ) which are open between
the N = 2 and N = 3 thresholds, but no PWC's closed
above N=3: these, as said before, are conveniently re-
placed by a large zeroth subset. The basis sets employed
are such that each open PWC contains about ten accu-
rate bound states, one or two wave packets in the higher
Rydberg region, narrow wave packets up to a total ener-

gy E=0.5, and about 20 high-energy broad wave pack-
ets. The numbers of functions Iyp ) in the localized
zeroth subspace and in the four PWC's are, respectively,
197, 163, 105, 105, and 104.
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The representation employed for the higher N=2 Ryd-
berg series is rather coarse and one cannot expect the
present calculations to be accurate at energies close to the
N =2 threshold. The calculated cross sections show
indeed spurious oscillations in the first 0.02 a.u. above the
N=2 threshold. Reliable calculations in this region re-
quire better representations of the higher Rydberg series
and more closely spaced narrow wave packets at very low
wave energy. However, a basis set capable of reproduc-
ing accurately both the threshold and the resonance re-
gions should be significantly larger and, in view of the
structureless nature of the threshold region, would re-
quire an unjustified computational effort.

Owing to the nonorthogonality, the whole basis set was
approximately linearly dependent, but the system solu-
tion through the LINpAcK subroutines did not lead to nu-
merical troubles. As a matter of fact, at all the energies
studied the resulting discretized K matrix satisfied its
determining equations (8) with excellent accuracy and the
K matrix on the energy shell K(E) interpolated from it
was almost exactly symmetric. In conclusion, it was pos-
sible to solve Eqs. (3) for any desired energy, obtaining
very regular behaviors for all the quantities even sweep-
ing the energy range of narrow resonances.

F. Analysis of the resonances

The determinant of the coefficient matrix
1 —V(E)P(E) in Eq. (8) has a real zero near every eigen-
value Eo of the localized zeroth subset which corre-
sponds to an autoionizing state. While the general
analysis may be tedious, this occurrence is easily shown if
the variational state ~yo ) represents a narrow isolated
resonance. In this case, the discretized coefficient matrix
may be conveniently written in the form

V(j) E
1 —V(E)P(E)= A(J)(E)—

E—EOj

where the matrix V(~)(E) is obtained from V(E ) by delet-
ing all the elements but those in the column correspond-
ing to the autoionizing state. The determinant of this
matrix is

Det[1 —V(E)P(E)]= [ f
2 'j'(E) [o o~ /

Oj

X 'QVg(, o (E)
P, k

X
i
A (E)p (o)

where the
~
3 'J'(E)

~&), o are the cofactors of A(~)(E).
Under the above hypotheses the terms in the two curly
brackets are almost constant around Eo and the first is
much larger than the second. This implies that the deter-
minant vanishes near Eo and therefore the inverse ma-

ps
trix [1—V(E)P(E)] ' has a pole there. The above equa-
tion, in principle, may be employed to locate the pole. It
may also be noted that the coeKcient matrix diverges at
E =Epj ' a careful analysis shows that this implies

Ko +~0 when E~Eoj, but the exPansion coefficient
Ko z l(E E—

o ) remains finite.
Around E=Eo, the K matrix on the energy shell is

therefore expected to have a series expansion of the
form

K(E)= g K"(E E()—)'

where Eo=Eo is a real energy. For all the resonances
examined, it was found with excellent approximation that

K =aoaoI o/2w(
—].)—

where ao is a normalized row vector ( gz ~aors~ =1).
This implies a Wigner-type pole of the scattering ma-
trix, "i.e. ,

S(E)= + g S"(E E~ )'—
E E A

where a, is a normalized row vector. The complex pole
E~ =E„—iI „/2 of S(E) gives the position E, and the
width I „of the resonance, while b~=~a„are the
branching ratios, i.e., the relative probability of decaying
in the yth channel. For a resonance of this type, only
one eigenvalue of K(E) may diverge, while the other
ones must have a regular behavior. The diverging eigen-
value Ad;„(E) may be expanded in the form

r,
Ad, „(E)= + g A "(E Eo)'—

277(E Ep
( & p)

and, according to Eq. (6), the pole of S(E) is found by
solving

1+i~Ad;, (E)=0 .

It is a widespread belief that for a narrow resonance
I o =I,. and ao =a„but the above formula shows that
this is not generally true. Indeed, at a narrow resonance
E~ —Eo is small and this implies that A"(E~ —Eo)' is
small for i & 0, but not for i =0. It appears that often the
A' ' coe%cient is essential for obtaining a reliable S-
matrix pole, while those beyond A'" give only negligible
corrections. This is clearly demonstrated by the 24 reso-
nance, for which this method yielded a width of
6. 83 X 10 employing only the leading term and of
3.22X10 with an accurate polynomial fit of Ad;, (E).
It is interesting to compare these figures with the value
3. 18 X 10 given by Lorentzian-fit method explained
below and with the golden-rule estimate 0.89 X 10

I,. =2~y I&@, , la —E„lqo, &l'.

This poor result was not unexpected in view of our previ-
ous work, where an improved version of this rule was
proposed.

An alternative way of analyzing the resonances is
founded upon the consideration that, if a reliable local-
ized approximation

~ cpo ) to an isolated autoionizing
state exists, its density D (E) in the continuous eigen-
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states

D, (E)= y (+';~'l~., &
I'= »»(E)

r

should resemble a Lorentzian centered in E„. The fit of
D (E) yields therefore the position and the width of the
resonance, while the areas subtended by the Dr&(E) give
the branching ratios.

Finally, the parameters for the lowest (13 or 3s3p ) res-
onance, which has been the subject of careful experimen-
tal studies, ' ' ' have been obtained also by fitting the
photoionization cross section cr(E) by the many-channel
Fano-Cooper formula '

o(E)=o.o[.1+a(E—Eo) ] p + 1 —p
2 (q+e)

0.06

0.04—
0
I—
O
LLI

0
0.02-

C3

0.00
71.220

0 0

I I I

71.225
PHOTON ENERGY (eV)

71.230

2(E —Eo )
(10)

FIG. 2. Details of the length gauge 2sep photoionization
cross section around the 24 resonance.

in which a linear variation of the background cross sec-
tion cr b(E) = a o[1+a(E Eo ) ] is ass—umed.

All these techniques assume the knowledge of the con-
tinuum properties at several energies in the neighborhood
of the resonance. The capability of the present method to
reproduce correctly the resonance behavior is shown in
Fig. 2, which reports the 2sep partial cross section across
the narrow 24 resonance as calculated with the length
gauge (LG) [the velocity gauge (VG) results are almost in-
distinguishable on this scale].

The search for very narrow resonances is greatly
simplified since the eigenvalues of the zeroth set (eventu-
ally with the first-order Fano correction ) and the
golden-rule widths represent reliable starting points.
This avoids the laborious searching often required in
these cases by the most usual close-coupling techniques,
where these starting points are not easily available.

G. Cross sections and asymmetry parameters

The y-channel cross section is simply the contribution
due to the ~VI,z') state and the total NILISI cross sec-
tion (i.e., to the ion in a given level) is clearly the sum
over the channels associated with this ionic level.

Also, in view of future applications, it appears to be
worth reporting here the general expression of the asym-
metry parameter Pz I s for the photoionization which

I I I
leaves the ion in the NILISI level starting from an arbi-

trary initial NoLoSO level. Denoting the states of the ini-
tial level by ~%'& I s .M M ) and the final states involved

0 0 07 L S
in the photoionization process by l+ppj I. s /. L, .s M ~ )I I I i i O' L S
(where 1; and L, are the wave and total orbital angular
momenta), the asymmetry Parameter Pz L s may be ex-

I I I
pressed as

p~ I, s = g (
—1) ' ' ' ' '[(21, + l)(21 +1)(2L, +1)(2L.+1)]'~~

X C(112;000)C(l,1 2;000) W(1L, 1L;LO2) W(l, L, 1 L;LI2)

X ( NOLOSO ~~O I~IENILISI 1; L, SO )* (NOLOS0 ~~O ~I~ENILISI1 L)so )

X —' y (N, L,S,~~IOIIEN, L,S,1,L,S, & I'
1

where C and 8' are the Clebsch-Gordan and Racah
coeKcients, respectively, and

( NOLoso ii 0 iiENILISI 1,L; So )

the reduced matrix elements between the initial and the
final states. All these quantities follow the Rose conven-
tions.

The asymmetry parameter for the processes leaving
He+ in an ns level has the constant value P„,=2, while

Pz~ is energy dependent, owing to the interaction of the

2pes and 2ped channels. Since the 2s and 2p ion levels
are almost degenerate, the separate angular distributions
of the corresponding photoelectrons have not yet been
resolved, but several authors "' '' ' have measured the
distribution for the totality of the N=2 photoelectrons.
The asymmetry parameter for this process is

p2 ( a 2s p2s +~ 2p p2p ) ~( ~ 2s +~2p )

All the present calculations have been performed with
both the LG and VG forms of the transition operator and
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the gauge invariance is generally quite good. The VG
form appears, however, superior since it is less sensitive
to small imprecisions in the variational states; in particu-
lar the VCs results stabilized very rapidly during the pre-
liminary runs with limited bases.

III. RESULTS AND DISCUSSION

All energies are expressed in eV and the photoioniza-
tion cross sections in megabarns [Mb). The energy con-
version factor, which takes care of the reduced mass

TABLE I. Calculated positions E and widths I for the resonances converging to the N=3 thresh-
old. The resonances' labels 3 and K, follow the notation of Lin (Ref. 32). Upper line: S-matrix results,
lower line: Lorentzian-fit results lsee text). a [ b] m—eans a X 10

13

—1 3

14

04

25

0,

—24

26

16

—1 5

0,

27

17

—1 6

07

—26

—1 7

08

Z (eV)

69.8793
69.8770
71.2264
71.2264
71.3204
71.3196
71.6372
71.6358
71.7312
71.7312
72.0016
72.0016
72.1712
72.1683
72.1872
72.1832
72.2539
72.2539
72.3346
72.3346
72.3549
72.3549
72.4536
72.4492
72.4580
72.4582
72.4951
72.4951
72.5309
72.5309
72.5444
72.5444
72.6026
72.6009
72.6075
72.6075
72.6294
72.6294
72.6486
72.6486
72.6574
72.6574
72.6948
72.6938
72.6982
72.6982
72.7128
72.7128

I (ev)

1.84[—1]
1.84[—1]
8.75 [—4]
8.65 [—4]
3.74[—2]
3.67[—2]
8.18[—2]
7.84[—2]
5.84[—4]
5.52[—4]
5.95[—4]
5.80[—4]
1.82[—2]
2. 19[—2]
2.91 [—2]
2.08 [—2]
2.75 [—4]
2.72[—4]
1.51[—6]
1.22[—6]
3.59[—4]
3.50[—4]
2.06[—2]
2.11[—2]
5.95[—3]
5.11[—3]
1.58[—4]
1.60[—4]
5.02[—6]
5.17[

—6]
2.26[—4]
2.17[—4]
1.43 [

—2]
1.39[—2]
2.69[—3]
2.52[—3]
1.14[—4]
1.08[—4]
6.69[—6]
6.99[—6]
1.46[—4]
1.39[—4]
1.01[—2]
9.96[—3]
1.60[—3]
1.54[—3]
1.32[—4]
1.35[—4]

1sE'p

0.019
0.019
0.002
0.002
0.002
0.003
0.026
0.023
0.001
0.001
0.001
0.001
0.004
0.009
0.021
0.018
0.001
0.001
0.004
0.003
0.001
0.001
0.012
0.016
0.019
0.019
0.001
0.001
0.002
0.002
0.000
0.000
0.017
0.017
0.020
0.021
0.002
0.002
0.003
0.004
0.001
0.001
0.018
0.018
0.020
0.020
0.006
0.007

Branching
2s cp

0.141
0.136
0.456
0.458
0.157
0.152
0.141
0.149
0.200
0.208
0.426
0.427
0.149
0.073
0.231
0.326
0.182
0.198
0.131
0.128
0.412
0.415
0.208
0.058
0.475
0.483
0.178
0.192
0.128
0.139
0.409
0.410
0.151
0.048
0.535
0.534
0.156
0.166
0.093
0.102
0.427
0.428
0.140
0.054
0.546
0.543
0.044
0.056

ratios
2p Es

0.532
0.528
0.389
0.389
0.043
0.043
0.534
0.541
0.029
0.039
0.428
0.430
0.320
0.271
0.531
0.472
0.031
0.039
0.032
0.039
0.447
0.448
0.472
0.393
0.395
0.383
0.033
0.040
0.011
0.017
0.452
0.457
0.490
0.394
0.331
0.322
0.025
0.037
0.033
0.042
0.417
0.421
0.494
0.421
0.287
0.282
0.084
0.095

2p Fd

0.308
0.317
0.153
0.151
0.798
0.802
0.299
0.287
0.770
0.752
0.145
0.142
0.527
0.647
0.217
0.184
0.786
0.762
0.833
0.830
0.140
0.136
0.308
0.533
0.111
0.115
0.788
0.767
0.859
0.842
0.139
0.133
0.342
0.541
0.114
0.123
0.817
0.795
0.871
0.852
0.155
0.150
0.348
0.507
0.147
0.155
0.866
0.842
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correction, is 1 a.u. ( He)=27. 207696 eV. The difference
with the factor employed in our previous work is due to
the change in the recommended energy conversion fac-
tors. It is, however, worth noting that, as pointed out
by Bhatia and Temkin, this correction is appropriate
for comparing the theoretical results with photoabsorp-
tion experiments, but not with energy loss (electron im-
pact) values. The calculated ground-state energy is
—79.0001 eV, versus the "exact" nonrelativistic value—79.0037 eV (Ref. 48) and the experimental value

—79.0052 eV. The resonance positions will be reported
to four decimal places; this precision is unjustified for the
excitation energy, but meaningful for the relative posi-
tions and for comparing the results of the different analy-
ses.

The present calculations do not include the quantities
needed to classify the autoionizing states according to the
Herrick and Sinanoglu scheme, but it was nevertheless
possible to arrange the resonances in series by grouping
them accordingly to the regularities of the following

TABLE II. Comparison of the present S-matrix results for the resonances with theoretical and experimental data. Upper line, po-
sition (eV above the ground state); lower line, width I (eV). The resonances' labels 2 and E„ follow the notation of Lin (Ref. 32).
The uncertainty on the last digit of the reported data is in parentheses. a [ —b ] means a X 10

24

—1 h
3

04

—14

15

05

—1 5

06

—25

27

17

1,

Present

69.8793
1.84[—1]

71.2264
8.75 [—4]

71.3204
3.74[—2]

71.6372
8.18[—2]

71.7312
5.84[—4]

72.0016
5.95 [—4]

72.1712
1.82[—2]

72.1872
2.91 [—2]

72.2539
2.75 [—4]

72.3346
1.51[—6]

72.3549
3.59[—4]

72.4536
2.06[—2]

72.4580
5.95[—3]

72.4951
1.58 [—4]

72.5309
5.02[—6]

72.5444
2.26[—4]

72.6026
72.6948

Ref. 18"

69.8666

71.2217

71.3083

71.6269

71.7255

71.9993

72.1689

72.1886

72.2560

72.3402

72.3549

72.4603

72.4680

72.4977

72.5378

72.5575

72.6275

Theoretical'
Ref. 30"'

69.8721
1.9[—1]

71.2236
7.6[—4]

71.3086
3.9[—2]

71.6242
8.4[—2]

71.7217
3.[—4]

71.9996
4.[—4]

72.1582
1.4[—2]

72.1807
3.3[—2]

72.2484

72.3229

Ref. 36

71.230
9.05 [—4]

71.745
1.16[—3]

72.000
5.92[—4]

72.259
5.51 [—4]

72.3535
8.9[—5]

72.3549
3.6[—4]

72.498
2.99[—4]

72.5461
6.22[—5]

72.5441
2.2[—4]

69.917(12)
O. 178(12)

69.880(22)
O. 180(15)

71.30(4)
=0.07
71.601(18)
0.096(15)

71.261(30)
0.073(15)

71.625(30)

72.181(15)
0.067(15)

72. 174(30)

72.453 (11)
0.038(15)

72.423(30)

72.59(1)
72.67(1)

72.561(30)
72.640(30)

Experimental
Ref. 8' Ref. 16"

'With respect to the "exact" nonrelativistic ground state —79.0037 (Ref. 48).
Feshbach method.

'Complex stabilization with Hylleraas functions.
Nine-channel many-body perturbative K matrix.

'Analysis of the N=2 cross section. Terms in parentheses represent statistical uncertainties only; systematic error +0.009 eV for po-
sitions, +0.008 eV for widths.
Analysis of the N=2 differential cross section. Energy calibration +0.015 eV.
Further data for the 1 resonance: E =69.8891,' I"=0.189 (nine-state close coupling, Ref. 25); E =69.88' I =0.18 (ten-channel R

matrix, Ref. 35); E=69.919(7), I =0.132(14), I =0.132(14) (experiment, Ref. 3); E=69.914(15), I =0.200(20) (experiment, Ref.
15, energy calibration +0.010 eV).
"Further data for the —13 resonance: E =71.3311,' I =0.030 (nine-state close coupling, Ref. 25).
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properties: effective quantum numbers n ', widths (which
scale roughly as I ln* ), branching ratios, and projec-
tions onto the subspaces of sp, pd, df, . . . configurations.
The present results for the resonances are fully presented
in Table I, while in Table II energies and widths obtained
by the S-matrix method are compared with the most ac-
curate and comprehensive theoretical and experimental
results. For ease of comparison with other theoretical
work, the resonance positions are all expressed with
respect to the "exact" nonrelativistic ground state.

The ordering obtained agrees with that of Chung' and
of Herrick and Sinanoglu and does not support the
different classification proposed by Ho for the sixth res-
onance. Indeed, Ho classifies it as —24 instead of 2& as
Herrick and Sinanoglu do; as shown in Table I it corre-
lates with the second resonance, which is classified as 24

by both authors.
The resonances —2, and 2, +2 are very close to each

other for n ~ 4, but they are very narrow and may still be
considered isolated. It must be noted that the —2~ reso-
nance is found to be about four times larger than the —24
and the —26 even larger. On the contrary, Salomonson et
al. found the —2~ resonance narrower than the —24
one, but their widths are more than ten times greater
than ours. No other accurate calculations of these widths
exist. In view of the quality of our zeroth subset, this
means that, if our findings are spurious, the calculation of
these widths is a very critical computational problem.

In agreement with Chung' and with Herrick and
Sinanoglu the —2, + z resonance is predicted to lie
below the 2„at least up to n =6, while the recent calcula-
tions of Salomonson et al. find the —2~ above the 27.
The relative positions of the helium narrow resonances
provide an exacting computational task already below the
N=2 threshold. Indeed, as discussed elsewhere, a very
good account of the electronic correlation is required to
obtain the correct order of the (N=2) —13 and 14 reso-
nances (perhaps best known as 2, 3c and 2, 4b in the phe-
nomenological notation of Lipsky and Conneely or as
2p3d and 2, 4—in the Fano-Cooper one ). It appears
that a basis set including only the open N=1 and the

three closed N =2 channels is not sufficient to reproduce
the correct order of these N =2 resonances, and that also
the inclusion of the five closed N=3 channels is re-
quired to do this. In this context, it should be recalled
that the present calculations implicitly employ, through
the zeroth subspace, a large number of closed channels.

The agreement with the theoretical widths of Ho,
obtained with Hylleraas-type wave functions and the
complex stabilization method, is satisfactory. The largest
differences occur for the 04 and 25 resonances for which
Ho gives the width with only one significant digit, i.e.,
with an uncertainty of 25%. The agreement with the cal-
culations of Salomonson et al. is less good, in particular
for the 0, and —2„resonances. This is not surprising if
one considers that their calculations are essentially of K-
matrix type with orthogonality constraints on the sub-
spaces: these authors cannot employ a correlated zeroth
subspace as in the present work but introduce the five
N=3 closed channels (3sep, 3pes, 3ped, 3dep, and
3def ). Their basis set, unlike ours, does not include
fg, gh, and hi configurations which contribute noticeably
to the resonances of the 0, and —2„series.

The data reported in Table II show also that there is no
obvious systematic trend in the differences among the
theoretical positions of the autoionizing states, and that
the present calculations are in good agreement with the
experimental data of Zubek et al. ' As apparent from
Tables I and II, the resonances —1„and 1„+, lie rather
close for n ~ 4 and their distance is comparable with their
widths. Thus they cannot be considered isolated and it is
not surprising that the two methods employed in this
work for analyzing the resonances give for them the
greatest differences. In fact, the Lorentzian-fit method
assumes truly isolated resonances, while the search for
the poles of the S-matrix according to Eq. (9) may handle
more difficult cases. It may also be noted that at n =5
these resonances reverse their relative positions. The
widths of the four lowest 1, resonances have been deter-
mined by Woodruff and Samson from the analysis of the
N=2 cross section in terms of a Shore profile. The

z'.0
LU
(f)

(f) 0 gO

0.8
69 70

PHOTON

I
I

71
ENERGY (eV)

I

72 73

FIG. 3. Partial lsd cross section o.&„~. Solid line, LCx results; dashed line, VCx results; O, experimental results of Lindle et al.
(Ref. 14).
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FIG. 4. Partial 2sep cross section o.2„~. Solid line, LG results; dashed line, VG results.

present widths are in good agreement with their experi-
mental counterparts for the 13 and 14 resonances, while
for the 15 and 16 they are significantly smaller. Indeed,
the experimental widths for these last two resonances are
in fair agreement with the theoretical estimates for the
two unresolved pairs (

—14, 1&) and (16,' —15).
For the —13 resonance the present width I =0.037 is

about one half of the experimental value ' I =0.07.
While the datum of Woodruff and Samson is simply an
estimate this resonance appearing only as a faint shoulder
in their recorded spectrum, the value given by Zubek et
al. ' might refer to the unresolved pair 24 and —13 as ex-
plained below. Anyway, in comparing these theoretical
data with their counterparts derived from the experimen-
tal cross sections, one should not forget that these last pa-
rameters are extracted by phenomenological fitting for-
mulas. For the 13 resonance (often called 3s3p), this
point will be further discussed below.

Figures 3—9 report the calculated partial (o „
alsep~ 02s —02sep7 Cr2pfs7 Cr2ped~ 02p —Cr2pes+Cr2ped7

and cr~=o2, +o2~) and total photoionization cross sec-
tions in the range 69—72.75 eV, together (when available)
with the experimental data of Lindle et al. "' and show
an excellent gauge invariance. Below 69 eV, the cross
sections are very smooth and appear of relatively minor
interest; above 72.75 eV the employed basis set does not
contain functions suitable to represent the resonances. It
must be observed, however, that the crowding of the res-
onances between this energy and the N=3 threshold at
72.96 eV makes hopeless here any comparison with ex-
periment.

Several authors' ' ' 4' ' ' 4 have calculated the
helium photoionization cross section above the %=2
threshold, but in many cases these calculations were only
intended to supply coarse information up to about
120—200 eV and do not show the resonance structure.
The cross sections calculated by Salomonson et al. , at
least below 72 eV, are in excellent agreement with the
present ones, including several fine details. For the %=1
cross section, however, the present results have a better

0.1

0.08—

O 0.06—
C3
LU
(l)

0.04—

O
CC

0.02—

I

70
I

I
I

71
P HOTON ENE RGY (eV)

I

72 73

FIG. 5. Partial 2pes cross section cr»„. Solid line, LG results; dashed line, VG results.
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FIG. 6. Partial 2ped cross section o.
pp d Solid line, LG results; dashed line, VG results.

gauge invariance and are in fair agreement with the aver-
age of their LG and VG results. Larger differences are
found with the calculations of Hayes and Scott and of
Burkov et al. The present calculations extend those of
Salomonson et al. towards the %=3 threshold by only
0.15 eV, but this narrow energy range contains eight au-
toionizing states. As explained in Sec. II E, the basis set
was chosen for describing accurately only the resonance
region and as a consequence the present results are not
very accurate from the %=2 threshold at 65.40 up to 66
eV. The cross sections below 69 eV, however, are very
smooth and may be safely extrapolated to the threshold,
yielding in LG (VG) 1.117 (1.112), 0.026 (0.026), 0.060
(0.059), and 0.022 (0.022) Mb for the four channels
1sep, 2sep, 2pes, and 2ped and a total cross section
1.225 (1.219) Mb. At 66.8 eV the present total cross sec-
tion is 1.161 (1.157) Mb, versus the experimental value
1.109+3% Mb of Watson. At 67.02 and 68.88 eV, it is
1.152 (1.149) and 1.065 (1.062) Mb, to be compared with
the recommended experimental values 1.08+5% and

1.02+5% Mb of West and Marr.
Figure 10 reports the present calculated total cross sec-

tion across the 13 resonance, together with two recent ex-
perimental results. Both experimental works normalize
their results by employing the "off-resonance" cross-
section value 1.02 Mb given by West and Marr at 68.88
eV, but in a different way. Lindle et al. "'"normalize the
observed cross section to this value, while Kossmann et
al. ' normalize the background cross section, i.e., the fac-
tor o b(E) of Eq. (10). The difference originates from the
fact that the resonance structure is not seen in the experi-

0
ment of West and Marr, who have a resolution of 2 A,
i.e., about 0.6 eV. However, if their value is assumed to
be a (symmetrically weighted) average in the range
68.6—69.2 eV, the shape of the total cross section implies
that at 68.88 eV o =1.02 Mb represents a lower bound.
In view of this, both the experimental results of Fig. 10
should be shifted slightly upward, thus improving the
agreement with the present cross section. At 68.88 eV,
the present calculations yield a LG (VG) total cross sec-

0.1
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0 006—
I—

LLI

0.04—
Q)0
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C3

0.02—

69
I

70
I

I
I

71
PHOTON ENERGY (eV)

72

FIG. 7. Partial 2p cross section 02p 02p +02p d Solid line, LG results; dashed line, VG results.
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FIG. 10. Detail of the total cross section around the 13 resonance. Curve 3: this work, LG (solid line) and VG (dashed line) re-
sults. Curve 8: experimental results of Kossmann et al. (Ref. 15) (error bars) and their interpolation without (solid line) and with
(dotted line) correction for the monochromator band pass. Curve C: experimental results of Kossmann et al. (Ref. 15), background
cross section as defined by Eq. (10) (dashed line). 0:experimental results of Lindle et al. (Ref. 14).

with Lindle et al. ,"' we found both q positive, i.e., both
the X= 1 and X=2 cross sections reach their maximum
above the resonance position. For a shape like that of the
N=1 cross section, the q value has hardly a definite
meaning, so the large difference with the experimental re-
sult is not surprising.

The branching ratios for this resonance, 0.019, 0.141,

0.532, and 0.308 (5-matrix method), are in good agree-
ment with the experimental values 0.02, 0.12, 0.58, and
0.28 given by Lindle et al. '

The present calculations show that the o.
2 dominates

over the o.2, at almost all the energies examined, with ex-
ceptions only at its minima. This is in agreement with
nearly all the calculations and all the experimental evi-

TABLE III. Fano-Cooper parameters for the 13 resonance as defined by Eq. (10). The uncertainty on the last digit of the reported
data is in parentheses.

This work, LG
This work, VG
Dhez and Ederer (Ref. 3)'
Lindle et al. (Ref. 14)
Kossmann et al. (Ref. 15)

Eo (eV)

Parameters
69.874
69.874
69.919(7)
69.917
69.914(15)

r (eV)

from the total cross section
0.196 1.19
0.197 1.24
0.132(14) 1.36(20)
0.178 1.30(5)
0.200(20) 1.32(5)

0.047
0.047
0.012(3)
0.057(5)
0.043(5)

oo (Mb)

1.034
1.031
0.957(30)
0.991(30)'
0.983(25)

a (eV ')

—0.0448
—0.0448

0(fixed)
—0.0480
—0.0366

This work, LG
This work, VG
Woodruff and Samson (Ref. 8)'
Lindle et al. (Refs. 11 and 14)

Parameters from the N=2 cross section
69.875 0.192 0.510
69.875 0.192 0.542
69.917(12) 0.178(12) 0.48(9)
69.917 0.178 0.70(6)

0.938
0.939
0.98(26)
0.89(8)

0.103
0.103
0.084(21)
0.097(5)

—0.0075
—0.0077

0(fixed)
—0.0175

This work, LG
This work, VG
Lindle et al. (Ref. 11)
Lindle et al. (Ref. 14)

Parameters from the N=1
69.873 0.190
69.873 0.190
69.917 0.178
69.917 0.178

cross section
9.81

10.96
1.1(3)
3.0(1)

0.001
0.001
0.046(30)
0.012(4)

0.931
0.929
0.891(20)
0.893(5)

—0.0371
—0.0368
—0.0317
—0.0549

'From Ref. 15.
Taken from Ref. 8.

'Cross section normalized upon the value of West and Marr (Ref. 4) at 68.88 eV.
Energy calibration +0.010 eV; background cross section normalized upon the value of West and Marr (Ref. 4) at 68.88 eV.

'From the results of a multiresonance Shore fit. Figures in parentheses represent statistical uncertainties only. Systematic errors
+0.009 eV for position, +0.008 eV for width.
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FIG. 11. Asymmetry parameter /32 for the photoionization to the N=2 level. Solid line, LG results; dashed line, VG results;
experimental results of Lindle et al. (Ref. 11).

dence. Most of the latter is, however, indirect, since it is
obtained from measured values of the asymmetry param-
eter Pz and theoretical estimates of Pz . So far, the only
experiment which has resolved the 2s and 2p cross sec-
tions is that of Woodruff and Samson, who analyzed the
2p~1s fluorescence at 304 A in the presence of a static
electric field. At 67 eV they found o.z, =0.0299+0.0005
Mb and oz =0.0741+0.0005 Mb (with a probable sys-
tematic error of +12%), in good agreement with the
present LG (VG) results cr2, =0.0295 (0.0295) Mb and
cr2 =0.0770 (0.0765) Mb. At 70. 1 eV these authors re-
port, in their Table I, o.z, =0.0306+0.0010 Mb and
o.

z =0.0704+0.0010 Mb, so that o.
z =0. 1010 Mb, versus

the present LG (VG) values crz, =0.0332 (0.0335) Mb,
crz =0.0922 (0.0944) Mb, and cr2=0. 1254 (0. 1279) Mb.
It may be observed, however, that according to Fig. 3 of
their work, o.z=0. 12 Mb, which is in better agreement
with the present results. Thus it appears that the data of
their Table I do not sum to the measured cross section,
but rather to a Shore profile which reproduces poorly the
maximum. The experimental ratio o.zp/oz„however, is
about 2.3 against the present value 2.8. Their data at
71.3 eV, being close to an autoionizing state poorly
resolved in their experiment, cannot be safely compared
with the present results.

There is also some experimental evidence"' that at
the 13 resonance the minimum of o.

z should occur at an
energy slightly lower than that of o.z, ', the present calcu-
lations place these minima at 69.81 and 69.84 eV, respec-
tively. The crz results of Lindle et al. "' (statistical error
2%, systematic error 10—15 %) agree rather well with the
present ones in the range 69—71 eV. At the lower ener-
gies 67.9, 68.4, and 68.9 eV, these authors report 0.087,
0.094, and 0.087 Mb, versus the present LG (VG) values
0.105 (0.104), 0.103 (0.102), and 0.098 (0.097) Mb, not al-
ways within the stated experimental error. The present
cross section is in very good agreement with the theoreti-
cal results of Salomonson et al., while the experimental
data of Woodruff and Samson lie rather lower between
70.1 and 71 eV (see Fig. 2 of Hayes and Scott ). Note

that these last data are not normalized upon the West
and Marr value at 68.88 eV.

Figure 11 reports the calculated asymmetry parameter
Pz for the electrons leaving the ion in the %=2 level, to-
gether with the experimental results of Lindle et al. "
The agreement with these is good and significantly better
than those of Burkov et al. and of Salomonson et al.
(see Fig. 14 of this last work). Since the present cross sec-
tions are in excellent agreement with those of these last
authors, this implies that our phase shifts must be sensi-
bly different from theirs. A few other measurements of
/3z are reported in the literature: Heimann et al. 'z found
P2= —0. 1 at 66 eV and /32=0 at 66.5 eV, while Schmidt
et al. found P =0.01+0.09 at 67.4 eV. The present re-
sults at these energies are, in the LG (VG),—0. 107 ( —0.092), —0.064 (

—0.055), and 0.016 (0.024).
Jimenez-Micr et al. ' measured the angular dependence

0
of the 304-A Auorescence, a quantity which allows one to
extract the ratio crz~,d/cruz. This ratio was found to be
0.25+0.04 and 0.25+0.03 at 65.5 and 66.5 eV, respec-
tively, in good agreement with the present results of 0.28
at both energies and in both gauges.

Very recently, Zubek et a/. ' have measured the N=2
differential cross section at 0 with linearly polarized
light. But for an energy shift, which lies inside their stat-
ed error +15 meV in the energy calibration, the deep
minima of the cross section in their Fig. 1 are reproduced
accurately by the present calculations. Between 70 and
71 eV, however, a slower decrease is predicted, while the
calculations of Hayes and Scott find a faster one. It
must be noted that the computation of this quantity is
very delicate, since in this energy region the cross section
and the asymmetry parameter are varying rapidly and in
opposite directions.

A more important difference is found in the region of
the —13 resonance, where the interpolated cross section
of Zubek et al. ' presents a dip which is not reproduced
by the present calculations or by those of Hayes and
Scott. In our opinion, this feature may be an artifact of
their interpolation formula, which contains intrinsically
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such a dip. Moreover, the feature associated by these au-
thors to the —13 resonance appears to lie amidst the posi-
tions predicted by the present calculations for the 24 and
—13 resonances. It might be that these authors have seen
the unresolved couple. This interpretation is also sup-
ported by the following facts: (i) the present width 0.037
eV agrees well with the other accurate theoretical values
0.039 eV (Refs. 26 and 30) and 0.030 eV, (ii) the ob-
served width 0.073+0.015 eV is comparable with the cal-
culated distance 0.092 eV between the 24 and —13 reso-
nances, and (iii) the experiment was performed with a
bandwidth of 0.050 eV.

IV. CONCLUSIONS

The results presented in this work show that, through
the present procedure based on the K-matrix integral
equation, energy-variational methods with L basis sets

may be applied successfully to many-channel problems
and are capable of describing with great accuracy the res-
onance structures. The present method may work accu-
rately also in the presence of many open channels, e.g. ,
for molecular systems, and may employ many electronic
configurations to describe accurately the electron correla-
tion, as we have also verified for the Li and Na sys-
tems. ' Finally, it should be pointed out that the
method, by increasing wisely the size of the basis set, may
handle also the energy regions close to the thresholds.

APPENDIX

As stated above, the channel indexes a and y refer to
open PWC subspaces (1 to n ) while /33 refers to arbitrary
ones (0 to N). The normalization properties of the states

~

qd E ), Eq. (4), may be determined as follows. By Eq. (1)

1
p lp ) ''p' p+ 'X g «'P, , Kg, .pSp. ..p+ g «P Kp ES p , g, ''

p' p

1 1+X gdp+Xdp Kp, pP, ', Sp, p, P Kp,
p p'

(the conjugate symbol, unnecessary in our case, is used for the generality of the proof) where SpE. pE are the overlaps
between the basis-set functions, which, due to the orthonormality inside each subspace, may be written in the form

/3E pE
—

p/3 E E ( /3p)S/3E pE

where 5E F is a Kronecker or Dirac 6 for discrete and continuous states, respectively. Making use of this relation, one
obtains

(4 .E.~% E) =6 ~ 6(E' E)+(1 o—~ )S,E, —E+P, K*E,E, + g g de'P, , Kp, , ESp,
1
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(of course, the last term survives the integration only for the open PWC's) one obtains
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+]1 the terms but the first one cancel among themselves, as may be seen by substituting the exp«»ions (3) «r
oF. , u'g & +a'F', nF. K pe n'g &

and +p'e, nF-
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