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Phase modulation of Taylor vortex flow
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The phase dynamics of Taylor vortex flow close to onset was studied by applying a forced
modulation to the upper boundary of a large-aspect-ratio concentric-cylinder system. Our experi-
mental results show that the phase disturbances progress diA'usively along the Taylor vortices in

the axial direction. Values of the diffusion coefficients obtained experimentally are compared with
those found in numerical computations. We also confirm the dependence of the diflusion
coe%cient on the wave vector of the Taylor vortices predicted by the general theoretical mode1 of
Pomeau and Manneville [J. Phys. (Paris) Lett. 40, L609 (1979)].

In the last decade, much attention has been given to the
phase dynamics of patterns in hydrodynamic systems
where the transition from a uniform state to a spatially
periodic state occurs. ' One of the classic examples is
the Taylor-Couette system, which consists of fluid be-
tween two concentric cylinders with the inner one rotat-
ing. When the rotation frequency of the inner cylinder
exceeds a threshold value, the spatially uniform circular
Couette fiow (CCF) changes to the axially periodic Tay-
lor vortex fiow (TVF). The ffow pattern undergoes suc-
cessive transitions as the inner cylinder rotation frequency
increases further, leading eventually to turbulent flow.
The characteristics of the fiows in the Taylor-Couette sys-
tem have been investigated extensively by visualizing the
patterns and measuring the velocity profiles. While the
Navier-Stokes equation, in principle, provides a theoreti-
cal basis for understanding the experimental results, the
complexity of the equation often makes it difficult to com-
pare with real laboratory situations, therefore necessitat-
ing the use of model equations. In particular, dynamics of
patterns may be well reproduced with simplified model
equations such as the Ginzburg-Landau equation. In
this spirit, it has been shown that phase variables (which
might be associated with, for instance, the positions of
rolls in the Taylor-Couette system) are governed by a sim-
ple diffusion equation' in the nonequilibrium systems that
show spatially periodic structures after a supercritical bi-
furcation. This provides us with a very simple and direct
way to study the slow, long-wavelength dynamics of Tay-
lor vortices with theoretical understanding.

We have performed a detailed experimental study of
the phase dynamics near the onset of TVF in a large-
aspect-ratio concentric-cylinders system. The phase-dif-
fusion coefficients were obtained by studying the responses
of the Taylor vortices to the motion in the axial direction
of the top boundary of the system. Two diff'erent bound-
ary conditions were implemented in our experiments. In
the first case the top boundary oscillated in the axial
direction, while in the second case it was moved at a con-
stant speed to a final position. In both cases the pattern
disturbances traveled diffusively away from the boundary
in the axial direction. The diA'usion coefficients we ob-
tained are consistent with the results of numerical compu-
tations' "based on the Navier-Stokes equation. We also

present experimental results on the dependence of the
phase-diffusion coefficient on the wave vector of the Tay-
lor vortices. We found that the diA'usion coefficient de-
creased as the wave vector of the TVF deviated from q„
the critical wave vector for TVF. ' These results are con-
sistent with the phase-diffusion model. '

The control parameter for the Taylor-Couette system
with the outer cylinder at rest is the Taylor number T. It
is defined as T = (0,; r; d/v) (d/r; ) 't, where 0; is the inner
cylinder rotation frequency, r; is the inner cylinder radius,
d is the gap between the inner and outer cylinders, and v
is the kinematic viscosity. When T exceeds the threshold
T„ the flow changes from a uniform CCF to a periodic
TVF. In the vicinity of T„ the lowest order of, for exam-
ple, the radial velocity field has the form u(r, z, t)
=A(z, t)e ' u(r), where u(r) is the eigenfunction, z is
the axial position, and q, is the critical wave vector corre-
sponding to the lowest T,. ' The amplitude A(z, t) can
then be rewritten as ~A(z, t)~e'~ ",where p(z, t) is the
phase variable associated with the slow space and time
variations in A. p has been predicted to obey a diffusion
equation
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and zo is the perturbation amplitude growth rate, go is the
correlation length, e=(T —T, )/T, is the distance to the
onset of TVF, q =q —q„q is the wave vector of the TVF.

Our experiment is conducted in concentric cylinders
with the outer one fixed. The inner cylinder radius r;
=5.262 cm, the outer cylinder radius r0=5.965 cm, the
length between collars initially is 49.5 cm, and therefore
the radius ratio rt=0.882 and the aspect ratio I =L/
(ro —r;) =70.4. The inner cylinder is driven by a Com-
pumotor stepper motor. The working fluid is a solution of
double distilled water and 44% glycerol by weight. 1% by
volume of Kalliroscope AQ1000 is added for visualization.
The forced modulation is added through moving the top
collar of the system [see Fig. 1(a)]. A stepper motor can
move the collar a maximum distance of 1 cm. The visual-
ized TVF pattern is viewed with a 512x480 pixel CCD
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FIG. l. (a) Schematic diagram of the experimental geometry. (b) Node line locations of TVF subjected to the periodic boundary
modulation, t represents time and z is the distance from the top collar. The solid line traces the shift in phase from vortex to vortex.
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camera which is connected to an image processor. The
light intensity of a vertical line of the pattern is recorded
and the positions of the node lines are determined by
finding minima of the light intensity profile. For a typical
situation we have a resolution of 34 pixels per vortex.

In the first type of experiment, the top collar oscillated
in the axial direction. We found that the phase at z =0
exactly follows the top collar's motion due to the fact that
the period of the modulation T))1 /v, the diffusion time
through a vortex. (Typically, T=3040 s and d /v=12. 3
s.) This provided the following boundary condition

=p Imp Sln(COt ) . (3)

Here ((Ip and ro are the modulation amplitude and frequen-
cy. Solving Eq. (1) with the above boundary condition,
we obtain

Assuming z„ is the location of the nth vortex node line,
then p(z„,t)+qz„=nn, therefore

z„=[nrr —
ItIpe "sin (rot —pz ) ]/q

=z„—((Ipe
""sin(rot —pz„)/q, (6)

where z„ is the location of the vortex node line without
modulation and z„=nz/q Equa. tion (6) shows that the
node lines oscillate sinusoidally, their amplitudes decrease
along the axial direction, and a phase shift occurs between
the neighboring node line motions.

In the second experiment, we moved the top collar to a
final position at a constant speed, which leads to the ap-
proximate boundary condition

y~, =p =ypH(t ) . (7)

Here H(t) is the step function, 0 for t & 0, 1 for t ~ 0. It
deviates from the real boundary condition owing to the
finite time (typically 48 s) for the collar to reach its final
position, but our analysis showed that this deviation is
negligible in the region far from the boundary (three or
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FIG. 2. Dots represent the experimental data and the solid lines are derived from the fit to the diAusion model. (a) a is the ampli-

tude of each node line motion. (b) 8 is the phase shift of the node line motion.
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FIG. 3. Relation between D~~ and the square of the wave vector, q, for: (a) the periodic modulation case; (b) the step-function

modulation case. Dots represent the experimental data and the solid lines are the fits to Eq. (2).

more vortices away from the collar). Substituting the
above boundary condition in Eq. (1) and following the
same procedure as described for the periodic modulation,
we find that the location of the nth vortex node line is
given by

zn zn do erfc «z
0

2 Dimwit

z0
zn doerfc, »z2 Dtt)

where do is the distance that the top collar moves and erfc
is the error function complement.

In the periodic modulation case, the sinusoidal motion
of the upper collar has a typical amplitude of do/d =0.480
and a period of 3040 s. For each set of data, the inner
cylinder rotation frequency is adjusted to the TVF region
and left about 1 h (our measurements showed that it took
about 30 min for our system to reach a steady state). Two
hours after starting the modulation, we began recording a
vertical line image of the Aow pattern every 2 min for 5 h.
Figure 1(b) is a typical data set. The response of each
node line is a sinusoidal function of time, with an ampli-
tude and phase shift as predicted by Eq. (6). By fitting
this data set with the following equation

line motion, we found that lna and 6 were linearly related
to z„as shown in Fig. 2(a) and 2(b). The slopes of the
lines give us values of a and p from Eq. (6), and hence the
value of D~~. The variations of a and p were within 20%.
The resultant value of D~~ was found to be independent of
the modulation period. Repeating the experiment with a
diA'erent Taylor vortex wave vector we found that D~~ de-
creased when the wave vector q deviated from q, . Figure
3(a) shows a typical dependence of D~~ on q. The correla-
tion length go and correlation time ro can be obtained by
fitting this with Eq. (2). The values for this case are listed
in Table I.

In the step function case, the upper collar moves at a
constant speed (about 0.125 mm/s) to a final position in
48 s, which leads to an aspect ratio increase of 0.853. The
response time of each vortex increased with distance of
the vortex from the top boundary. For instance, the relax-
ation time for the 2nd vortex boundary to reach halfway
to its steady-state position is 31.1 s after the collar comes
to rest, while that of the 3rd vortex boundary is 71.9 s. In
this case, the approximation of Eq. (7) is valid for the vor-
tices beyond the three adjacent to the collar. The same
data acquisition technique is used here. The light intensi-
ty profile of a vertical line is recorded every 12 s after the
modulation is added. A typical data set took 40 min. Fig-
ure 4 shows a sample result. Fitting this data with the
equation

z„=z„—a sin (cot —8),
where a and 8 are the amplitude and the phase of the node

z„=z.' —do erfc

IP

Sn
(10)

TABLE I. Values of D~~ from our experiments, for q =3.25 and g =0.882; calculated values of gp and
ro for g =0.90 from Ref. 10; and Dl~ for q =3.30 and g =0.85 from Ref. 11.

1.63+ 0.12
1.59 w 0.07
1.54 ~ 0.20
1.58 +' 0.17

1.70

&p

0.260
0.293
0.288
0.301
0.382

I/rp

24.3
18.9
19.3
17.4
13.109

0.0740
0.0740
0.0621
0.0829

0.070

Source of data

periodic modulation
periodic modulation
constant modulation
constant modulation

Ref. 10
Ref. 11
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FIG. 4. Node line locations of TVF subjected to the step-
function boundary modulation. Modulation is added at v=0
[r=t/(d /v)l Dot. s represent the experimental data and solid
lines are the error function fits to the data.

where s„=z„/2(D~~) 't according to Eq. (8), we obtain s„
as a linear function of z„. Therefore, D

~~
is evaluated by

the slope of s„and z„. Repeating this process for diA'erent
TVF wave vectors, we obtained a relation between D~~ and
wave vector similar to that found in the case of periodic
modulation. The results are shown in Fig. 3(b). The
resultant values of go and ro are shown in Table I in com-
parison with those from the periodic cases and numerical
computations. ' " Our values of go and ro differ from the

numerical values of Ref. 10, while D~~ from Ref. 11 is
within our error bars for three cases. In both numerical
cases, the geometry studied was similar to ours. That we
diff'er with Ref. 10 suggests we may be operating some-
what beyond the range of applicability of Eq. (2), which
is, strictly, only appropriate for e 0. Further experi-
ments with e smaller than 0.06 would be needed to verify
this.

As shown in Fig. 3(a) and 3(b), the range of wave vec-
tors accessible to us is limited due to the large radius ratio
of our system. According to the Eckhaus theory, ' there
are larger stable wave-vector regions of TVF in a small
radius ratio system, since it is possible to go to higher e
before reaching a wavy instability. Therefore, it is expect-
ed that an experiment in a small radius ratio system will
show a more profound dependence of D~~ upon the wave
vector.

In summary, our experimental results have con6rmed
the basic features of the phase dift'usion model proposed
by Pomeau and Manneville' near the onset of TVF. We
studied the phase-dift'usion process under two distinct
types of modulation and obtained consistent results. In
both cases, the phase variables disused along the Taylor
vortices in the axial direction. The measured diAusion
coeflicients decreased when the Taylor vortex wave vector
deviated from q, .
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