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General formalism to characterize the microstructure of polydispersed random media
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The general n-point distribution function H, characterizes the microstructure of disordered

composite and porous media, liquids, and amorphous solids. In this Rapid Communication we ob-

tain an exact analytical representation of H, for inhomogeneous ensembles of d-dimensional

spheres with a polydispersivity in size. Polydispersivity constitutes a fundamental aspect of the
structure of random systems of particles.

Torquato' has developed a methodology to represent
and compute the general n-point distribution function H„
for random media composed of statistical distributions of
d-dimensional identical spheres. H„(x;x;r ) charac-
terizes the correlation associated with finding m points
with positions x = 1x~, . . . , x 1 on certain surfaces in the
system, p —m points with positions x~ = 1x„,+~, . . . , x~1
in certain regions exterior to the spheres, and any q of the
spheres with configuration rq, where n =p+q. The gen-
eral n-point distribution function H, contains as special
cases the variety of difrerent types of correlation functions
that arise in the study of the transport and mechanical
properties of disordered composite media, liquid-state
theory, ' '' and amorphous solids. ' Specific examples of
such functions shall be described below.

The purpose of this Rapid Communication is to derive
the appropriate series representation of the H, for media
composed of distributions of d-dimensional spheres with a
polydispersivity in size. Polydispersivity constitutes a fun-
damental aspect of the microstructure of a host of random
media.

Following Torquato, ' we consider adding p spherical
"test" particles of radii b1, . . . , b~, respectively, to a sys-
tem of N spherical included particles having M com-
ponents with composition N ~, . . . , NM, such that g =

~ N
=N. Let R . be the radius of the type a included particle
which is centered at rj (tT~. =1, . . . , M). The ith test parti-
cle is capable of excluding the center of the type oj in-
cluded particle from spheres of radius a; . For b; & 0,
a; =b;+R . , and for b; =0, we allow the test particle to
penetrate the included particles so that 0 ~ a; R .. It
is natural to associate with each test particle i a subdi-
vision of space into two regions: the space available to the
ith test particle D; and the complement space D;*. Let S;
denote the surface between D; and D;*. The general n-
point distribution function H„(x;x;r ) specifically
characterizes the correlation associated with finding test

I

s=0

where H„'~ is an integral over the n-particle probability
density function p„ that characterizes a configuration of
n-included spheres. In the case of discrete number of
components, the integrals also involve summations over
the components. ' For included particles with a continu-
ous distribution in radius % characterized by the normal-
ized probability density f(R), the sums are replaced with
integrals over the radii and a; is replaced by a;

; b+% . lSince the continuous representation is more
general and concise, we report our results here in the con-
tinuous form.

The sth term of Eq. (1) is given by

H„'(x xt ™r ) =(—1)
Bb) »

(2)

where, in the Mayer representation,

particle 1 centered at x~ on surface St, . . . , test particle
m centered at x on 4, test particle m+1 centered at
x»+1 in D»+1, . . . , test particle p centered at x~ in D~,
and finding any q included particles with configuration r t,

with n =p+q. The appearance of the argument rq makes
it implicit that H„depends upon R „.. . , R

We have derived two equivalent but topologically
diA'erent series representation of the H„ for ensemble sys-
tems with polydispersed spherical inclusions. ' In the spe-
cial case of an equilibrium ensemble, these two expres-
sions can be shown to be (for m =0) isomorphic to the
well-known Mayer and Kirkwood-Salsburg hierarchies of
liquid-state statistical mechanics' for a certain mixture
of spheres, and therefore we refer to them as the Mayer
and Kirkwood representations. Both series have the gen-
eral form

q+s
xp~+ (r~ ',&t, . . . , 'fl.~+, ) + m ~ (xt';r~)dr~,

j=q+1
(3)
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and

P
m ~ (x~;r~) =1 —+ [I —m(lx; —r~l;a; )l,i=1

I'

I if lx; —r 1(a;',
m(lx; —r I;a;'~') = '

&0 otherwise.

(4)

(5)

Here, p„(r";R~, . . . , %„)f(%~). . f(R„) is the proba-
bility density function associated with finding an inclusion
with radius %~ at r~, another inclusion with radius %2 at

r2, etc. The case n =1 is degenerate in the sense that
p~(r~, R~) is independent of R~ and in the instance of sta-
tistically homogeneous media is simply equal to the total
number of density p. Note that the results for discrete
size distributions are easily obtained from the above re-
sults' and as in Ref. 1 we have successive upper and
lo~er bounds on H„. '

A comparison of Eqs. (1)-(5) with the corresponding
monodisperse expressions of Torquato' reveals that there
is a simple prescription to map monodisperse results into
polydisperse results:

q+s
„p,+, ( +')[ . ]dr +~ . dr +, „dR +~ d% +, + f(%k)p +, (r +„'W), . . . , W +, )[

I& =1

drq+1 . drq+s,

where the left-hand side (LHS) and right-hand side
(RHS) are the monodisperse and polydisperse results, re-
spectively. Moreover, m(r;a;) in Ref. 1 must be replaced
by m (r;aP ) for an included particle with radius R~.

From the single function H„, one can obtain all of the
various sets of correlation functions that arise in the study
of transport and mechanical properties of composite
media by letting the radii of the test particles shrink to
zero (b~ =0) and setting aP =RJ, i = I, . . . ,p. For ex-
ample, in this limit, the n-point matrix probability func-
tion S„(x")=H„(@;x";8)and the point-q-particle distri-
bution function G„(x~,r~) =H„(H;x~,rq), where H is the
empty set. The former is fundamental to the study of the
conductivity and elastic moduli of composite materials,
and the fluid permeability ' and trapping constant of
porous media. The latter arises in bounds on the conduc-
tivity, fluid permeability and trapping constant.
Similarly, the surface-void, surface-surface, and surface-
particle center correlation functions in this limit are given
by Fsv(xi, x2) =Hz(xi;xz', @), Fss(xi, xz) =H2(xi, x2,'@;
S), and Fsp(x&, r2) =H2(x&, e;r~), respectively. These
surface correlation functions arise in bounds on the fluid
permeability ' and trapping constant. In this limit, H„
provides generalizations of all of the aforementioned func-

p„(r";R(, . . . , %„)= U p)(r), %,) .
j=l

Substitution of (7) into (1) yields

(7)

I

tions e g, Fsvp, Fssp, Fgsv, etc. In some cases the sizes
of the test particles one wishes to introduce in a porous
medium are not always negligib!e compared to the pore
size (b; & 0), and hence the distribution function will de-
pend upon the relative size of the particle and pore. Such
generalized quantities have a particularly simple applica-
tion in the theory of gel chromotography. '

In the context of liquids, the representation of the H,
provide generalizations of certain expected values that
arise in potential distribution theory' and scaled-particle
theory. ' ' H„also contains the nearest-neighbor distribu-
tion function which is fundamental to the study of theory
of liquids and amorphous solids. The subject of nearest-
neighbor distribution functions for polydispersed hard
spheres is studied elsewhere. '

The evaluation of the integrals of (1) for H„ is general-
ly nontrivial because of the appearance of the p„. For the
special case of "overlapping" or "randomly centered"
(i.e., spatially uncorrelated) spheres, the p„are especially
simple:

H (x x~ r') =( —1) ~ ~

ab,
(I)H H [I —m(lxk —rII;ak )] H pi(r, ;&,)f(%,)

bm l=1 k =1 j=l
P

xexp — p~(r~) 1 —+ [1 —m(lx; —r~l;a; ' )] f(%~)d%~dr~
i=1

For a statistically homogeneous system, we have

fO P

p~(r~) 1 —+ [1 —m(lx; —r~l;a, ' )f(%~)] d%, dr,
i=1

=p(V (x;a ', a; )), (9)

where Vz(x~;a~~', . . . , az' ) is the d-dimensional union
volume of p spheres of radii a1', . . . , aP' centered at xp,
respectively. Here the average of any function A(%) is
given by

&~(X))=„W(a)f(W)dW.

I

Relation (8) is the polydispersed generalization of the
monodispersed result obtained by Torquato. '

In the special limit aP N&, Vi, and in the instance of
homogeneous overlapping spheres, relation (8) recovers
the one-point correlation functions H

~ (x~', @;&) and
H~(H;x~, H) obtained by Chiew and Glandt, ' the 5„(x")
obtained by Stell and Rikvold, ' and the two-point surface
correlation functions Fsv and Fss derived by Torquato
and Lu. For other H„ in this limit and for the general
case where b; & 0, relation (8) is entirely new.

For the case of spheres with some finite-sized hard core,
the H„are generally difficult to compute because of the
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complexity of the p„. For hard cores havin the same radii as the included particles, the infinite series (1) for the H„
truncates after n-body terms in the limit a; ~ N~, Vi. ' For example, for such inhomogeneous models in the limit, the
various two-point correlation functions are given by the expressions

Fyp(x~, r~ ) = lim H2(x~, t2t;r~ ) = [I —m(l»a(j)- X,~I.l j'

x pi(ri)f(&t) —„„d&2f(&2)dr2p2(rl r2 +t +2)m(I» —r2I +2),

H2(xl S Il)

p~ (r~ )f(%~ ) — „d%2f (%2)dr2p2(r~, r2, %~, %2)B(Ixt —r2I —w2)

Fyy(x~, x2) = iim H2(x~, e;r~) = I — dB~f(R~)p~(r~)drt I —g [I —m(Ix; —r~I;R~)l
(j) i=1J &

+
~ J dR~d%2f(%~ )f(%2)dr~dr2p2(ri, r2;At, %2)m(Ixt —rt I'&i)m(IX2 r21 +2),

Fys(x], X2) = lim H2(x~, t2t;rt) =„„dR~f(%~)droop~(r~)8(IX~ —r~I —%~)
ai(j) N, &i

fO fO

dRtd%2f(%~)f(%2)dr~dr2p2(r}, r2,'%~, %2)8(IX2 —r2I —%2)m(Ixt —rt I;%~),

Fss(x~, x2) = lim H2(X~, S;r~) =J „dRtf(%~)droop~(r~)8(IX~ —
r~I

—%~)B(IX2—r2I —%2)
a; j %,&i

+ „dW~d%2f (R~)f(%2)drtdr2p2(r~, r2, %~,%2)8(IX~ —r~ I

—%~)8(IX2 —r2I —%2) .

(i3)

(14)

(is)

In the special case of isotropic polydispersed hard
spheres in equilibrium, Slum and Stell ' have given p2 in
the Percus-Yevick approximation. We learned very re-
cently that Given and Stell have used this approximate
solution to p2 to compute Fvv, Fsp, and Fqs. The two-
point functions Fy p and Fsp and high-order functions
have not been heretofore computed for this useful model,
however.

Although the formalism given here was for simplicity

restricted to d-dimensional spheres, it is possible to gen-
eralize it to ensembles of particles with nonspherical
shapes. Finally, we emphasize that the formalism is val-
id for equilibrium as well as nonequilibrium ensembles of
particles.
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