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Monte Carlo simulation of bond-diluted tethered membranes
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We simulate bond-diluted self-avoiding tethered membranes of linear size L =7 to 41. For any

p )p, we find only the Hat phase. The three eigenvalues of the inertia tensor (X3 the largest, A,
&

the
2v.

smallest eigenvalue) scale with system size according to k, -L ' with v3(p)=v2(p)=1. 0 and
v, (p) = —, for all p &p, . Our data indicate that at the percolation concentration the system is iso-

tropically crumpled with fractal dimension indistinguishable from the Flory prediction. The cross-
over between the isotropically crumpled and Oat fixed point is also studied.

The statistical properties of polymerized and liquid
membranes, free to fluctuate in d-dimensional space have
been widely discussed in the past few years. One particu-
larly simple system, the tethered membrane model intro-
duced by Kantor, Kardar, and Nelson, ' has been inten-
sively studied both by numerical' and analytical tech-
niques. ' " This model, in which particles are connect-
ed in a fixed topology (e.g. , a hexagonal or square net-
work), is the generalization of the corresponding (D = 1)
bead and chain polymer model to dimension D =2 and
serves as a prototype model for polymerized membranes.
In contrast to linear polymers, ' for which simulations,
renormalization group studies, and Flory mean field
theory all predict a "crumpled" phase, there is no such
consistency in the case of tethered membranes.

A number of different numerical simulations have been
carried out for tethered membranes and the results of the
largest and most recent ones ' ' support the original con-
clusion of Plischke and Boal that two-dimensional self-
avoiding tethered membranes are fat rather than crurn-
pled when embedded in three-dimensional space. The
properties of the flat phase are nevertheless interesting.
The shape of the membrane is characterized by the three
eigenvalues of the inertia tensor and it is found ' that the
two largest eigenvalues have the property A, 2 3

where L is the characteristic size of the stretched rnem-
2vl

brane, whereas the smallest eigenvalue scales as A, ] L
with v, =0.67. This result indicates that tethered mem-
branes, albeit flat, are rough in the thermodynamic limit
(L —+ oo).

Tethered membranes belong to the class of crystalline
surfaces. Liquid rnernbranes, found for example in mi-
croemulsions, form a different class and there is general
agreement' that liquid membranes are characterized by
a finite persistence length and are, therefore, crumpled in
the thermodynamic limit. One important difference be-
tween liquid and crystalline membranes is the nature of
the elastic constants. In a liquid membrane, the shear
modulus vanishes whereas a solid membrane, at least
when confined to a plane, will have nonzero shear and
bulk moduli. When free to fluctuate, nonlinear coupling
between the in-plane and out-of-plane modes of a crystal-
line membrane leads to a stiffening of the membrane,

stabilizing the flat phase.
It is well known' that randomly diluted networks with

central forces between the particles undergo a "rigidity
percolation" transition at a concentration p~, which, for
hexagonal networks, is well above the geometric percola-
tion concentration p, . At this rigidity percolation point,
the elastic constants of the network vanish and remain
zero for all concentrations p, &p &pz. The reason for
this is the geometrical nature of the backbone (as defined
in the context of percolation) at and below the rigidity
percolation point. When the system is constrained to lie
in a plane, the rigid structure results from loops or trian-
gles which are present at all length scales for p )pz. For
p &pz there are not enough loops to provide stiffness„
and all elastic constants vanish. Therefore one may ex-
pect the in-plane modes of the bond-diluted membrane
(for p (pz) to be of a difFerent nature than those of an
undiluted membrane. One of our motivations in under-
taking this work was to investigate whether or not this
change in the elastic properties results in a crumpled
phase of the fluctuating membrane.

Recently, Grest and Murat' carried out molecular-
dynamics calculations for site-diluted tethered mem-
branes both above and below the threshold for rigidity
percolation. They found no evidence for a crumpled
phase for any concentration p )p, . This may be due to
the fact that the renormalized elastic constants of the un-
diluted network vanish at long wavelength due to the
aforementioned coupling between in-plane and out-of-
plane modes. Thus the effect of rigidity percolation may
be a subtle one' which is not yet evident in the simula-
tions of Ref. 15 or, indeed, in the ones reported here.

We have carried out Monte Carlo simulations for
bond-diluted tethered membranes in the concentration
range 0.4~@. For the hexagonal networks studied here,
geometric percolation occurs at p, =2 sin(~/18) =0.3473
and rigidity percolation occurs at p~ =0.65. ' Thus
there is a substantial range of concentrations for which
one should be able to observe the effects of vanishing rigi-
dity.

The details of the simulations are as follows. A hexag-
onal cluster of "diameter" L containing N =(3L +1)/4
particles and 3(3L —5)(L+1)/4 bonds is excised from
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an infinite hexagonal lattice. A fraction (1 —p) of the
nearest-neighbor bonds is then randomly removed and
the largest connected cluster identified. The particles in
the remaining clusters are discarded and the largest clus-
ter is then equilibrated by a standard Metropolis Monte
Carlo procedure. Tethering is enforced either by a Aexi-
ble string of maximum extension 3' in units of particle
diameter, or by the modified 6-12 potential of Ref. 3.
Particles more than one lattice spacing apart on the net-
work interact either through a hard sphere potential (case
1) or through a 6-12 potential, cut off at the point of zero
force. The results of the two sets of calculations are
equivalent and we support only on the more extensive
simulations with hard-core potentials.

In these simulations, clusters of size L =7 to 41 were
used and in all cases the result were averaged over a num-
ber of realizations of the bond-cutting process. For the
smallest clusters (L =7), 50—150 different diluted net-
works are simulated; for the largest clusters (L =41)
computational limitations only allowed the simulation of
three realizations. A measure of the equilibration time of
linear polymers is the Rouse time, ~z =N/s, where N is
the number of particles in the chain and s the length of a
Monte Carlo step. Although the relaxation time of teth-
ered membranes seems to scale with a higher power of
N, ' the Rouse time has commonly been used' ' as a
crude measure of the equilibration time for Monte Carlo
calculations. Here we have used N (p = 1 ) /s Monte
Carlo steps as our unit of time but have also calculated
autocorrelation functions of the quantities of interest in
order to verify that we had a significant number of statist-
ically independent configurations. These autocorrelation
functions decay roughly exponentially with time with a
time constant which, for our system sizes, is of the order
of 10—20 "Rouse times. " In all cases, the data were ob-
tained from runs which were at least 1000 Rouse times in
length after the initial transient and several clusters of
size L =25 were simulated for 10000 Rouse times as a
check that the shorter runs yielded averages characteris-
tic of equilibrium.

As in previous work, the inertia tensor of the sys-
tem was diagonalized for each configuration in the data
set and the eigenvalues ordered according to size with A.

&

the smallest, A, 3 the largest. We assume that as L~ ~,
2v

these eigenvalues scale as k —L ' and determine as
eff'ective exponent v, s(L i, L2 ) from the formula

ln [A.,(L2)/k (L, )]

The data for k& and A.3 are quite noisy and the effective

(d +2)d,
f (2)

where d, =—', is the spectral dimension of the percolating
cluster. ' For d =3, we therefore obtain d&

= 2 as the
Flory prediction at p =p, . All of the preceding results
are consistent with the picture that the equilibrium be-
havior of tethered membranes is controlled by two fixed
points (in the renormalization group sense). We have,
therefore, attempted to study the crossover from the un-
stable crumpled fixed point to the fIat-phase fixed point.

We define N (p) to be the "mass" of the largest cluster
at concentration p. At p =p, the system crumples and
the three eigenvalues of the inertia tensor scale with the
mass witl the same exponent 2/d&. As one crosses over
from the crumpled to the Rat-phase fixed point, the three
eigenvalues are characterized by scaling functions whose
arguments are given by the ratios of length scales enter-
ing into the problem. In this case, aside from L, there are
at least two (possibly related) length scales, namely, the
percolation correlation length and the normal-normal
correlation length of the Aat phase. This correlation
length is finite at p =1 and presumably diverges at p, as
some power of p —p, . For the range of concentrations
simulated here, the percolation correlation length is quite
small and it is presumably the normal-normal correlation
length which enters into the scaling functions. Our simu-
lations are not large enough to enable us to determine

exponents for these eigenvalues are not well converged.
Conversely, the second eigenvalue, X2, does not Auctuate
nearly as much, either for a particular cluster or for
different realizations of clusters at a given concentration
of bonds. Table I shows the effective exponent vz, z for a
range of concentrations and for different values of L i and
L, 2. Since v cannot be larger than 1 for any p )p„we
conjecture that v2=1.0 for all p &p, . Moreover, v3 v2
and it therefore seems that the scaling exponents of the
two largest eigenvalues are constant, i.e., v2(p)
= v3(p) = 1.0 for all p )p, . This conclusion is consistent
with the results reported in Ref. 15. As mentioned above,
the data for A,

&
show large Auctuations and it is difticult to

determine the exponent v& with any precision. However,
the data are at least consistent with vi(p) =v, =0.67.

At the bond percolation point the infinite connected
cluster has Hausdorff dimension D =

—,", & 2 and is expect-
ed to be crumpled. This isotropically crumpled phase has
been seen in the simulations of Grest and Murat. ' The
Flory theory for self-avoiding networks predicts' that
the fractal dimension of the crumpled network will be

TABLE I. The effective exponent v2, ff(L&,L2), defined in Eq. (1), for tethered membranes with vari-
ous concentrations p of nearest-neighbor bonds.

L,
p =1.0

L2 V2 eff Ll
p =0.6

Lz V2, eff Li
p =0.5

L2 V2, eff

p =0.45
VZ, eff

7
11
19

11
19
25

0.96
1.02
0.97

7
11
15
25

11
15
25
41

0.93
1.00
0.96
1.02

7
11
15
25

11
15
25
41

0.92
0.99
0.95
1.04

7
11
17

11
17
25

0.98
0.96
1.00
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FIG. 1. Plot of the scaling functions y, (x)=A,,(p)/X(p) as
function of the scaling variable x =X(1)(p —p, )~ for /=1. 5

and where X(1) is the number of particles in the undiluted net-
work. Crosses: p =0.4; circles: p =0.45; solid dots, p =0.50;
squares, p =0.60; plus signs: p =0.65.

how this length depends on p —p, and we therefore fit

our data to the following phenomenological scaling form:

k (p)=IN(p)] (p)y [N(1)(p —p, )~] .

The crossover exponent P, as well as the fractal dimen-
sion df, should be determined from the data. However,
the present data are not extensive or well converged

enough to permit a convincing two-parameter fit. We
define the variable x =X( 1 )(p —p, )~ and find that
ltl=1. 5 provides a reasonable collapse of the data when
the fractal dimension is taken to be the Flory value df =2
(see Fig. l). The scaling functions y should then have
the asymptotic form y (x)~ const as x ~0, for all j, and—1+vi
yz 3(x)~ const as x~ ~, whereas yl(x)-x ' for
large x. Figure l shows the functions y =k /N(p) as
function of the variable x. Although x is never particu-
larly small for the range of concentrations simulated, the
three scaling functions certainly seem to approach a con-
stant for small x. In the case of y, there is a distinct
break in the data near x =10 and the solid line which is
drawn by eye has slope —0.4, yielding v, =0.6 for the fIat
phase of the tethered membrane, in reasonable agreement
with the previously determined value of 0.67. The almost
complete independence of x of the function yz is, of
course, the reason for the excellent convergence of the
effective exponent v2 seen in Table I.

In summary, the calculations reported here are con-
sistent with the following simple picture of the equilibri-
um behavior of tethered self-avoiding membranes.
Bond-diluted self-avoiding tethered membranes are in the
Bat phase for all concentrations above the bond percola-
tion concentration. At percolation the fractal dimension
of the infinite cluster is close to 2, the value predicted by
Flory theory, and the membrane is isotropically crum-
pled.
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