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Diffusion in a random multiplying medium: Exact bounds and simulations
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We analyze the problem of diAusion in a one-dimensional random multiplying medium. We
consider the case of a Gaussian 8-correlated field. Exact bounds, valid for any time, are obtained
for the averaged concentration. Results of simulations are explained by considering the contribu-
tion of random-walk realizations with small spans.
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where n (x, t ) can be either a concentration of particles or
other magnitudes related with polymer chains, electronic
density, etc. For the sake of concreteness we take n (x, t )
to be a concentration of diff'usive particles in a multiplica-
tive medium. In this paper we only deal with one-
dimensional problems. The random multiplicative field
g(x) is taken to be Gaussian with a zero mean and corre-
lation given by

(g(x)g(x')) =06'(x —x') . (2)

Other cases with a correlation length diff'erent from zero
have a more regular behavior and will not be treated in
this paper.

The quantities of interest are either the averaged Green
function taken in the initial point (G(x, t/x, O)) (Refs. 1

and 3) or the total contribution n(t) =f(G(x, t))dx. ' '

Both quantities have the same exponential behavior and
only differ in factor. We take n(t) as the object of our
calculations. By now two kinds of analyses have been

I

n(x, t lxo) = G(x, t Ixo, O)

The problem of diffusion in random multiplying media
has attracted considerable attention in recent litera-
ture. ' This problem appears in several physical and
biological systems and has been treated with different
techniques.

Diff'usion in random multiplying media is equivalent to
a polymer in a random potential, so it has been analyzed
with Flory theory and the replica trick. ' Also, it models
chemical reactions, biological multiplication, and the evo-
lution of species. Then, random-walk techniques are
more convenient. By considering imaginary time, the
diffusion equation transforms to a Schrodinger equation
with a random potential and then techniques for the cal-
culation of the density of states also become useful. Fi-
nally, when the multiplicative factor is imaginary the
problem is reduced to that of transverse spin depolariza-
tion of a diffusing particle.

The basic equation governing the evolution of such
models is a diffusion equation with a random multiplica-
tive factor:

done on such quantities: one investigating the asymptotic
time behavior' and the other obtaining bounds valid for
any time.

After some confusing results the asymptotic form of
n(t) or (G(x, t/x, 0)) seems to be established as exp(yt ),
where the constant y is 4'8 . ' ' Bounds for any time are
surer quantities but apparently more difFicult to calculate.
On the other hand, simulations are scarce and do not
reproduce the exact behavior. ' The disagreement be-
tween simulations and the analytic result has been partial-
ly explained by Guyer and Machta using a Flory theory
and taking into account the effect of a finite number of
configurations (realizations of the random field).

The aim of this Rapid Communication is to study the
complementary effect due to a finite number of random-
walk realizations and to explain simulation results with
the calculation of bounds valid for any time. This eff'ect

can be analyzed in a separate way by averaging exactly
over all possible configurations of the field. Our simula-
tions of diffusive trajectories over this averaged field give
an asymptotic behavior as n(t), = exp(yo0/D 't t t )
where yo depends slowly on the number of realizations but
is independent of the spatial step. In the following, we use
the lower index s to denote simulation results. This be-
havior is diff'erent from the exact asymptotic form
exp(yt ) because, as we will see, the exact n(t) is dom-
inated by the contribution of nontypical realizations of
very low probability which cannot be reproduced in the
computer. So, in our analysis of the simulations we only
take into account realizations with a probability large
enough to be reproduced in the computer. In this form we
obtain analytical results in agreement with simulations.
We remark that our simulations are affected only by
finite-random-walk realization effects and not by finite
configuration effects. We then conclude that the behav-
ior exp(yot't ) is due to finite-random-walk realization
effects. Furthermore, if one considers a finite number of
field configurations, we show that the behavior should be
exponential, exp(at), as t becomes large, in agreement
with a previous analysis.

From Eq. (1) it is easy to obtain an exact solution in the
form of series. We take n(x, t ) in powers of g:
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where G(x, t/x', t') is the Green function of the diffusion equation. Now we average over field configurations, take the
Laplace transform in time, and change integration variables, obtaining

' n
8 fO fO

(n(x, s~xp)& =G(x —xp, s)+ g dz2„exp[ —
~
(x —xp)(s/D) '/ —zf ~]

n=1 4(Ds ) 2JDs '4

Here 6 is the Laplace transform of 6 given by

fx —xp[
'

G(x —xps) = exp
2v Ds, JD/s

(s)

and gz indicates a summation over all possible partitions
of (1,2, . . . , 2n) in pairs (i~,j&) . . (i„,j„).Note that we

I

have used the Gaussian property of g(x). Integrating in
(4) and antitransforming we finally obtain

3/2

I [(3n/2)+ ll

where I is the gamma function and y, is given by

j f J (

2n 2n 2n 2n
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From (6) it is difficult to obtain the time behavior but it is
easy to have an upper bound. Taking into account the in-
equality y„& 2"(2n —I)!! in (6) we get the following
bound valid for any time:

n(t) ( 1+ exp
90t 40 t (8)
AD

It is also possible to obtain lower bounds from (6) and
(7) but we will obtain a better bound using a diff'erent
method in the following section.

Since simulations must be performed in a discrete space
we analyze the corresponding discrete equation and its
continuous limit. We take the following discrete version
of (i):
aN, (t)

[N; (t)+N; ((—t) —2N; (t)]+co—;N;(t),

(9)

g S

N(t) = exp g z
2L i-I (i4)

By considering the trivial inequalities (Pz; =t)
St2) g 2)

i I

N(t) as

S

IV(e)='(exp g ez;z; )i I

1,2, 3, . . . , s being the distant sites visited and z~ z2
z 3 . . . , z, the occupation time of each site during a total
time t =Pz;. The curly brackets indicate an average over
all possible random walks, and as before the angular
brackets average over field realizations. The last averag-
ing can be immediately performed taking into account the
Gaussian nature and independence of co; obtaining

where N;(t) is the number of particles in site i at time t
and m; is the multiplication factor in site i. m; must be a
random Gaussian variable with a zero mean and correla-
tion given by

in (14) we have two bounds for N(t):

Hid/2LsP (t )(N(t ) ( Ot /2L (is)

(C0('t0/) = 8( /,
0 (io)

lim AL

L 0

(i2)

Taking D and 0 as constants, the limit process can be
characterized by only the parameter L.

Let us consider realizations of the random walk with
span s. In terms of such realizations we can calculate

L being the spatial step. Equation (9) represents a ran-
dom walk in a chain with a random multiplicative factor.
The continuous limit from (9) and (10) is obviously
defined through a simultaneous limit of L 0 and X
as

n(x, t) = lim N„/L(t), —1

I-0 L

f+ OO

n (t ) & „e"""P(x, t )dx, (i7)

where P, (t ) is the probability of having a span s in time t.
For large t it is given by

8&, + x2(2j+1)29,
s j 0 S

~'(2j+ I ) 't
xexp

2$

From (1S) and taking only the contribution of s =I we
can deduce the asymptotic form of N(t) as exp(8t /2L).
This is the original result of Zeldovich' which is valid in
discrete space and asymptotic time.

The continuous limit of (1S) provides a lower bound for
n (t ) in the form
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Integration of (17) with (18) gives, for any time

() g 48t ~ 8t
,-o ~ / J~(2j+ I) 4x'"D"'(2J+ I)'

g2E 3

xexp
16m (2j+1) D

(i9)

where as in the discrete case the contribution of spans
close to zero is dominant.

The lower bound in (15) has been used as an approxi-
mation in the calculation of spin depolarization. Physi-
cally the bound represents the case in which all sites are
occupied during the same time (t/s). When the contribu-
tion of small spans is dominant the equal-time occupancy
seems to be a good approximation. Then the asymptotic
behavior must be well approximated by this lower bound.
So we are going to consider (15) and (19) not only as
strict lower bounds but also as approximations able to ex-
plain qualitatively results of simulations. We note that
bounds for (G(x, t/x, 0)) can be immediately obtained
translating known results from the equivalent problem of
the density of states of a particle in a Gaussian potential.
It is a remarkable fact that there is a lower bound that
gives the exact asymptotic behavior.

It is possible to perform simulations of this problem,
among other ways, from expressions (13) or (14). The
first case includes random-walk and random-field simula-
tions, so that two effects due to a finite number of both
random-walk realizations and field configurations affect
the final result. In expression (14) one of the averages has
been exactly performed and only the effect of a finite
number of random-walk realizations remains. This last
method obviously is less time consuming and only presents
one kind of uncertainty. A similar method has been used
to simulate spin depolarization of a diffusing particle in
Ref. 7. Here we consider this method and for the sake of
comparison with other simulations we discuss finite field-
configuration effects at the end of this paper. So, in what
follows, we shall refer only to realizations of the random
walk.

The contribution of s = 1 in (15) is dominant in the
asymptotic value of N(t) and it has an exponentially
small probability. Realizations corresponding to such
small spans cannot be reproduced in a simulation of great
but finite realizations. Hence, in a simulation we expect
to have the contribution of realizations with small span
but with significant probability. A rough estimation of
simulation results can be obtained by substituting in (15)
s by the smallest span obtained in simulations s
=

yo (M ) (Dt ) ' /L,

N(t)s = exp[yo(M)8t /D'/ ], (20)

where now P(x, t), the probability of a span x, is given for
any time by

16Dr ~ x'(2j+ I ) '2Dr
'I

X j 0 X

z Dt(2j+I)xexp
X

n(r) ~ exp — P(y)dy,
242Dy

where now P(y ) is independent of time,
r

( ) 8 g z'(2j+ I)'
3 20

x'(2j+ I ) '
2J

—1 exp3', 3'

(22)
A plot of P(y) can be found on page 423 of Ref. 9. As

TABLE I. Evolution of the quantities 2 =2L lnN, /Bt ',
8 =D ~'lnN, /Bt '~', and C =lnN ,/I(B/L) '~'t] with tim. e The.
parameters of the simulation are 0=2x10, D =1, L =4.47,
and M =70000.

900
1800
2700
3600
4500
5400
6300
7200
8100
9000

6.73 x
1.30x
1.30 x
1.25 x
1.16x
1.12 x
1.03 x
9.26 x
9.09 x
8.66 x

10
1O-'
1O-'
1O-'
1O-'
1O-'
1O-'
10=
10
10

0.226
0.617
0.756
0.841
0.867
0.920
0.910
0.878
0.915
0.918

0.641
2.475
3.717
4.772
5.501
6.395
6.834
7.053
7.792
8.245

where y, (M) is a factor depending on the number of real-
izations M, and (Dt) '/ /L is proportional to the asymptot-
ic mean value of s. This behavior differs from the one ob-
tained when considering a finite number of field config-
urations. In this case a slower time dependence exp(at)
was derived by using the Flory theory. In our case (a
finite number of random-walk realizations) it is easy to
see from (15) that exp(Pt / ) is strictly a lower bound
when taking the contributions close to s =(Dt/L)'/.
Such contributions have enough significance to be simu-
lated in the computer. The exponential growth exp[L8t/
(2D)] can be produced by taking contributions close to
s =Et. This is obviously a bound lower than (20) and
with a small probability of occurrence.

We show in Table I our results of simulations made
from expression (14). In order to analyze the time behav-
ior we have compared the quantities lnN(t), /(t 8/2L),
1nN(t), /(t / 8/D' ), and lnN(t), /[(8/L) '/ t] related, re-
spectively, with the Zeldovich result or a case with infinite
random-walk realizations, the estimation of the smallest
span and the exponential growth due to finite field
configurations. This last effect is analyzed at the end of
the paper [see (26)]. As time increases the first quantity
decreases, the second Auctuates, and the third increases.
We have obtained similar results for several values of D
and 8 so that we conclude that (20) is a correct estima-
tion. Moreover, we have confirmed that the value of
N(r), for large enough (t) is independent of L. This can
be seen in Fig. 1 where we have plotted N(t), for different
values of L. Since we are mostly interested in the continu-
ous limit L~ 0 we analyze this case in detail. From (17)
and (18) we can write n(t ) in a form more adequate for
our analysis:
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TABLE II. Values of yo, t„(8'i'yo) ', and yo(M) for
diA'erent M. Parameters of simulation are L =1.4142, a=1,
and 0=2&10

CV

C5 20
1000
5000

70000

yo

0.974
0.715
0.658
0.589

590.0
725.0
766.3
825.0

(8 1/2 )
—

I

0.363
0.494
0.537
0.600

0.60+' 0. 1

0.78 ~ 0.05
0.79+ 0.05
0.91 + 0.08

2000 4000 6000 8000

FIG. 1. Time evolution of D'i InN(t). /01'i for three values
of the step L. Circles correspond to L =14.14, triangles to
L =4.47, and crosses to L =1.414. The dot-dashed line is the
lower bound estimated from (23). Other parameters are D = I,
8=2x10, and M=70000.

N(r) =

1xexp x +xz;
20

(25)

Finally, the eAect of a finite number of configurations
(field realizations) can be analyzed from (13) by consid-
ering the value obtained for N(t). For N realizations of
the Gaussian variable ro; we can estimate N(t) by

r I/2
2nO t xo

, dx
L .J —xo

,y,
'

ety2
n(t), ~ exp

242Dy

t 31'2

P(y)dy = exp
2v 2Dyp

(23)

Here t, is the time such that the integrand in (23) is much
greater than unity when P(y) is estimated by the term
j=o in (22). In Table II we show the infiuence of the
number of realizations. The parameter yp(M) can be cal-
culated as

1 =„, P(y)dy. (24)

As expected, (23) is a lower bound of n(t), and also
gives a good estimation of the variation due to the number
of realizations. The relation between yp(M) and the es-
timation given by (23), 1/(8' yp), is nearly constant.
From simulations we have observed that the asymptotic
regime appears in a time between 4t, and 5t, .

representative parameters of this curve we take the mean
value y = (8/x) 'i and variance cr~ =2(ln2 —2/n) 'i . In a
simulation only realizations corresponding to values of
y G (yp, y 1) such that p(y) has a significant value are pos-
sible. Then for large enough t [t» t, =(n 2(2D)'i /
yp8) i ], n(t), has a lower bound given by

N (r ) = exp [(8ln N/L ) ' i I ] . (26)

This result is in agreement with previous analysis.
However, when z; ( (L lnN/8) 'i, the value for N(t) ob-
tained from (25) can be approximated by the averaged
value over all field realizations given by (14). In this case
we can apply our analysis to study finite-random-walk
realization eftects. It is then possible that for certain
values of the parameters an intermediate time scale exists
such that simulation results for N(r) show the behavior
exp(t i ). This kind of behavior has been obtained in

simulations performed with a finite number of field reali-
zations. '
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where the curly brackets indicate an average over
random-walk realizations and xp is such that
erfc[xp(L/8)' l =1/N, that is, xp= (81nN/L)'i. The
eA'ect of a finite number N of field configurations is impor-
tant in (25) when z; » (L lnN/8) 'i . Using the uniform
occupation time approximation, z; = t/s = (t/D), we&/2

obtain r»DLlnN/8. Therefore, as t becomes large we

get, from (25),
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