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A closed quantum-mechanical system with a large number of degrees of freedom does not neces-
sarily give time averages in agreement with the microcanonical distribution. For systems where the
different degrees of freedom are uncoupled, situations are discussed that show a violation of the usu-
al statistical-mechanical rules. By adding a finite but very small perturbation in the form of a ran-
dom matrix, it is shown that the results of quantum statistical mechanics are recovered. Expecta-
tion values in energy eigenstates for this perturbed system are also discussed, and deviations from
the microcanonical result are shown to become exponentially small in the number of degrees of free-

dom.

A question that normally occurs to anyone learning the
basics of statistical mechanics is the following: Why does
the Gibbs formula work? The crudest explanation ap-
pearing in many undergraduate textbooks relies on cou-
pling the system to some much larger heat bath. This
simply pushes back the problem one stage further, to un-
derstand the heat-bath-“plus” system. The more con-
vincing explanation considers a classical system in isola-
tion. From the assumption of ergodicity, the micro-
canonical distribution can be derived, and for a large
number of degrees of freedom this can then be shown to
give the Gibbs formula.!

The notion of ergodicity is easily seen to lead to statist-
ical mechanics classically. Attempts at extending the no-
tion of ergodicity to the quantum domain have not suc-
ceeded in leading to a similar conclusion. Attempts at a
quantum-mechanical justification of statistical mechanics
have taken several paths.? Criteria for quantum ergodici-
ty> have either been too general to separate systems obey-
ing statistical mechanics from those that do not,* or they
have been too complex to allow one to find a system satis-
fying the criteria.>? Much work has emphasized the need
to couple to an external environment®> such as a heat
bath in order to obtain statistical mechanics. In this pa-
per a new approach is presented to understand if, and
why, the laws of quantum statistical mechanics work for
a closed quantum-mechanical system.

When a system has a well-defined total energy e, quan-
tum statistical mechanics assumes that the average over
time - -+ ), of some observable quantity (W|A4|W¥) is
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equal to an ensemble average of all states around energy
e:

(W 41W)), =S Ale, )Gl A1) =4 iero » (1)
J

where j labels an energy eigenstate of the entire system
and A(e,j) is a normalized function of j that is sharply
peaked at {j|H|j)=e. For a system containing a large
number of degrees of freedom and for a large class of
operators A, this can be written with negligible error in
terms of the usual canonical distribution at fixed temper-
ature. The above formulas can be easily extended to take
into account large fluctuations in the total energy, as will
be done below. For the purposes of this paper, systems
obeying the above equation will be called ergodic.

There are many examples of systems in classical
mechanics with a few degrees of freedom that have time
averages given by the microcanonical distribution. A
quantized version of such a system cannot be expected to
give the microcanonical distribution. It is easy to show
by counterexample that one needs at least one more
requirement—the number of degrees of the system must
also be large. Having a large number of degrees of free-
dom, however, is not enough to ensure ergodicity. The
distinction between an ‘“‘ergodic” and an ‘‘integrable”
quantum system is illustrated by the following gedanken
experiments.

First, consider a perfect harmonic crystal. If the sys-
tem is in an energy eigenstate that has been picked at ran-
dom with equal probability from within some energy
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range, the expectation of many observables, such as the
mean-square displacement of one atom, are in agreement
with the results obtained from the Gibbs formula. One
can still find many states that do not agree; however, the
vast majority of them do.

If we now shine a laser on this system, to bring it to a
new energy, then, although the quantum-mechanical un-
certainty in its energy is very small, time averages will
not, in general, agree with Gibbs. This is because the
external perturbation will couple most strongly to some
phonon modes, giving rise to a distribution significantly
different from the Bose distribution. In contrast, if the
crystal were “ergodic,” then after it was acted on by the
external perturbation it should give the microcanonical
distribution, but now at a higher energy.

One would like to find an example of a closed
quantum-mechanical system that does “‘give back” the
microcanonical distribution after it has been perturbed as
described above. The approach taken here is similar to
understanding the statistical mechanics of an ‘““ideal gas.”
A genuine ideal gas has no interaction between different
particles and therefore will not be ergodic. It can be
made so, for example, by giving the particles hard cores
of very small diameter. This will have a negligible effect
on the statistical and thermodynamic properties as com-
puted from the Gibbs distribution. However, after a long
enough time, the system will explore all of its available
phase space, enabling the rigorous application of these
formulas. In the same spirit, it will be shown here that if
one starts with a nonergodic system with a Hamiltonian
that decouples into N separate subsystems,

N
Hy= 3 holx;,p;), (2)

i=1

it can be made ergodic for large N by the addition of a
small perturbation. The perturbation added to the Ham-
iltonian is a real symmetric random matrix with certain
physically sensible conditions on the statistics of the ele-
ments discussed below. Full details of the calculations
are planned to be published elsewhere.®

This system provides a justification for statistical
mechanics without invoking any coupling to the external
world. This is interesting because, as mentioned above,
external coupling has often been thought necessary in ob-
taining ergodicity.>>

The choice of a random matrix as the perturbation
added to H, appears to be a sensible choice for several
reasons. As a model, it is analytically tractable and yet
gives ergodicity. Analysis of experimental work on nu-
clei’ supports the proposal of Wigner® that the spectrum
of nuclei are well described by random matrices. Numer-
ical and analytic work in the semiclassical regime also
supports the choice of model used here.”!' Of course,
this model should not be regarded as a universal descrip-
tion of an ergodic quantum-mechanical system. The rela-
tion between random-matrix models and specific
quantum-mechanical Hamiltonians is still the subject of
much research.

Before proceeding any further, it is useful to discuss
how the microcanonical formula (1) should be modified
to take into account fluctuations in the total energy. If
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we have an arbitrary initial state (I"; is a complex ampli-
tude)

lw)=STli), 3)

one could ask if it is possible to experimentally prepare a
system having a very broad distribution for I'; —that is,
large quantum-mechanical fluctuations in the total ener-
gy of the system. The answer appears to be that it is
indeed possible.

One needs simply to superpose two wave functions of
the system, one at a low energy and another at high ener-
gy, which can be done by a “Schrodinger’s cat” ap-
paratus.

For a macroscopic system, one would expect that the
time average of an observable could be described by the
weighted average of two microcanonical averages. The
weights are the probability that the system was to be
found in one or the other macroscopic state, and the mi-
crocanonical averages are taken at the appropriate ener-
gies. The assumption being made is that there is negligi-
ble interference between two macroscopically different
states. If we denote { 4 ), as the microcanonical average
of an observable in a state with a well-defined total energy
e, then, in general, we expect the time average of A4 for a
wave function with a broad distribution of total energies
to be

(A4),=3 Pe){4),, @

where P(e) is the probability of finding that the system
has an energy e. In terms of |¥), as defined by (3),

(w]4lw)), =3 IT,P(4), . (5)

In the “Schrodinger’s cat” example a large uncertainty in
the total energy was obtained by the addition of an exter-
nal system, or potential, whose value is uncertain (e.g.,
radioactive decay). We can ask what happens if a known
external potential is applied to the system and then
switched off? For simplicity, consider the time evolution
of the integrable case (2). Then, if the system starts out in
an eigenstate of H;, we can ask what is the spread AE of
the total energy E after the external perturbation has
been turned off. It can be easily shown that AE /E will
decrease as 1/V'N. Therefore, applying an external po-
tential to this system, which initially has a well-defined
energy, will not create macroscopic fluctuations in its en-
ergy, so that I, remains localized around a small range of
energies.

The model we will consider is the real symmetric Ham-
iltonian

H=Hy,+H, . (6)

H, could represent, say, the Hamiltonian of a harmonic
crystal, or describe an ideal gas. We are interested in the
limit of a large number of degrees of freedom, and we
shall see that considerable simplifications take place in
this limit. H, is added in the hopes of making the system
obey quantum-statistical mechanics. In the case of an
ideal gas, for example, one may want to add two-body in-
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teractions between the different particles. Instead of add-
ing in these interactions explicitly, we model H, by a real
symmetric matrix whose elements are chosen from a ran-
dom Gaussian ensemble.

It is emphasized that no ensemble average is being tak-
en. The elements of H, are precisely determined, but
have correlations between them typical of a random ma-
trix. The same philosophy has been adopted by others in
studying the semiclassical limit of chaotic systems.” !

It will be convenient to examine this model in the basis
of the eigenvectors of H,. In this basis the elements of
H, are

h;=(E;H,|E;), (hjhy)=e"8,38;, (7

keeping in mind that the elements are to be cut off—that
is, set to zero—for |E1 —E2| >>T. Here T is defined as
the temperature associated with a total energy E for the
system whose Hamiltonian is H,. For finite T and large
N this cutoff prevents an unphysical divergence in expec-
tation values, and should be present on physical grounds.
If, instead of a random matrix, H, represented two-body
interactions between particles, then (E,;|H,|E;) should
also® become zero for |E, —E,|>>T. For small N, the
width of the matrix H, has been discussed.!! Properties
of banded random matrices have recently received much
attention.'2 14

We now discuss what we intuitively expect this model
to yield. For small enough g, eigenvectors will differ only
slightly from their ¢e=0 value. However, for small but
finite € many neighboring levels AE will be coupled. This
is because the distance between neighboring levels,'
D(E), is proportional to exp][ —S(E)] [S(E) is the total
entropy at total energy E]. So, at fixed energy per parti-
cle, the separation between levels decreases exponentially
with N and becomes arbitrarily small. Therefore there is
a large range of values for € which will couple a large
number of levels; the number is proportional to
AE exp[S(E).] We would expect that, for large N, ¢
could be made much smaller than the energy per particle,
and have a large effect on eigenvectors. The new eigen-
vectors should then mix in with random phases, the un-
perturbed eigenvectors within a window AE. It is this
mixing that gives rise to ergodicity.

The distribution of eigenvectors for H is now dis-
cussed. With this information we will be able to examine
physical properties of this model in eigenstates of the
Hamiltonian, and also compute time averages of observ-
ables.

Given that we are in a basis where the noninteracting
Hamiltonian (2) is diagonal, we would first like to com-
pute the probability distribution of the normalized eigen-
vectors, ¢;;, of H given that H, is drawn from a Gaussian
random ensemble as described above. Here j labels the
jth component of the ith eigenvector. It has not been
possible to compute the distribution exactly, but an ap-
proximate method has been found that should work well
in the limit of strong overlap between eigenvectors. We
still require the overlap to be much less than the energy
per particle.

One finds® that for one element of the matrix c,
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P(c;;) =< exp[ —c,%/A(i,j)], where

A
Al j)=—— @)
L PRI IS
and
g _ me?
A=oa 0T ©

Here A is the average energy spacing between levels.

Before discussing time-averaged properties of observ-
ables, it is illustrative to consider the properties of ob-
servables in energy eigenstates. This will highlight the
difference between a noninteracting system and one with
very small but finite e. We will see that fluctuations in re-
sults are exponentially reduced by the presence of a very
small interaction of the form (7).

We denote the state vector of the interacting Hamil-
tonian in the ith energy eigenstate by |i ). A noninteract-
ing state vector in the jth energy eigenstate is labeled
|7)o. They are related by

iy=3c;lio- (10
J

We want to look at the variation in the expectation value
of an operator A in an energy eigenstate,

<[|A|i>:Ecikci10<kiAll>0' (11)
k,1

We will restrict our attention to real A. Since energy
eigenstates for neighboring energy levels are different,
(i| A]i) will vary from state to state. A good estimate of
this variation® is to compute the variance in {i|A4[i),
keeping state i fixed, but averaging over different realiza-
tions of the random matrix H,;. We denote this kind of
averaging by ( -:: ). The mean averaged over
different H, is {{i| A|i)),,,4 Which can be computed by
substituting in (11), giving

((ilAIi))mndzZA(i,j)O(lelj)O. (12)

This is just the microcanonical average of 4, { 4 ) icros
which is fortunate, since this gives a mean in agreement
with the microcanonical distribution. The variance is

AA =i A2 g — (il ALY (13)

The first term on the right-hand side of (13) can be com-
puted by substituting in (10), giving

: +\2 —
(<1|A11> )rand'- 2 <cijcikcilcim>rand
hkLm

We shall assume, as we did in the preceding section, that
the ¢’s are Gaussian. This can be shown explicitly when
€/A is infinite, and should be a good approximation when
such a quantity is large. One can then show®

AA2§2A(i,i)<A2>micr0 N (15)

From (8) and (9) we have A(i,i)=1/(w8). We will keep
the spread in energy of the eigenvectors A8 constant as
the number of degrees of freedom N goes to infinity.
However, because at a fixed energy the average energy
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spacing A <exp(—constXN), then A(i,Q)
aexp(—const X N). For a large class of operators,
namely those related to extensive and intensive statistical
quantities (e.g., total energy, correlation functions, and
susceptibilities), { 42) ,cro increases with no more than a
power of N. Therefore we expect that A A2 should de-
crease exponentially with N. This should be contrasted
with the e =0 case, as is done below.

If one considers fluctuations in the expectation value of
A with €=0, then the variance in such a system should
be

AA(Z):(0<”AIi)(%)micro_(()(ilA|i>0>r2nicro’ (16)

where { *** ) .o 2gain denotes a microcanonical aver-
age, one that is done over a small width in energy. For
the example of a harmonic crystal, A 43 decreases® with a
negative power of N. Thus for large N the fluctuations in
the integratable case are dramatically larger than in the
e70 case.

The reason the interacting case shows much smaller
fluctuations can be intuitively understood as the result of
an additional averaging done over neighboring energy
states, as given by (10). The fluctuations are then reduced
by the square root of the number of states being averaged
over, 8§, which is exponential in N. It is this reduction in
these fluctuations which makes the random-matrix model
ergodic.

Now consider an arbitrary initial state

Ww)=ST,li), (17)

evolving under the action of the interacting Hamiltonian
(6). Here I'; is an arbitrary complex amplitude. Using
the same procedure as above, one can obtain a simple for-
mula for the time average of the expectation value of A4
in an arbitrary state. In terms of the interacting basis
(where there should be no degeneracy), this is easily
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shown to be
1T
(Wl 41W)), = lim — [ (V| 4|¥)dr
=S G PG Ali) (18)

This is known as the “fine-grained ergodic theorem.”?>

Then, after substituting (10) for |¥) and averaging over
H, one obtains two terms. One of these can be shown to
vanish in the limit of large N,® and one recovers (5), so
that this system is “ergodic.” This is then an example of
a system that we wanted to find. One that comes to the
correct statistical equilibrium after being perturbed by an
external perturbation, as was mentioned in connection
with the gedanken experiments at the beginning of this
paper.

Several predictions of this model could be tested. A
Lorentzian distribution is predicted for the overlap be-
tween integrable eigenstates and those of the perturbed
Hamiltonian. This could be tested for a system with a
small number of degrees of freedom in the semiclassical
limit, where these arguments should still be valid. For
example, by comparing a free particle on a torus to the
same situation but with a small billiard added, one could
compare the overlap to these eigenstates. Numerically it
is rather difficult to test predictions for large N, but this
may be possible for spin systems of up to 10 spins. One
eigenstate should give expectation values in accord with
the microcanonical distribution.

The dynamics of this system are presently being inves-
tigated. These show dissipative effects and should give a
new handle on the problem of how to introduce frictional
forces into quantum mechanics.!®
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