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The recoil corrections of order (Za) m /M to the hydrogenic Lamb shift are reviewed, and addi-
tional terms previously thought to be small are calculated numerically. It is found that significant
contributions arise from single-transverse —single-Coulomb interactions in which the bulk of the
contribution comes from negative-energy electron intermediate states. This term is found to con-
tain a lnZa dependence, which accounts for its large effect. Other smaller terms are also computed
and combined with all previous Lamb-shift contributions. The current status of the Lamb shift in

hydrogen is reviewed.

I. INTRODUCTION

In a recent series of papers the pure recoil corrections to the hydrogenic Lamb shift were studied in an attempt to ob-
tain results to a level of precision of about 1 kHz. The present paper provides a more complete version of the previous
work, a detailed presentation of the methodology utilized, and a calculation of new "large" corrections originally be-
lieved to be negligible.

Section II contains a discussion of the approach to the hydrogenic bound-state problem, including recoil. This
proceeds from a three-dimensional two-body formalism in which the more massive particle is on its positive-energy
mass shell. In Sec. III a review of the leading recoil corrections is presented, while in Sec. IV we present recently pub-
lished higher-order contributions, and also estimate the recoil effects which would result from contributions not con-
tained in the finite-proton-radius results. In Sec. V new higher-order effects are examined and calculated, and numeri-
cal results are given for the hydrogen atom. Finally, a review of Lamb-shift results is presented in Sec. VI, the con-
clusion.

II. REVIEW OF A THREE-DIMENSIONAL
BOUND-STATE FORMALISM

The calculation of hydrogenic energy levels for a Dirac electron interacting with an infinitely massive proton, namely
the Dirac-Coulomb problem, was solved a longtime ago. However, when the proton is treated with finite mass M, an
exact solution is no longer accessible since there are an infinite number of irreducible Feynman diagrams which contrib-
ute to the interaction kernel. This circumstance prevails in either a Bethe-Salpeter formalism or in one of the many
possible three-dimensional bound-state approaches in use. Thus a truncation of kernels is necessary and only those ker-
nels which contribute to a given order in the expansion parameters are needed. The relevant parameters are Zo. and
m /M. Moreover, except for factors of reduced mass, the second parameter will only be retained linearly, that is, higher
powers of m/M will not be necessary. In view of this it suffices to treat the nucleus (e.g. , proton) from the very begin-
ning as a nonrelativistic particle. Since our primary interest in this work is in effects which are independent of nuclear
spin, we shall assume a spinless nucleus.

To formulate the bound-state problem we utilize an approach of G-orelick and Grotch' and specialize at the very be-
ginning to a nonrelativistic nucleus. The exact four-dimensional equation for the four-point function of two fermions
(without radiative corrections) is

+p(p p) +p(p p)
gf 3

—m +i e p'& —M +i e
G(p', p)

gf, —m +i@ P~
—M+ie

+ Jd q G(p', q)[Ki, (q,p) ICp(q, p)j-
(27r )' (2. I )

This equation contains all Feynman diagrams except for the radiative corrections, which, if needed, can be separately
calculated. We have mentioned that one of the particles is nonrelativistic and spinless. The corresponding equation for
this case is
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P3 —m +i@ @40 p—~/2M+i@ p'2 —m +is pzo
—p2/2M+i@

+ d4q G I ~ ~Q
(2~)

(2.2)

In this expression the irreducible Feynman diagrams are
those of a relativistic electron interacting with a nonrela-
tivistic spinless proton. In the Coulomb gauge the
lowest-order contributions to G come from single-
Coulomb and single-convection interactions. In the next
order we have double-Coulomb, Coulomb-convection,
convection-convection, and seagull contributions. Spe-
cial care must be taken to include only irreducible contri-
butions. One of the major difficulties of calculating
bound-state energies manifests itself in the necessity to in-
clude in G contributions from infinite-order perturbation
theory. We will return to this point in detail later and
show that other methods can be successfully applied in

I

this instance.
In the preceding equations, we write each of the mo-

menta in terms of relative and center-of-mass momenta

P &
=P +P&P, P2 = —P +P2P,

P3 —P +P )P, P4 — P +P2P

where pi=m/(m+M) and @2=M/(m+M). The func-
tion Kz —Kz has a pole as PQ approaches bound-state en-
ergies E =I +M +e. By means of appropriate
definitions we introduce corresponding functions in the
neighborhood of the poles. Let

&pb(p' p) = lim
po~p2e —p' /2M

po-~, ~—I /2M2

&2 2—&o+i 2&
—

2M Po+i ~~
—

2M
(&—PI, (P' P) &P'b(i ',I—)l . (2.3)

This defines a function when the massive particle goes on shell and consequently the residue at the poles of pQ and p Q is
fixed by the preceding mass-shell constraint. In the vicinity of a bound-state pole Mb the function IC„b (p, p) will have a
simple pole at Po =Mb with a residue at the pole which is proportional to the product of functions fpb(p')f pb(p'), each
of which is proportional to a wave function. Through this procedure we arrive at a three-dimensional equation

(p', s') = g f d q V,tr(p', q, s', s")gp (q, s"),
A/3

—m +ie, (2~)'
(2.4)

where V,z is an effective potential whose construction we now proceed to discuss.
We write several expressions for K~b(p', p). The first is

1
&~b(p' p) =

P3 —m +i@
G (p', p)

1

gf&
—m +i@

fd q 4G(p'q) 2
P3

—m +i@(2~) g+p, P —m +i@ —qo+pzE —M q /2M +i E—

XG(q, p)
1

P', —m+ie

We may also define V,z through the equation

1 1
&pb(p' p) = . V.dp' p)

gf3
—m+iF P, —m +i@

+ ~ ~ ~ (2.5)

f d q V,s.(p', q)
p'3 —m +ie (2') /+pig' —m +is

1
V~(qp) . +

m + le'
(2.6)

where p3Q p, Q, and qQ are all fixed by the mass-shell constraints. Next we expand both G and V,z in powers of coupling
strength. Thus

G =G( )+G( )+G( )+ .
(2.7)

The calculation of V,~ proceeds order by order in perturbation theory and is carried out by requiring the scattering am-
plitudes to be identical whether calculated using G or V,&. Thus, leaving out external electron factors, the scattering
amplitude consists of
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G(2)(p~ p)+G(4)(p~ p)+G(6)(p p)+. . .

+ Jd q IG( '(p', q)+ ](2~) g+lj, ,p —m +ie —qo+p~E —M —q /2M+ie

xI G( '(q, p)+G' '(q, p)+ ]+ (2.8)

where the first line sums all irreducible diagrams. This is followed by irreducible diagrams occurring twice with two-
particle propagation between interactions. The series continues, generating all Feynman diagrams for a Dirac electron
interacting with a nonrelativistic spinless nucleus.

The scattering amplitude calculated through use of V,ff consists of the complete Born series, written as

Vff(p P)+Vff(p P +Vff(P P)+ '''

+ Jd q I
V ff(p q)+ V ff(p 'q)+ ] . I

V ff'(q p)+ V ff(q p)+ ' ' ' 1+(&) ~ (4) l

(2~) g+p(P —m +ie
(2.9)

where qp:I +E' Q /2M.
The construction of V,ff is illustrated as follows:

V(2) G(2)
eff

V'ff =G' '+(G' 'iSiDG' ' V' 'iSV—' ')
(2.10)

where S is the electron propagator and D is the nuclear
propagator. We have enclosed a portion of V', ff in
parentheses and will show later how the indicated sub-
traction can most readily be implemented. Note that
when Eq. (2.10) is used in Eq. (2.9), retaining only terms
to fourth order in the coupling, the result coincides with
the fourth-order terms of the exact amplitude of Eq. (2.8).
To proceed to the next correction we construct

V' '=G' '+G' 'iSiDG' '+G' 'iSiDG'"'
eff

+G' 'iSiDG' 'iSiDG' ' —V' 'iSV' '
eff eff

(2.1 1)

It is straightforward to see that with this correction the
potential scattering result of Eq. (2.9), calculated to third
Born approximation, will give the correct amplitude of
Eq. (2.8) through sixth order. The process of construct-
ing additional corrections V', ff"' (n & 3) can be continued
order by order, but clearly the complexity increases as n

increases.
To proceed further in Eq. (2.10), (2.11), or in any fur-

ther terms which may be required, we proceed by
schematically writing

l

same form as D except that the sign of e is reversed. The
advantage of the separation shown in Eqs. (2.12) and
(2.13) is that the 5 terms produce very important cancel-
lations in the construction of V,ff. For example, the 6
term in Eq. (2.10) leads to a cancellation of V,ff)iSV(, ff) and
consequently G' 'iSi AG' ' is the residual correction
beyond the irreducible piece G' '. Similar cancellations
occur in Eq. (2.11).

Our analysis will be carried out in the Coulomb gauge.
Only terms of order 1/M will be retained in the contribu-
tions to V,ff. Three types of interactions, Coulomb, con-
vection, and "seagull, " will be required. The appropriate
vertices are shown in Fig. 1 on the nuclear side. On the
electron side when there is a Coulomb interaction the
vertex will be —ieyo, while when there is a convection
(transverse) interaction we then have —ie(y~);. The
propagation functions for electron and nucleus are those
appropriate to Dirac and Schrodinger particles, for ex-
ample, S(p) = 1/(p —m +i e) and D (q) =1/
(qo+p2e —

q /2M+is) For t.he Coulomb interaction
we use a propagator 1/k, while for the convection we
use —g; /(k +ie) In the pro. cess of constructing V,ff
there will be propagation terms involving D(q) which
will be denoted in the usual way by a solid line (see Fig.
2). However, as previously mentioned, for purposes of
carrying out subtractions we separate into a 6 function
and a residual piece b, (q). We denote this latter term by
a solid line with a dot on it.

With this notation we may now draw various contribu-
tions. We have V,ff/i given by the diagrams shown in

D =6+6 .

For example,

(2.12)

D(q)=
qo+ p2E M + 'eq

g2~is —qo+VzE

+ qo+pzE M i eg (2.13) IZe i(Ze)
g

Thus 6 is the Dirac delta-function part while 6 has the FICs. 1. Coulomb, convection, and seagull vertices.
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D(q) &(q)

FIG. 2. Propagation function D and residual part A.
FIG. 4. Coulomb-Coulomb graphs.

Fig. 3. There is a major difhculty which arises from
single-transverse interactions. It turns out that during
the emission and subsequent absorption of a transverse
photon an arbitrary number of Coulomb interactions can
occur, all of which contribute to the same order in the en-
ergy. More specifically, corrections to the Breit potential
can result in terms of order (Za) m /M to the energy
and all of these involve arbitrary numbers of low momen-
tum Coulomb interactions. A further discussion of this
will be given later.

The major work in this type of approach entails the
construction of the effective potential required for Eq.
(2.4). Once it has been obtained the calculation of small
energy shifts is carried out by means of conventional per-
turbation theory, using Dirac-Coulomb wave functions to
describe the unperturbed state.

III. LOWEST-ORDER RECOIL CORRECTIONS

The starting point of our approach, based on the for-
malism discussed in the preceding section, is the modified

Dirac equation of Grotch and Yennie. This equation,
whose solution has been obtained, incorporates for V,z
the Coulomb and convection interactions. The energy ei-
genvalues maintain the 2S,&2, 2P, &z degeneracy except
for small deviations proportional to (m/M) (Za) . The
above degeneracy, which is predominantly broken by ra-
diative corrections, is also broken by recoil effects beyond
those already contained in the lower-order analysis. Thus
it is necessary to correct the approximation which
presumes that the effective potential consists only of the
sum of Coulomb and convection potentials. Before
proceeding to a more detailed analysis of recently calcu-
lated terms we review some earlier work which will set
the stage for newer corrections.

A. Coulomb-Coulomb corrections

The correction V',z must contain double-Coulomb ex-
change graphs. It is crucial to note, however, that the
ladder Coulomb graphs contain terms which must be re-
moved according to Eq. (2.10). The removal is readily ac-
complished by replacing D of Eq. (2.13) by b, . This re-
moves the positive-energy proton pole contribution, leav-
ing a correction depicted in Fig. 4. In Ref. 2, this contri-
bution led to a correction of order (Za) m /M

4 Z
(3.1)

in agreement with earlier work.

v, ",,/

FIG. 3. Second-order and fourth-order contributions to V,~.

B. ATE& single-transverse photon correction

This correction has been a source of some difhculty be-
cause infinite-order perturbation theory (in the context of
the approach of Sec. II) is necessary to obtain corrections
of order (Za) m /M. This occurs because during the
transit time between emission and subsequent absorption
of a transverse photon an arbitrary number of low-
momentum Coulomb exchanges can occur, each contrib-
uting similarly to the energy shift. In view of this cir-
cumstance the correction is approached by an alternative
method which we now describe.

In Ref. 2, in single-particle theory, the correction to
the Breit potential is given as
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4wZa d3k 1 e

(2~) k

'~m ) (m a„e
E —E —kn m

(3.2a)

Although this expression will correctly yield recoil effects to order (Za) m /M errors will result in higher orders due
to the fact that negative-energy states are not correctly included in this formula. Corrections to Eq. (3.2a) above consti-
tute a major objective of the present research.

After excluding negative-energy state contributions and proceeding to the nonrelativistic limit we obtain

n pe'"'m m p, V n
BET= d'k

2n mM k E, —E —k
(3.2b)

To understand how Eq. (3.2b) has previously been calcu-
lated, we write

ikr
1

Ek.r
+E —E —k E —E —k —kn m n m

(e'"'—1)(E E)—
+ n m

k (E„E —k—)

= T1+T2+T2 (3.3)

The respective energy shifts are denoted by AET, AET,
1 2

and AE, . AET would be infrared divergent were it not
T~ ]

for the energy diAerence appearing in the denominator.
This term therefore produces a Bethe logarithm. AET

1

and AET are separately ultraviolet divergent, but it is
2

straightforward to see that their sum is finite. The results
given previously are

transverse photon to order (Za) m /M, and no correc-
tions to this were given until rather recently when it be-
came necessary to study higher-order terms.

C. Two-transverse or seagull correction

2Z 2

bETT= ~$2s(0) ~
[lnZa+ —,'+ —', (1 —ln2)] (3.7)

of order (Za) m /M.

The diagram which gives the leading correction is
shown in Fig. 5.

The calculation of this contribution is somewhat subtle
since one cannot ignore external momenta compared to
the loop momentum without inducing an infrared diver-
gence. Nevertheless, analysis of the above correction
leads to the contribution

bET =— ~$2s(0) ln
8 (Za) 21

A

3 mM 2 m av

8 (Za) 25 A

3 mM 12 mZo;

In Ref. 2, the sum of these terms was given as

AET +AET
1 2

(3.4)

(3.5)

IV. HIGHER-ORDER RECOIL OF ORDER (Za) m /M

We will now turn to a discussion of some previously
published (Za ) m /M corrections before proceeding
with newly calculated terms. Although much of what
follows has already appeared in print the presentation
given here is more pedagogic and complete.

A. Double-Coulomb corrections

8 (Za)
~

~2
25

1
mZa

3 mM 12 (E E)„—(3.6)

This gave the pure recoil contribution from single-

Equation (3.1) provided an energy shift from the
double-Coulomb exchange graphs of Fig. 4. However,
the result given relied on the approximation of setting the
external momenta to zero compared to the internal loop
momentum. According to Refs. 2—4, the double-
Coulomb potential is

Ze 2

(P PB)

myo —E +a.p'
5V = — d p'

(2~) 2E~—
—Ze P +P& P3 P '(Pi+P3)

X
(p, —p') M(m+E )

(4. 1)

FIG. 5. Seagull correction.

We now evaluate this between free two-component spi-
nors of momenta p1 and p3 to reduce to a form which can
be evaluated using nonrelativistic wave functions. We
then obtain
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AVd~=— Ze 2
1 —Ze

2M (2') E (m +E .) (p' —p3) (p, —p')

X [P' —P'. (Pi+P3)+Pi P3] .

Ep m
2 2X (p —p ) ~ (p' —p ) — p' (p +p ) — [(m +E )
—4m ]p3 pi2m 4m

(4.2)

The terms of interest can have at most two powers of external momenta. In fact, the two powers must involve p& or p3
quadratically. Thus the last term in both the large parentheses in the second line and the square brackets of the third
can be dropped. We then write the product as

E.—m
P (P P3)'(P Pi)+P P '(Pi+P3)

E.—m+P'. (P i +P3)P'. (P i+ P3) 1+

=P'(P' —P». (P' —» )+
E +m

2m [ P P (Pl+P3)+P '(Pi+P3)P '(Pi+P3)]

24 (Za)
~~ ( )

z 3~Za
CC 8

(4.3)

Thus to order (Za ) m /M we obtain an additional
correction from the finiteness of the external momenta.

B. Triple-Coulomb corrections

The term in square brackets contributes a higher order
due to cancellations. The leading term can readily be
evaluated since when the wave functions are introduced
the integrals may easily be performed keeping p& and p3
finite. When this is done, Eq. (3.1) is corrected to KECK
with

Upon examination of Eq. (2.11), substituting in Eq. (2.10)
where necessary, we And the necessary Feynman dia-
grams and subtractions. These are shown in Fig. 6.

Choosing the Coulomb momenta, q„qz, and q3 as
shown in Fig. 7, and setting all external three-momenta
to zero (an approximation which will not affect the lead-
ing contribution), we write down the proton line struc-
ture, keeping in mind the proton pole subtraction. Equa-
tions (4.4a)—(4.4f) give the proton line structure for Figs.
6(a)—6(f), respectively,

i (Ze) 3 1

[ —(q3)o —q3/2M —ie][(q, )o
—q, /2M —ie]

To carry out the calculation to this accuracy, we must
also compute the effects of triple-Coulomb exchange.

i (Ze) 3 1

[ —(q2)o —q2/2M+i@][(q, )0
—q, /2M —ie]

(4.4a)

(4.4b)

i (Ze) 3 1

[
—(q3 )o

—q3/2M —ie] [(qz )o+ qz/2M + i@]

(4.4c)

(a) (b) (c)

(d) (e)
FICx. 6. Triple-Coulomb diagrams. FICx. 7. Notation for Coulomb momenta.
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i (Ze)
[ {qt )o qt/2M+ie][(qz)o+qz/2M+ie]

(4.4d)

i (Ze) 3 1

[ —(qt )o
—q, /2M+ie][(q3)o —q3/2M +ie]

(4.4f)

i (Ze)
[ —(q~ )o

—q~/2M+ ate][(q3 )o
—q3/2M +i e]

(4.4e)

As the electron line structure, Coulomb propagators, and
other factors, will be the same for each of these diagrams,
we can combine proton line structures for Figs. 6(a) and
6(c) [Eq. (4.5a)], for Figs. 6(b) and 6(d) [Eq. (4.5b)], and
for Figs. 6(e) and 6(f) [Eq. (4.5c)]:

i (Ze)
[(q, )o

—q, /2M —i e][(qz) —
o q, /2M —ie]

q& qz 1

M [(q3)o+ie][(qt )o i e][(qz) o

i (Ze) 3 1

[(q t )o
—q&/2M —i e][(qz )o

—qz/2M —i e]

i (Ze) 3 1

[(q, )o+ q, /2M —t e] [(q, )o+ q, /2M —i e]

Finally, the proton line structure is given by

(
—2tri)5((q~ )o

—qz/2M )

[(q 3 )o+ q3/2M +i e]

1

[(q & )o+ qt/2M —t ]e[(q'q ) —
o qq/2M —i e]

(
—2tri)6{(q~)o —q~/2M) )

[(q t )o+ q t /2M —i e]

1

M [(q3)o+ie][(qt )o ie][(qz)o

(4.5a)

(4.5b)

(4.5c)

2~')~{(qz)o) qt {qt+qz . Pt'p2 ( ~')~((p t )o (p2)o)
i (Ze) =i (Ze)

[(q, )o ie] — M M [(p', )o
—m +ie]

(4.6)

In deriving Eq. (4.5) from (4.1), only terms of lowest order in 1/M have been kept; in deriving Eq. (4.6) from Eq. (4.5),
only terms of lowest order in 1/M have been kept, and energy momentum conservation qtt'+q~z+qt3' =0 (@=0,1,2, 3)
was used. pI in Eq. (4.6) refer to the internal electron line momenta, as shown in Fig. 7.

Now, we can combine the proton line structure with the electron line structure and propagators, to give V',ff.

V(6)(CCC)=' jdo 'do, 1 t t t . {Z )3pt Pz Pt o Pz o
'

~
'

(
—2tri)6((p' )

—(
'

) )

pt' (pt —pP' pl' M [(p t )o
—m+t&]'

(
—ieyo)i

X u (0), (
—telo)

P't —m +ie Pz —m +ie
(
—ie7 o)u (0)

1 l l l—l 0 Pi@ Pp
Pl (Pl P2) P2

, p', .p,
'

(
—2~i)5((pI )o

—(p,')o)
i (Ze)

[(p', )o
—m +ie]

[{Pz)o™][(Pt )o™]+PI'Pz
X —ie

[(pz)o —Ez+ie][(p~)o+Ez —ie][(pt )o
—Ez+ie][(pt )o+Et —ie]

(Ztx), , 1 Pt P2 (m E2) +Pl P2 {m Et ) +Pt P2

pt (p't —p,')'p,' p", —p,' E,'(m +E,')' E', (m +E', )' (4.7)

V",,'(CCC) = '
mM 2

(4.8a)

As a test, we can also integrate Eq. (4.7) "exactly" using

where E', =(p', +m )'~~ and Ez=(pz~+m ~)'~~.

Equation (4.7) can be integrated analytically, to some
approximation, with the result

the Monte Carlo integration program VER As, with the re-
sult

(Z ) 4
V', trt ( CCC) = —( 1.232+0.002 ), (4.8b)

where cosO=P', .Pz/ptp~, and the Pt and B~ integrals
were performed analytically. The two results agree to
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within the error. Therefore

aE(ccc)= ~q„(0)~'0,",(ccc)
( )

~q ( )~2
37TZ(X

3 IM 8
(4.9)

Combining this with Eqs. (3.1) and (4.3), we obtain the
recoil contribution of pure Coulomb graphs as

(o) (c)

b,E,„,„,= ——
~Q (0)~ 1— (4.10)

C. Seagull and Coulomb

The necessary Feynman diagrams for this contribution
are also present in Eq. (2.11). The G' ' contributions
are shown in Figs. 8(b), 8(c), 8(e), and 8(f) [irreduc-
ible diagrams contributing to O((Za) )]; the
(G' 'iSiDG' ' V', fr'iS—V', fr' and (G' 'iSiDG' ' —V' 'iSV', fr

contributions are shown in Figs. 8(d) and 8(a), respective-

(e)

FIG. 8. Diagrams with single Coulomb and a seagull.

ly; there is no (G' 'iSiDG' 'iSiDG' ' V' 'iSV—' 'iSV'efr )

contribution, as the seagull diagram itself has four
powers of coupling.

All of the Feynman diagrams will be of the form

1d q, d q2d q3 (2') 6 (q, +q2+q3)[u( —ieyo)(iS)( —icy~ )&(iS)( icy~ )
—u](2~)' lq& lq& m

X I + iZeD [+i (Ze) g,, ] ]
q&+i@ qz+ie q3

(4.11a)

We can move all metric factors onto the electron line structure

d q&d q2d q3 (2m) 5 (q&+q +2q )[3u( —ieyo)(iS)( —icy~& ) (iS)( —iey~q )u](2')' q2

X [(+iZe)(iD)[+i (Ze) ]]
—i —i +i

q ) +PE qp +LE'
(4.11b)

There are two different proton line structures, P, ~, [Figs. 8(a)—8(c)] and P2 +, [Figs. 8(d)—8(f)], where +e refers to the
sign of ie in the proton propagator. There are three different electron line structures L& [Figs. 8(a) and 8(e)], L2 [Figs.
8(c) and 8(fl], and L3 [Figs. 8(b) and 8(d)]. The total contribution is

L, (P, ,+P~+, )+L2(P, +,+P2+, )+L3(P, +,+P2, ) .

It is easy to see that

. (Ze) 1

M (q3)0 —ie (4.12a)

. (Ze) 1

M (q3 )o+i e
(4.12b)

to lowest order in 1/M. It is apparent that (P
& +,+P2 +, ) =0, and so only the L z term contributes.

(P, +,+P2 +, ) = i (Ze) ( ——2~i)5((q3 )0)/M.
The necessary electron line structure is
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L~ = —u(0)( —iey) ) (
—ieyo) .( i—ey) )u (p)

gf ~
—m +i e gf, —m + i e

[m —(p))0] [m —(p & )0][1+(p) P3)'/p )'p 3' ]+2P).P2=re
[(P 1 )0 E1 +ie][()01)0+El iel[(P2)0 E2+'e][(P2)0+E2

(4.13)

Therefore, in terms of the internal electron line momenta, the contribution to V', )r) from seagull-Coulomb (SC) is

y6)(S )
l (ZCX) d4, d4, I 1 0 P2 0

~ 3 5(( ') —( ') )

2)r M [[(p') )0
—m] —p', +ie] I [(p3)o—m] —

p3 +ieI(PI —p~)

(p) )o][m (p2)0][1+(p) p2) /p)p2 ]+2p').P3
X

[(p) )0
—E) +)e][()o))0+E) —)e][(i)2)0 Ez+)e][(p2)0+Ex )e]

(4.14)

Z 3 2V' '(SC) = —(3.799+0.004)IM (4.15)

and

Z 6 2

bE(SC) = (3.799+0.004) .
n 3~' (4.16)

This result has been previously published.

(a)

Here the (p) )0 and (p3)0 integrals can be performed
analytically, along with the f22 and P) integrals. Again,
we choose cosO&=p', .pz/p@z, and the remaining three-
dimensional integral can be performed using
vEGAs, with the results

D. Finite proton size

The contributions we estimate have been previously
discussed. For completeness we include a short discus-
sion here. We begin with Fig. 9. These are the two
Coulomb exchange diagrams, with a radiated photon or
pion inserted on the proton line everywhere possible.
First, as we consider the external proton to be approxi-
mately on shell, Figs. 9(a) and 9(b) do not contribute, as
an external self-energy plus counter-term is identically
zero. Second, we can treat the radiated photon in the
Coulomb gauge (although the results are gauge indepen-
dent). In that case, the radiated Coulomb photon does
not contribute, as we can always choose the contour for
the ko integration so that no poles are enclosed (k refers
to the momentum of the radiated particle). Thus we need
only consider a radiated transverse photon.

We naively expect that the remaining diagrams, with a
radiated transverse photon, will be of order
Z 6).(Za) m /M, but there is a possibility that factors
of proton mass will appear in the numerator, in the
course of performing the loop integrals. A thorough
analysis demonstrates that our naive expectation is
correct, and, therefore, that the contribution of these dia-
grams is negligible. A more careful analysis, treating the
proton relativistically yields the same result, as well as
the result for the corresponding diagrams with a radiated
pion contributing, at most, to order Z ~a, (Z a ) m /M.

(cI) E. Single-transverse hE&
2

(e)

c t'ossed

FIG. 9. Radiative corrections on the proton line with
double-Coulomb exchange.

This correction comes from the third term of Eq. (3.3)
and represents a (Za) m /M contribution which can be
evaluated analytically. It should be kept in mind that Eq.
(3.2a) is an approximation and it is important, as stressed
by Sapirstein and Yennie, to go beyond that approxima-
tion. This will be done in Sec. V in which an extensive
analysis of the single-transverse recoil, including new
corrections, will be carried out. Returning to AE, we

2

find
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npie —1 m . mpn E„—EhE, = dk
2m mM k E, —E —k

To evaluate this we use

(4.17)

(mipin )tE„—Z )2=(m
2 2

p, P +V, P +V n
2m 2m

and

2

=(m [p, v], (4.18)

im)=, im)E„—(p'y2m + V) —k

—2m
, )m) .

p +2mk+2mV+y
Thus, removing the sum on states, we find

bE, = d k
3 n p3(e'"' —1)

Za 3 1 ik r 1
, lp' lp, vjl n

p +2mk +2m V+y

(4.19)

(4.20)

We expect contributions to come from high momenta
and consequently to the desired accuracy the denomina-
tor can be simplified by dropping 2m V+@ . We may
then evaluate (4.20) in the momentum representation. It
is straightforward to simplify to

We now combine this with Eq. (3.7) to obtain

8 Z

mZe 25 9

—16(Za) ~f (0)~
AE, =

T2 M

1 3 1 Pj'P
k (2~) p

p

1 1
X

(p —k) +2mk p +2mk
(4.21)

(4.23)

where AE is the average excitation energy. This result is
given in Ref. 4. The corresponding result for P states is
negligible.

4 Z
2

(4.22)

The integral is readily carried out by first integrating over
p, then integrating with respect to k and finally with
respect to the angle between p and k. The final result is

F. Seagull correction

To evaluate the seagull term shown in Fig. 5, we make
approximations. Let us return to the original expression
which led to Eq. (3.7) and analyze this in detail.

We begin with the expression

(Za) 4 1 ( —m)(po —m)5j, 5j3
b. VTT= d p m'i p —p +is p —p, '+ie p' —m +is

where

(qi Xq3)
5J ] 5J3 = 1 +cos 0 =2 —sin 0 =2—

2 2

(4.24)

Let po —m =i g and use

fdp = fdpf dg.

With these changes
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1 1

2+ 2 2+ 2(P —P3)' (P —Pi)'
—m (po —m)

p —m

Equation (4.24) now becomes

17j'm 1 'g +p
—2m' g+ g +p 2 —2mt. q+g +p

Z 2

, Jd'p j d2) 2—(q, Xq3)

q, q3 il +qi il +qi 2 4m il +(il +p2)
(4.25)

or

Z 2
1

2q, q3 i) +q3 i) +q, 4m il +(q +p )

4m 2g2+ (2)'+ p')' (il'+ q3)(i)'+ qi )

1

(~2+ p2 )2
(4.26)

We now separate this into low-order and high-order contributions by writing

~ ~TT ~ ~TT +~ ~TT +~ ~TT

with

(4.27)

(Za) 3 i
d

1 1

mMm ( 2)2+ q3 )( g2+ q, ) 4m 2) + ( rl +p )
(4.28a)

AVTT= 2
d P d

mM rr2 —
& ( g'+ q23)( g2+ q', ) 2q', q',

(4.28b)

(Za) d3 d
1

mM~ i 4m 2 2 + (
2 +p

2
)
2

( ~2 + p2 )2

(q +q, )(q +q, )

(r) +p ) (ql Xq3)

(2)2+q2i)(2) +q, ) 2q, q',
(4.28c)

The integrals above can be carried out to suScient accu-
racy. We shall not discuss the details. For 5 states we
obtain

2Z 2

~
P(0)

4ZAErr= ~g(0)~ —,'(lnZa+ —', )+2(1—ln2)

9+Zo,
8

2 ' 1 n —1X lnZa+ ln —+g —+n, i 2n
(4.29a)

(4.30)

V. NEW SINGLE- TRANSVERSE CORRECTIONS

2Z 2

AE = ~f(0)~ I
—', (1 —ln2)], (4.29b)

2Z 2

mM 2 Zcx

3'7TZ CX

4

(4.29c)

Equation (4.29a) is the generalization to arbitrary n of
(4.36) of Ref. 2. For n =2 Eqs. (4.29a) and (4.29b) ac-
count for Eq. (3.7) while Eq. (4.29c) provides a more re-
cently calculated higher-order correction. For n =2 the
sum of results for the transverse-transverse ( TT) or
seagull terms is

In this section we will first review in greater detail the
original single-transverse photon correction to the Lamb
shift and then discuss two new and significant correc-
tions. The new corrections are contained in the single-
Coulomb —single-transverse graphs (we keep external mo-
menta nonzero everywhere) and the double-
Coulomb —single-transverse graphs (here we set external
momenta to zero). The necessity for the first of these
corrections was pointed out to us by Sapirstein and
Yennie.

Before discussing these new contributions we must re-
late the language and notation of old-fashioned perturba-
tion theory of the original single-transverse calculation to
the Feynman diagram approach discussed earlier in this
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paper. The calculation of diagrams containing only a
single-transverse photon is more difficult than the calcu-
lation of diagrams that involve only Coulomb exchange
or those that involve seagull plus Coulomb. There are
many subtleties due to the fact that the calculation of the
single-transverse exchange in old-fashioned perturbation
theory contains diagrams with an infinite number of

I

Coulomb interactions. Thus it already sums an infinite
subset of Feynman diagrams.

A. C)riginal single-transverse calculation

In old-fashioned perturbation theory the energy shift
due to emission and absorption of a transverse photon is

(n ia„e' 'im )(mia, e
' 'in )

(2~)' 2k E„—E —k
(5.l)

As mentioned earlier, this expression is not compatible with hole theory and will need to be corrected later. If the ener-
gy difference E, —E is ignored compared to k the result is simply the Breit interaction. The correction to the Breit in-
teraction is

'in )(E„E)—
(5.2)

Za, l &nia„e' 'im)&mia, e
b,ET= d'k

E, —E —k

In the literature the calculation of this expression has proceeded by replacing a, by p, /m and a by p /M and restrict-
ing the intermediate states to those of positive energy. This leads to

3 1 n p&~
'"' ~ ~ p, «

BET= d k
2w rnM k E, —E —k

(5.3)

We begin with Eq. (5.3), which is independent of repre-
sentation, and we now insert complete sets of momentum
eigenstates to obtain

2Z 2

AET= f d k d p;d p~d p' P„(p~)~mM ' k2(2~)9

pox' pi p

(p; p')

p~
—k 0' p'

E —E —km n rn

(5.4)

The expression in large parentheses is

2mGNR(p~ k, p', E„—k ), —

where 6NR is the nonrelativistic momentum-space
Coulomb Schrodinger propagator. This propagator can
be expanded in powers of the Coulomb interaction with
the leading term giving free propagation

—(2~)'5 (p&
—k —p)

GNR(p —k, p', E„k)=- —
(

—k) +2 k+ (5.5)

If Eq. (5.5) is used in (5.4) we obtain the one-Coulomb
(1C) approximation to (5.4). This approximation is not,
however, especially useful in the evaluation of (5.4) since
the sum over all Coulomb interaction is required. If we

We have previously discussed the evaluation of Eq. (5.3)
and shown how it leads to Eq. (4.23). However, Eq. (5.3)
is an approximation which must be better understood if
we are to examine additional corrections which might be
present.

B. Relation between old-fashioned perturbation theory
and Feynman diagrammatic techniques

It is convenient and more useful, however, to study Eq.
(5.3) in more detail by separating it into the terms previ-
ously calculated tsee separation below Eq. (3.3)]. The
first term, obtained by setting e'"'—+1, is called the di-
pole approximation. It results in

4 Z
(&ET)g=bET =, f d'k d'p, d'p~d'p'

2~ rnM k (2~)

(Pf)pfl (P P )

2mGNR(py p'E. —k)

X P„(p; ) . (5.7)
1

(p; —p')'

This term was previously calculated and yielded a Bethe
logarithm. The presence of the Schrodinger Green's
function indicates that Feynman diagrams to arbitrary
order in the Coulomb potential are present. Moreover,
due to the infrared behavior of the integrals we cannot
truncate an expansion of GNR in powers of the Coulomb
potential.

Turning next to the correction to the "dipole approxi-
mation, "we find

(bET)„„=AET +DE,
2 2

where we can write

(5.8)

use Eq. (5.5) in Eq. (5.4), we can readily identify its con-
tribution in the context of a Feynman diagram approach
as

8 Z
(bET),c= f d k d pd pf 2 ~pt(pf)

(2~) M k (p, —p&+k)

Pfi' Pi PJ'

(p&
—k) +2mk+y

(5.6)



2164 M. DONCHESKI, H. GROTCH, AND G. W. ERICKSON 43

fd kd p;d pfd p' pt(pf)pfi (p,. —p')
2m mM k '(2~)

X [(2lr)'5'(p —k —p') —(2lr)'5'(p —p')j P„(p, )f f (p)$1! l (5.9)

bET, =
~ f d k d p;d pfd p'

3 [$„(pf)pfi [2mGNR(pf —k, p';E„k)—
2w mM k (2')

—2mGNR(pf O';E. —k) l&p'l[H [~,p) )lp; &0, (p;)I .

(5.10)

The first of these becomes

4'Z ' d'kd' d' ' „.t( ) ( —
)

2m mM k (2w)
~" Pf Pf ~

(p —
p +k)Pi Pg

(5.1 1)AET = 1 0.(p;) .
(P, —Pf)'

Consider next the correction bE, , which leads to (4.22). To evaluate to order (Zn) m /M it suffices to keep only
2

the leading terms of G~R and to neglect E, and V compared to p; /2m or p&/2m. We then obtain

2 2
Pf Pi 1

pf+2mk (p, —pf)

bE , = d k d p;d pf 3 6 $„(pf)pfi (p; pf)—4rr(Za) 3» 1

2n mM k (2lr)

(Pf k) P 1

(pf —k) +2mk (p, —pf+k)
(5.12)

To understand the relation between (5.4) and the Feyn-
man diagrammatic approach discussed in Sec. II, we con-
sider the sets of graphs shown in Figs. 10(a) and 10(b),
and follow the procedure of Sapirstein and Yennie. The
bracket which spans the interactions on the proton side
denotes the sum of all perrnutations of the interactions,
on the proton side, as well as the necessary subtraction of
the reducible parts, included in earlier calculations. It
should be kept in mind that this does not include all
graphs (e.g. , permutations of the interactions on the elec-
tron side), but as pointed out by Sapirstein and Yennie,
those diagrams where the transverse photon does not pre-
cede or follow all Coulomb photons will be suppressed
relative to the leading contribution. Moreover, since the

transverse photon already brings in an inverse power of
mass M, the remaining parts of the diagrams (i.e., propa-
gators) may be treated in the M~ oo limit. We can then
explicitly sum over the permutations, which leads to a
simplification in which all loop integrals are three dimen-
sional except for the loop which requires integration over
k. After this simplification, the effective proton line
structure is proportional to 2q„/(ko+ie) for Fig. 10(a)
and to 2q„/( —ko+ie) for Fig. 10(b), where q, is the
momentum carried by the Coulomb interaction
"farthest" from the transverse, at the electron side. After
this removal we find that our correction to the energy is
in complete agreement with the result of Sapirstein and
Yennie

bE = —2X ~ dp ( ) ~d'p d k
(2lr) =, (2lr) —(2lr) i (

—ko+ie)(k +i@)

47TZ CXy 0
2

q„

m +p;oyo+p, —k' ~ —i —4lrZayo
, q, yi 4.(p., )

, k —2p, oko p, +2p, .k —y +le, =, (p, —p, +, )

(5.13)

1 d4k 1 t( )
4lrZcz

( 4rrZayo)— m +p;oyo+p~ k —4~Zo. yo

q& J =p (27r) 1 =i k 2pIpko pJ +2p& 'k y +iE 1
—i (p& p&+i )

Xq. 'yA (p ) (5.14)
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appropriate subtraction has been made.
It is convenient to decompose the electron propagator

of (5.14) in terms of projection operators

(a)
FIG. 10. Transverse exchange with multiple-Coulomb ex-

change,

P —k+m
(p —k) —m +is

A+(p —k )

p, o
—ko E(k——

pj )+i E

A (p —k)

p, o
—ko+E (k —p, ) i e—

where go= m +e= rn —y /2m. The term in large
parentheses can be written as

and also write

1

k +EE
1

(ko —@+i')(ko+k i E)—
S(p„—k, p; —k;p;0 —ko) .

It is the Dirac Coulomb propagator. Note that if r =1
we simply get the free propagator while subsequent terms
in the series give all orders of Coulomb interactions.
Equation (5.14) is very similar to the approximate result
given by Eq. (5.4), which has already been evaluated, and
consequently additional terms are obtained only after an

We will carry out the ko integrations of (5.14) by closing
the contour in the lower half-plane. Poles will be located
at ko=k or at ko=p 0+E(k —p ), the former being the
more dominant contribution. Consider first the contribu-
tion from the photon pole together with all the positive-
energy projection terms. In the nonrelativistic limit, we
fi.nd

2
d d k

1 ~t( )( 4vrZ )—
M

J IId3 II ( ~ ~) II 'y( )
q, .

~ (2~) .
i (p. —p. +i) i p 0

—k Ek —p — m
(5.15)

where P is the nonrelativistic wave function. Approximating E(k —p ) by its nonrelativistic expression, we obtain

1 J'd3 d3 d3k 1 ~t( )
4mZa — —4~Za

, mM f '
(2m)9

' (p„—k —pf) k

3 1 (
—2m)" " '

(
—4mZa)xIIdP, , II „, „,II, P, —PfiP; N. p (5.16)

At this point we will define p =p„ for whatever value r might have in the sum. This allows us to rewrite (5.16) as

1 f 3 3 3 3 I 1 ~ t (
—4~Zu) (

—4vrZa)
M J Pf Pi P

(2 )
Pic'n Pf (, k )2P Pf

(pf —p')i p,.g„(p;) . (5.17)x X IId', II, , II(2~) =, 2mk+y +(pj —k), =i (pj p, +i)—

Ir

Jdpdpdkdp' P ( )
m'mM (2~)9k~ (p' —k —pf )~

X 2mGNR(p' —k, p; k; E„—k )P„(p, ), —(5.18)

The expression in square brackets contains p' —k as well
as pi —k (same as p; —k). This expression is exactly the
nonrelativistic Green's function we encountered earlier in
Eq. (5.4) except for a difference of variables. The above
expression is

which corresponds to Fig. 10(b) while Eq. (5.4) corre-
sponds to Fig. 10(a). We have stated previously that
these contributions to the energy shift are equal and have
incorporated a factor of 2 to account for this.

C. Single-Coulomb —single-transverse calculation

The problem we now face is to extract from Eq. (5.14)
new contributions beyond Eq. (5.18). Since this latter ex-
pression is easily identified within the former, the process
of calculating new contributions is relatively straightfor-
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ward. To begin, we look at terms which have a single
loop, namely the r =1 term of Eq. (5.14) (see Fig. 11).
The ko contour integral is closed below the axis and con-
tributions arise from the photon pole and from the elec-
tron pole, with the photon pole being dominant. The
electron propagator can be decomposed into positive-
and negative-energy projection operators. The former
contains the corresponding portion of (5.18), while the
latter is a new contribution which, in the language of
time-ordered perturbation theory, comes from the so-
called Z graph.

Let f3.Ec T be the single-loop contribution to (5.14). It
may be written as FIG. 11. Single-Coulomb —single-transverse graphs.

8 ZAEcr= fd kd p, d pf P(pf)(2~)'M 2E~ „(p, —pf —k)'

2k1—
(p p+E k)(p p+E l +k)

Xa, (P, —Pf)4(P;)

E „+a (p, —k)+Pm E k
—a (p; —k) —Pm

l l

2k (k pp+E —k) 2k (k pp Ep k—)—
(5.19)

and let b,E+ be the single-loop contribution to (5.18),
namely

8ZbE+= fd kd p;d pf P (pf)(2') M k2(p, —pf —k)

P;i.(P; —Pf )
X P(;) . (5.20)

2mk+y +(p; —k)

We need to compute the difference

Ec T
—~E+ .

For the wave function P(p), we use

tegral is trivially 4~. For 2S and 2P wave functions we
use

2 2

02S,+1/2(p) = 32rrl'
2 2 3 Ypp(0, &) l+ &

(p2+ Y2)3

02l, ln(p)=l: +if3Ylp(~ 0)l+ &

+&2/3 Y„(&,y) l

—
& ]y2p(p),

42l, —lz2(p)=l: 2~'3Yi —l(~ 4')l+ &

+&If3Y„(~,P)l —&]P (p),
where

x
4(p) =— a.pX 0(p»

1/2

$2@(P)= 64~i— 3' P
(p2+ y2)3

where y is a two-component electron spinor, and P(p) is
again the nonrelativistic momentum space wave function.
The lower component of this wave function has the prop-
er asymptotic behavior. We can use a "better" wave
function (i.e., one obtained by iterating the above wave
function in the momentum space Dirac equation), but
this is unnecessary, as our results are not sensitive to
these corrections. It is convenient to choose the follow-
ing angles:

p k=p, k cosO, ,

pf.k=pfk cosOf,

p; pf =p;pf[cos8, cosof+sin8, sin8fcos($' ff)]
As there are no other angles in the problem, the dAk in-

These wave functions are normalized by

fd'p, P (p)P(p) = I .
(2~)

AE& T
—AE+ =8.023+0.027 kHz . (5.21)

where the error is given by vECAS. The bulk of this
correction (10.805+0.034 kHz) is due to the entire Z

Since the result will be independent of the mJ quantum
number we use the average of the mJ=+ —,

' and —
—,
' P-

state wave functions, which are purely imaginary. %'e
are then left with a seven-dimensional integral which we
carry out using VECAS.

The overall result for hydrogen with n =2, which is al-
most entirely from the S state, is
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graph or negative-energy term while the remainder is due
to the positive-energy part minus AE+. Due to the com-
plicated nature of the integrand, we have not been able to
fully extract an analytical result. We have, however,
found that there is a large logarithmic contribution of

2[(Za) ln(1/Za)]m /M.
We have also performed the calculation without

decomposing the electron propagator into positive- and
negative-energy projection operators. In place of Eq.
(5.19), we now have

8(Za) gf,
—kyo+y k+m

bE~ T=, d'k d'p; d'pf, p (pf )
(2n) M (p, —pf —k) 2k (2kp, o+ (p; —k) —k +m —p o )

(Ep —k+p~o)yo+y k+m

2Ep k(pio+Ep, —k )[(pi.o+Ep i, ) —k ]

xyi. (p; —pf )P(p;), (5.22)

where the first term in the large parentheses is the photon
pole term, and the second term is the electron pole term.
After performing the necessary Dirac algebra, we are left
with terms proportional to

P; (P; —Pf)i

(1/2m)(p;+pf ) (p; pf )J—

numerator and we also make use of the electron pole con-
tribution to the negative-energy term. This is needed to
cancel a pole at k =p;o+E k and to convert a denomi-

r

nator factor 2mk+y +(p, —k) —k to 2mk+y
+(p, —k) . The integral over momentum pf can now be
carried out using the Schrodinger equation to obtain the
expression

( 1/4m ) [pf .(2p; —k)p; (p; —pf )i

p (p k)pf '(p pf )i]

each of these terms has a photon pole contribution and
an electron pole contribution. The subtraction of AE+
[Eq. (5.20)] can be performed analytically, by combining
it with the p, .(p, —pf)i term derived from (5.19). The
grouping together of photon and electron pole contribu-
tions facilities the integration of (5.22) with vEGAs, by
adding convergence in the high-k limit (as k approaches
inanity, the coe%cients of the three terms above separate-
ly vanish). This second approach has the benefit that
after subtraction of hE+ the leading term p; (p; —pf),
photon pole part, has a simpler form and therefore can be
partially calculated analytically to a greater extent. The
straightforward numerical approach of using vEGAS to
calculate b.EC T b,E+ yields identical —results (within er-
rors) whether we use (5.19) or (5.22) for EEc T. Of
course this is expected, but it is nevertheless comforting
to see the same result emerge by organizing the calcula-
tion in several different ways.

We have also found that leading approximations to
(5.22) produce a very simple result. We find that

jd k d p p i'p I (p; —k)'+y']
(2~) mM

P (p; —k)P(p;)
[2mk+y +(p, —k) ]

which easily produces a three-dimensional integral.
When this is integrated numerically it produces nearly
the same result as (5.21); the dift'erence is presumably due
to relativistic corrections.

D. Double-Coulomb —single-transverse calculation

(0) (b) (c) (e)

Now we consider the contribution from two loops.
This corresponds to a sum of 18 diagrams shown in Fig.
12. A number of diagrams shown in Fig. 12 are con-

8(Za)~Ec r —~E+ =
(2') M

x d k d p;d pf pf
(p, —pf —k)

[2mk+y +(p, —k) ] (m) (0) {p) (q)

To arrive at this we retain only the leading term in the FIG. 12. Double-Coulomb —single-transverse graphs.
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pf Pf pf ii Pf

pg+q) )
II

r~
Pf q2

p-k i i P;+q p;-k i i P.+q

p
I

ii P; p.
I

), P
I

FIG. 13. Contributing double-Coulomb —single-transverse

graphs.

tained in Eq. (5.13), namely the graphs in which the
transverse photon on the electron side precedes or follows
all Coulomb interactions. According to Sapirstein and
Yennie, the diagrams with electron line structure of
Coulomb-transverse-Coulomb do not contribute to lead-
ing order. After performing the subtractions as indicated
by the dots on the proton line, as well as the subtraction
which removes the two-loop contribution to Eq. (5.18),
which has already been calculated in old-fashioned per-
turbation theory, we expect these diagrams to contribute

i (Ze) qi q2
(5.23)

The total energy shift AE„c T is found to be

to O((Za) m /M). It is sufficient, then, to set external
momenta to zero, as keeping external momenta will give
corrections to the zero-momentum contribution that are
higher order in Za. Figures 12(a), 12(b), 12(d), 12(f),
12(h), 12(i), 12(k), 12(1), 12(m), 12(n), 12(p), and 12(r) will
lead to an integrand proportional to external momenta or
to yl k (which is identically zero). Thus, at our level of
approximation we can ignore these contributions. Fig-
ures 12(g) and 12(j) can be readily shown to cancel each
other. We are thus in agreement with Sapirstein and
Yennie, in that the diagrams with electron line structure
Coulomb-transverse-Coulomb will not contribute to lead-
ing order. Of the remaining four diagrams, we will calcu-
late those in Figs. 12(o) and 12(q), and simply double the
result to pick up the contribution from Figs. 12(c) and
12(f). We label the momenta as shown in Fig. 13. We
chose to calculate this contribution explicitly, instead of
using the r =2 part of Eq. (5.14), in order to discover
which diagrams are the most significant. It is straightfor-
ward to show that (5.24) below does indeed reproduce the
r =2 part of (5.14).

The proton line structure is found to be

4 4 4 3 3 4 pf lg l l
dc-T=2& d k d q, d qzd p;d pf (2»r)" k +ie q, q2

i (Ze) (qi q2)i
( —2lri )5(q~o )

q,o+i e

X(2') 5 (k+q, +q, ) u(pf)( —leyo) ( —leyo)
p'f +g, —m +i e P, —k' —m +i e

X ( ieyi) u (p; ) P(p;—) —. (5.24)

where the ellipses represent a two-loop contribution to (5.18). We can integrate over q2, using the 5 function, and also
over q, o. We can also decompose the electron propagators into positive-energy and negative-energy parts, and perform
the necessary Dirac algebra. Using the approximation

x
u(p)=

J

and the fact that we have ignored external momenta in the kernel, we can also integrate over p, and pf. Then

4i (Za) ~itl(0)~

(2m )"M

1

q~(q+k)~E E (ko —k+ie)(ko+k —ie)(ko ie)—
(Ek —m ) (E„+m )

X +
(ko —m+E» —ie)(ko —m+Ek ie) (ko ——m+E» l )(eko m Ek+ie)—

(Ek —m )

(ko —m E+ie)(ko —m +E—k
—ie)

(E„+m )

(ko —m E+i e)(ko —m E„+ie—)—(5.25)

Finally, we can perform the ko integral by closing the contour in the upper half-plane, and after much algebraic
simplification,
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—4(z )'111(0)l'
(2qr) M

X d'kd'q
2 2 2

'
2 2

E E
E E&q (q+k) mk [2mk+(q —k )]

2m +(2m +Eq)
1

Eq +E~ m (m +Ek)[2m (m +E )+q —k )]
(5.26)

Three of the angular integrals are trivial, and the remain-
ing three dimensional integral can be easily performed us-
ing vEGAS. The result is a (Za) m /M contribution of

X ——', (lnza+ —,
'

) —2(1 —ln2)

AEdc ~= —1.904+0.001 kHz . (5.27) 3~ 2 9~Za
4 Za 8

(6.1c)

Adding (5.21) to (5.27) we find a new total correction of
6.1 kHz. ~E „=~E„=— ' "~( )~'( —1.81+O.OO1),

VI. CONCLUSION AND SUMMARY
OF THE LAMB SHIFT

4(z~)'~ q(0) ~'
dC (6.1a)

We have now completed the pure recoil corrections to
the hydrogen Lamb shift through order (Za) m /M.
Let us denote the various contributions by bE, & (double
Coulomb), b,E,C (triple Coulomb), AEdz (double trans-
verse), b.Ed~, c (double-transverse —single-Coulomb),
AE,c (analytically calculated part of single transverse),
and b,E&,r (new corrections to single transverse). These
are now given as follows:

4(za)'~ q(o) ~'
sT

mZo.
AE

X — ln
3&
2

1

Zcx

4(za) tt(0)
~

EST

25
6

+8.30

9+Za
4

(6.1d)

(6. le)

4(z~)'I q(0) I'
tC

3'1TZ A

8
(6.1b)

+0.05+ 3.53+0.001 (6.1f)

4(z~)'~ 1((0)~'
dT 3

where the last expression comes from single-Coulomb
and double-Coulomb corrections to the expression 6.1(e).
The sum of these pure recoil terms is

4Z
bE„„;~=

~
g(0) ~

—1+—', qrza+ 2 ln(mza/AE )+ —", + 'qrza+ —', (in—za+ —')+2(1 —ln2)
I.

—
—,'qrza ln(2/Za) —', qrza+ 1.81+ ln—(1/Za) —8.30—3.53 Za3m

2
(6.2)

Thus the (Za) m /M contribution is

[(Za) m /n M][ —,
' —ln(2/Za)+2 in(1/Za) —4.25],

(6.3)

6EL, b
= 1 057 855(11) kHz if y =0.805(11) fm

=1057873(11)kHz if y =0.862(12) fm .

(6.4)

which gives +3.15 kHz for the n =2 state of hydrogen.
Thus the new corrections to the single-transverse contri-
bution, which are predominantly from the negative-
energy (or Z-graph) terms of single-transverse —single-
Coulomb interactions are large. This was a surprise to us
and is presumably due to the logarithmic character of
this contribution, as mentioned earlier.

The net result is to substantially increase the Lamb-
shift results to

If there were no further corrections these results would
favor the smaller radius when compared with the experi-
mental results of 1 057 845(9) kHz (Lundeen and Pipkin )

and 1 057 851(2) kHz (Pal'chikov, Sokolov, and
Yakovlev ). However, as stressed earlier, there are still
two-loop nonrecoil binding corrections which must still
be calculated. Therefore conclusions drawn from a com-
parison of current theory and experiment are premature.

For completeness, we provide the current theoretical
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expression for the Lamb shift. It is obtained from Eq. (8)
of Ref. 4. In that equation we alter the (Ztz) m /M by
replacing 3 by —,

' thus correcting an error previously not-
ed in an erratum, and we replace previously unknown
terms denoted by + by 21n(1/Za) —4.25, as indi-
cated in Eq. (6.3) above. To obtain this we extracted the

I

ELamb ~ 2S
1 &2 2P1&2

logarithmic dependence analytically and determined the
remainder numerically. To check the Zo. dependence we
also verified the correctness of this expression by numeri-
cal calculations for various values of Za. The expression
now obtained is

= [a(Ztz) m /6~](p/m) Pm /@+In(Za) —2. 207 909+vrZa(+2", —
—,'ln2)

+(Zcz) [ ——,'ln (Za) +(41n2+ —", )ln(Ztz) 2)

+(Za) [G sE(Z tz) +G vp( Za)] +ct(0. 323/vr)]

+[(Za) m /6~M][ —,'ln(Zcz) +2.39977+—,'aZtz[ —,'+in(1/2Za) —4.25]]+—,', (Ztz) m (r )

——', [m (Za) /M ]+[a(Za) m /8M][( —", ln2 ——", + —,",, )+( —0.415+0.004)] . (6.5)

The terms GsE and Gvp denote self-energy and vacuum polarization contributions which for hydrogen (Z =1) sum to
—24.0+1.2. For Z&1 the reader is referred to Ref. 9. The above expression does not contain the unknown a (Za) m
corrections which are currently under investigation and which are necessary to complete the Lamb shift calculation to
the desired accuracy.
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