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Energy loss of heavy ions in dense plasma.
I. Linear and nonlinear Vlasov theory for the stopping power
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Max Plan-ck Insti-tut fiir Quantenoptik, D 8046-Garching, Federal Republic of Germany
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The plasma physics of heavy-ion stopping in fully ionized matter is developed on the basis of the
Vlasov-Poisson equations with particular emphasis on small ion velocities vp, below the electron
thermal velocity U, h, and on solutions nonlinear in the coupling parameter Z =Z,~/(nokz) between
the heavy-ion projectile with effective charge Z, ll. and the plasma with electron density no and De-
bye length A,D. Concerning the stopping power in the low-velocity regime relevant for the Bragg
peak at the end of the ion range, results on the friction term dE/dx ~ vp are presented, and an im-
proved dE/dx formula for plasma is derived in closed form and readily applicable for stopping-
power calculations; it is identical to the standard result for Up) Uth but also describes the limit

vp ~0 correctly. For Up ( U &h nonlinear results are found to contribute to the stopping power with
terms ™Z' for positive ions and terms ~ Z' for negative ions in addition to the basic Z term;
they are derived from a low-velocity expansion of a form-factor representation of dE/dx. Concern-
ing high velocities vp ) U&h the relevant coupling parameter is Z(v, h/vp)', and nonlinear corrections
to the stopping power ~ Z'/Up are obtained by extending the work of Ashley, Ritchie, and Brandt
[Phys. Rev. 8 5, 2393 (1972)] to the plasma case. An interpolation between the low- and the high-
velocity results is given; taking, e.g. , parameters characteristic for heavy-ion beam inertial fusion the
nonlinear corrections further enhance dE/dx up to 10% in the Bragg peak region. An application
of the present results to heavy-ion energy loss in an electron-cooling line is also discussed. In the
present paper, Z,& is assumed to be constant; the physics determining Z,~ is treated in a subsequent
article [Peter and Meyer-ter-Vehn, following paper, Phys. Rev. A 43, 2015 (1991)].

I. INTRODUCTION

This work is motivated by the possibilities of generat-
ing dense, hot matter using intense heavy-ion beams and
by future applications of this new branch of heavy-ion
physics in the fields of inertial confinement fusion (ICF)
and heavy-ion-pumped x-ray lasers. Only recently have
heavy-ion beams been considered as drivers for ICF (e.g. ,
Refs. 1—4); the most promising features are the high
eKciency and high repetition rate of heavy-ion accelera-
tors. The first experimental studies will become possible
in the near future. The interaction of the ion beam with a
hot dense target plasma is of central importance. The sit-
uation may be compared with that of high-power lasers
20 years ago when laser-plasma interaction studies start-
ed and opened a new field of plasma physics. Up to now
the intensities of heavy-ion beam accelerators have been
too small for heating matter to high temperatures.
Concerning target heating the accelerator facil-
ity Schwerionen-Synchrotron/Elektronen-Speicherring
(SIS/ESR) under construction at Gesellschaft fiir
Schwerionenforschung (GSI), Darmstadt will oA'er

several possibilities: one expects that the SIS/ESR beam
can heat massive gold targets up to temperatures of
10—30 eV. The present theoretical work is related to fu-
ture experiments at GSI.

A number of theoretical studies on the ion-beam in-
teraction with plasma are found in the literature.
Two major results were the increase of ion energy loss in
ionized target material, which was also proved experi-
mentally' and, secondly, the increase of the effective
charge Z, ff in the case of heavy ions theoretically, pre-

dieted by Nardi and Zinamon, which also increases the
stopping power (dE/dx o- Z,s-).

A self-contained representation of the theory of energy
loss of ions penetrating classical dense p1asmas may be
given by means of the Vlasov-Poisson equations. Based
on the linearized form of these equations (so called
"dielectric approximation;" e.g. , Ref. 14) the stopping
power dE/dx is easily derived (Sec. II). For high projec-
tile velocities (U,„((U~ 2Z,sac) the plasma stopping
power reduces to the well-known Bohr result'

dx plasma

2
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where ~p 4~noe /m is the square of the plasma fre-
quency, and no denotes the (unperturbed) free-electron
density in the plasma. This should be compared with the
Bethe stopping power in cold gas'
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Here, co is defined as above except that the density of
bound electrons is substituted for no, and I is the average
ionization potential of the target atoms. The stopping
powers given by Eqs. (1) and (2) are illustrated in Fig. 1

assuming the same fixed effective charge Z, ff in both
cases. In a fully ionized plasma dE/dx is higher than in
cold gas because of the difference in the Coulomb loga-
rithms. The physical reason is that free electrons are

43 1991 The American Physical Society



43 ENERGY LOSS OF HEAVY IONS IN DENSE PLASMA. I. 1999

I

Vorbit Vp

FIG. 1. Schematic drawing of the stopping power dE/dx as
a function of projectile velocity for cold gaseous targets and
plasma targets. The same constant Z,z is assumed in both
cases.

tion of these equations assumes the disturbance of the
plasma by the fast ion to be so small that the induced
electric field E;„d is linearly proportional to the outer per-
turbation E„,and, hence, proportional to the ion charge
Z, ff. This theory is also called dielectric theory because
the factor of proportionality between E«, and E„, is
the dielectric tensor of the medium. Since
dF/dx ~Z,&e~E;„d~, the stopping power is proportional
to the square of the effective charge Z, ff.

In the following first the conditions are stated under
which the Vlasov-Poisson equations apply and may be
linearized. The limiting forms for small and high veloci-
ties are discussed analytically, and a useful analytic ap-
proximation is given for arbitrary velocity provided the
plasma density is not too high. It is shown that in the
special case of highly charged ions at low velocities the
conditions for linearization may be violated.

more easily excited by the beam ions (plasma waves) than
bound electrons (bound-bound excitations and bound-free
ionizations).

The linearization of the Vlasov-Poisson equations is
permissible only if the effective charge Z, ff is not too
large or if the ion is moving very fast. In fact, very high
charge states are characteristic for heavy ions stopping in
plasma. This will be shown in a subsequent paper by the
authors'7 (hereafter referred to as paper II) treating in de-
tail the atomic physics of ionization and recombination
processes to determine the projectile charge Z,ff. As it
turns out, the parameter describing the coupling of pro-
jectile and plasma Z=Z, ». /(nokD) may exceed unity in
the dense plasma considered here, indicating that non-
linear terms in dE/dx going beyond the Z, ff dependence
become important, in particular at the end of the ion
range. Therefore, in Sec. III a nonlinear description of
the stopping power is developed, showing that the Bragg
peak in dE/dx of heavy ions will further increase due to
nonlinear effects.

It should be noted that the present work investigates
the stopping of individual projectile ions. Possible "col-
lective" interaction between beam ions which may take
place for very intense ion beams (e.g. , beam-plasma insta-
bilities) are not considered. Estimates' indicate that
even driver beams with intensities 100 TW/cm and more
for an ICF reactor (see e.g, HIBALL reactor study, Ref.
19) have beam densities of about 10' cm, many orders
of magnitude smaller than the target densities of 10
cm . We assume therefore that the individual projectile
approximation is valid.

II. PLASMA STOPPING POWER
IN THE LINEARIZED VLASOV THEORY

Starting from a classical collisionless plasma described
by the Vlasov equation we first discuss the linear theory
of the plasma stopping power. Parts of this theory go
back to the work of Chandrasekhar in the 1940s.

The derivation is based on the solution of the linear-
ized form of the Vlasov-Poisson equations. The lineariza-

A. Solution of the linearized form
of the Vlasov-Poisson equations

The Fermi-Dirac statistics, describing electrons and al-
lowing at most two electrons in the plasma volume
h, reduces to Maxwell-8oltzmann statistics if
h (2(hp) /no=2(mv, „) /no, or

k~ T ) (4ir noa () ) Ry = nQ

5.42 X 10 cm

2/3

Ry .

Here, T and no denote temperature and (unperturbed)
density of plasma electrons, respectively, kz is
Boltzmann's constant, a Q the Bohr radius, and 1

Ry = 13.6 eV. Under this condition the plasma can be de-
scribed by the classical Boltzmann equation

Bf r)f F df
Bt Br m Bv

(4)
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where f (r, v, t) is the single-particle distribution function,
f (r, v, t)d r d v specifies the probability of finding an
electron (mass m, charge —e) at position r with velocity
v at time t; F(r, v, t) is the force acting upon the electron
and includes internal forces induced by the plasma parti-
cles themselves and the external electric and magnetic
fields E and B. The induced fields E;„d and B,„d do not
contain individual close collisions carried out by the par-
ticles. Close collisions are taken into account by the col-
lision term ( Bf /0t) „».

The collision term (Bf/Bt)„» is negligible and the
Boltzrnann equation reduces to the Vlasov equation if the
frequency of collisions with large scattering angle be-
tween the electrons is small compared with the plasma
frequency co . The cross section for collisions with
scattering angles of 90 or more is o.9Q.

=irb9O =it(e /mv, ») and the frequency of such col-
lisions v= nQc79Q UgQ Thus
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Here JVD =(4m /3)noAD is the number of electrons in the
Debye sphere, 1/JVD the plasma parameter, and
kD =k&T/4me no If. JVD ) 1, then v«co and the col-
lision term (c)f /Bt)„,~

may be omitted ("collisionless plas-
ma"), i.e.,

"c)f Bf B4 df
Bt Br Br Bv

, 5(r v —t)+ f d u f (r v, t) 1—.
nod, D

(7')

k&T )(288mnoao)' Ry= no

7.42X10 ' cm

1/3

Ry .
A11 equations written in the dimensionless quantities of
Eq. (8) will be marked with a prime ( ), those in physical
quantities are given without a prime. It is evident that
the parameter

where E= —V@ (B=0 assuming nonrelativistic motion).
The 5 function stands for the projectile ion moving with
velocity v . The last term in the Poisson equation
represents the static plasma ion background.

Introducing dimensionless quantities

r= kDr, v=—v/QksT/m, t=co t,
(8)

Qk~ T/m f
no k, T

The conditions Eqs. (3) and (6) are shown in the

I k~ T, no ) phase-space diagram in Fig. 2 as thick solid
lines and specify the regime of validity of the Vlasov
equation.

The Vlasov-Poisson equations without external fields
read

"df Bf e c)C df
0t Br I Br Bv

V' 4= —4n.Z,s-e5(r —v t)

+4me d U r, v, t —4mnpe,

Zeff

nod, D
3

Zeff 4' Zeff

x
measures the strength of the perturbation by the beam
ion. Z is a combination of the ion s effective charge Z,s
and the Debye number JVD of the plasma. Besides the
plasma parameter I /AD, which measures the ratio be-
tween average potential and kinetic energies for a plasma
in thermal equilibrium, Z is a second coupling parameter
of the problem. Only if Z & 1 the perturbation due to the
ion is small, and an expansion of f and 4& in growing or-
ders of Z becomes meaningful.

For large projectile velocities (u~ ))u,h) this condition
relaxes because only those few electrons moving with the
same speed into the same direction (resonant particles)
will interact strongly with the projectile. Ashley, Ritchie,
and Brandt showed in their nonlinear theory on the
stopping power in cold solids for large U that the non-
linear term in lowest order is proportional to
Z/(u~/u, „) .

The solution for the electrostatic potential in first order
(e.g. , Refs. 21 and 22) is given by

Eqs. (7) read

10

1 Q1

4,(r, t) = Z e ik-(r —v t)
eff d3k e

2~ k e(k, k v~)
ik (r —v t)

e

kv
k +k 8' P

kQks T/m

(10)

c &0'
I—

10

with the dielectric response function of the field-free plas-
ma

e(k, co) = 1+ W'1 co

k

10
]016 ] 018 ]02o 1P22

n, (cm 3)

]02 1026

The dispersion function W(lmg ~ 0)
—x /22

W(g) = lim dx
v2~ v~0+ —~ x g lv

(12)

FIG. 2. Phase-space diagram showing the regions of classical
co11ision-free and collision-dominated plasma as well as degen-
erate plasma. Thin lines correspond to Z=1 for effective
charge states Z,&=10,40, 80. Below these lines for a given pro-
jectile charge Z,& nonlinear effects in dE/dx should be taken
into consideration. The dashed line corresponds to 99% Saha
ionization of a hydrogen plasma. The shaded areas refer to
three examples of topical interest discussed in the text where
nonlinear interaction of beam ions with plasma becomes impor-
tant.

has the representation (Fried and Conte )

1/2

II'(g) =i — ge ~ ~ +1—g2

g4 ( 1 )n + lg2n +2

3 (2n +1)!! + I ~ ~ (13)

and the asymptotic expansion for large g (with

~
Imp/Ref~ && 1)
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provided ~k~ ((1. This defines plasma waves; the imagi-
nary part Im~ is the Landau damping. The beam ion
couples to these waves and loses part of its energy to the
excitation of the waves.

In passing we note the importance of the zeros of the
dielectric function e(k, co) given by the dispersion relation
W(co/k)= —k with co=k.v . For ~co/k~ ))1 Eq. (14)
yields

B. Dielectric theory of the stopping power

The stopping power of an ion is the force F that the
ion experiences from its own induced field:

3ke =1+ +. .
CO 2

1/2
—~ /zk

k
e

dE
dx

= —FeX r=v t

B4g
Z ffe

QX r=v t
(17)

which can be solved by iteration
1/2

co=+(I+3k )'
8

1 1+3k

(16')

Taking advantage of the symmetry relation
W( —g) = W*(g) and defining X(g)=Re W(g),
Y(g)=lmW(g), the substitution of Eq. (10) in Eq. (17)
yields

dE Z ND k,„3 +i p, Y(pv~)
2

dk k dpdx (2~) o —i [k +X(pu~ ) j + Y (pu )

(18')

In Eq. (18) we introduced a cut-off parameter k,„ in order to avoid the logarithmic divergence at large k. This diver-
gence corresponds to the incapability of the linearized Vlasov theory to treat close encounters between the projectile
and the plasma electrons properly. The full nonlinear Vlasov equation accurately describes the scattering of individual
electrons with the projectile ion in accordance with the Rutherford scattering theory. The exact expression for the en-
ergy transfer in a Rutherford two-body collision is

2Z2 4
(Ap) ese

2m
1

2 2
Z~ffe

IV„

(19)

where u„=(v +u, h
)' is the mean relative velocity between projectile and electron. From the denominator in Eq. (19)

it follows that the effective minimum impact parameter is b;„=Z, etr/mu„, often called the "distance of closest ap-
proach. " Thus,

1
max

min

m (u +u,„)
IZ, le' (20)

ensures agreement of Eq. (18')'with the Rutherford theory for small impact parameters. When u ) 2~Z, & ac, then the
de Broglie wavelength begins to exceed the classical distance of closest approach. Under these circumstances we choose
k,x=2mV /A.

The k integration in Eq. (18 ) can be evaluated without further approximation (cf. Sec. 10.3 in Ref. 14):

dE
dx

&'ND I dggY ink, „+—,'ln
27T Vp

2

1+,
k

X +Y

Y2
4k max X kma, +X X

2Y
arctan —arctan—

Y Y
(21')

where g=pv . In Secs. II C and II D this expression is evaluated for large and small projectile velocities.

C. Stopping power for very large projectile velocities

For large u the path of integration along the real p axis in Eq. (18 ) comes very close to the pole given by the disper-
sion relation e=O, which is responsible for the collective oscillations in the plasma. We evaluate this collective contri-
bution to Eq. (18') exploiting the properties of the 5 function

Yg (p) ~( )
( )

r-o f'( )+Y' " "' If'(po)l
(22)
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where po is a zero of f„and f (p)=k +X(pv )=k —1/p, v . The zero X = —k exists only for sufficiently small k,
say for k & 1. The zero is given by @0=+ 1/kv~; because of the limitation IpI & 1 the path of integration comes close to
the zero only if k ) 1/v . The collective contribution to the stopping power at large velocities is therefore

dE

co11

z'&D i, i I po I

2
dk k 2 dP&6 I Po 3 2(2~)' (2/pov~ )

Z XD
lnv

4m. v
(23')

The counterpart to the collective stopping power with
k & 1 is the individual particle contribution with k ) 1:

Z XD
, f '"dkk'2f'dp, ",dx, .„z,, (2m)~ k4

Z XD 8
ln(K +1)+

12wv'2w 10 5 20

29 1 13 33~

10 ~2+ 1 10 20

Z XD
ln

4wv

47Tvp

Z
1 ~ 1

(K +1) 1o (K +1)

The combination of Eqs. (25') and (26') yields for v )) 1
where

(28')

dE

co11

4~v

Z
Z XD

ln
477'

dx

(25')

This is the well-known Bohr stopping power, ' identical
with Eq. (1).

The ratio dE 11/dE;„d;, indicates which fraction of the
ion energy is used up by plasmon excitation. In a plasma
with k&T=1 Ry, no=10' cm= (A,D =8.6 pm,
JVD =272) a fast ion with E =2.5 MeV/u and Z, s.=50
loses about 33% of its kinetic energy in the excitation of
plasma waves. It creates 5.4X10 plasmons per cm of
path length.

K =8~/IZI =8~n, z' /IZ„I . (29')

Z X~
(lnK —1)v

dE
dx

3 2 8
lnK ——+ v

10 S 20

+O(v ) (30')

Note that in dimensional form K =lim, o k
it'

=mv /(IZIe ) according to Eq. (20). For plasmas of
low and medium densities it is Z & 1 and therefore
K))1. The Coulomb logarithms in Eqs. (27') and (28')
are then the leading terms. %'e obtain

r

D. Stopping power for small projectile velocities

=%,v +A3v +O(v')
dx

L

with the "friction coefficient"

(26')

K
ln(K +1)—

%2+1
(27')

and the v coefficient

When an ion moves slowly through a plasma the elec-
trons have much time to experience the ion's attractive
potential. They are accelerated towards the ion, but
when they reach its trajectory the ion has already moved
forward a little bit. Hence, we expect an increased densi-
ty of electrons at some place in the trail of the ion. This
negative charge density pulls back the positive ion and
gives rise to the stopping power.

The Taylor expansion of Eq. (21') for small v yields
the "friction law"

Z XD

12~~/2~

4

2 ~ S
v +—(1—3K )v +O(v )

(31')

This is a v law since in the linearized theory the term
linear in v vanishes with increasing density. This reduc-
tion of the stopping power has its physical origin in the
enhancement of the plasma frequency co in the denomi-
nator of the Coulomb logarithm. and therefore in the
higher excitation energy of plasmons. It should be noted,
however, that in this case Z)) 1 and that strong non-
linear contributions will increase the total stopping power
again, see Sec. III. In Fig. 3 the full solution of Eq. (21')
is compared with the approximations Eqs. (30') and (31')
for the linear and cubic velocity dependence.

The most important property of the stopping power at
small velocities is dE/dx ~ v, provided that the density
is not too high. This looks like the friction law of a

In the opposite limit, when the density is so high that
K & 1 (i.e., JVD & IZ,ttI/6), the stopping power has the
limiting form
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FIG. 3. Stopping power as a function of v~ in units of
vo=(k~T/rn)' ' for ions with charge Z,~=10 in a plasma of
temperature kz T = 1 Ry and density (a) no = 10' cm
(+~=2.7X 10 ))1) or (b) np = 10 cm (K =0.27 ((1).
Solid lines, numerical evaluation of Eq. (21'); dashed lines,
asymptotic forms Eq. (30') and (31') for small projectile velocity
Vp.

viscous fiuid, and accordingly %, is called the friction
coef5cient. However, in the case of an ideal plasma it
should be noted that this law does not depend on the
plasma viscosity and is not a consequence of electron-
electron collisions with small impact parameter. Those
collisions are neglected in the Vlasov equation. As de-
scribed above it is rather the fact that the dressing of the
ion takes some time and produces the negative charge
behind the ion leading to the drag.

E. Analytic approximation of dE /dx
for arbitrary projectile velocities

For Z & 1 it is k,„))1, and Eq. (21') simplifies to be-
corne

', J 'dg(Y
p

X ink ——'ln(X + Y }-
mRx 4 2y

X
X ——arctan—

2 F

Vp

FIG. 4. The Chandrasekhar function G(v~).

1 v

H(v )—= f dg —
—,'gY(g)ln[X (g)+ Y (g)]

p

3
Up

3i/2vrlnu

—gX (g) ——arctan X( )

2 Y(g)

v +12
(34')

The exact and approximate expressions for H(u )lnv are
compared in Fig. 5.

With Eq. (33') for G(v ) and Eq. (34') for H(u ) the
stopping power is written in dimensional form

dE
dx

2
Zeffe cop

[G (u /+kti T/m )in(k, „lD )

+H(u~/QksT/m )

X ln(u /Qks T lm ) ] (35)

with k,„AD =m (v~+2k~ T/m)[k~ T/(4~e noZ, tr)]'
We propose to use this approximation for the free-
electron stopping power in numerical calculations instead
of the formula commonly used in the literature,
which is obtained from Eq. (35) by substituting G for H.

(32')

The first term in the large square brackets is the so-called
Chandrasekhar term. One obtains

2.5

2.0—

v
Up

G(u )=—I dggY=erf
o

—v /2
U e

(33')
CL

& 1.0-

with the error function defined as erf(x)
=2~ ' f odt exp( t ). The Chandra—sekhar function 6
is shown in Fig. 4. The leading term in Eq. (32') is
G(u )ln(k, „) if v «1. The integral over the second
and third terms in the large square brackets of Eq. (32'}
has to be approximated. Utilizing the asymptotic forms
of the integrand for g —+0 and g~ ~ we find to a good
approximation

0.5—

'0 3
Vp

5 7 9 lt

FIG. 5. Comparison of the function H(v~)lnv~ (solid line)
and the approximate formula given by Eq. (34') (dashed line).
Note the change of scales at v~

=5.
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dE MeV

80

dE

colldx

XD

4&up

Z ND

47TUp

r 3

31+ lnu
M

(37')

40
Analogously the individual particle term gives

0„

Vp /Vp

10

dE Z ND 4vrv
ln

4~v'

] O'IT Up+ (38')

FIG. 6. The stopping power of an ion with Z,&=10 in plas-
ma with kz T, = 1 Ry and n, = 10 cm (Z =4.9) as a function
of the projectile velocity v~ in units of Uo=(k&T/m)' . The
relative error between Eq. (21') (solid line) and the approxima-
tion Eq. (35) (dashed line) is smaller than 3%. The dotted line
shows the standard approximation dE /dx ~ G ( U~ /Uo ) /U~ often
used in the literature.

Both the collective and the individual particle term
change negligibly due to the inhuence of the plasma ions.

(ii) Small projectile velocities Mo. re interesting is the
behavior at very small velocities u ((u~. With
X(pu )=X(+M pv )=1 and Y(pv )=Y(i/M pv )=0
the generalization of Eq. (18') becomes

Figure 6 reveals that the result Eq. (35) is superior to the
H =G approximation which overestimates the maximum
of the stopping power up to 20%, and leads to nonphysi-
cal negative values for u (& 1.

dE
dx

ND + 1 max

dpp Y(pu ) dk
(2ir)' — ' o (k'+2}'

+ Y(&M pv )

F. Influence of plasma ions on the stopping power
in the Vlasov theory

Up to now we treated the plasma ions merely as a stat-
ic neutralizing background. In a dynamical treatment
one has to solve two Vlasov equations, one for electrons
and one for ions, and the Poisson equation coupling the
two species. For simplification we restrict ourselves to a
fully ionized hydrogen plasma. The solution for the elec-
trostatic potential has exactly the same form as Eq. (10),
but now the dielectric function reads

1 CO

e(k, cu)=1+ W' —+ W V'M—
k k

(36')

where M =1836 is the proton mass. The only change in
all equations is to substitute the dispersion function 8' or
rather its real and imaginary part X and Y by the sum in
Eq. (36'). A certain difficulty is the cutofF parameter
k „,which is proportional to the mass of the scattered
particle, and therefore one has to decide in each individu-
al case whether to insert the electron mass (:k,„)or
the ion mass ( Mk, „).

We calculate the contribution of the ions to dE/dx in
three energy regime.

(i) Large projectile velocities For v &)u,h, . the
collective contribution given by Eq. (22) has to be evalu-
ated with f =k — (Xv~p) X(&M pv )=k——(1/
p u )(1+1/M); thus

f maxx dk
(k +2)

(39')

For k „))1the evaluation yields

M' 64~'—u &Mln
12~v'Z~ ' 2 Z2

(40')

dE
dx

Z X~
Up ln

12~&2vr ' 64m
Z2

ZN D 1 8~
4' Mv,' ~Z~

(41')

This the sum of the friction law for electrons and the
high-velocity form for ions.

We also looked into the question whether a beam ion
can couple to the ion-acoustic mode in a plasma and loses
energy when pumping ion-acoustic waves. Using the
same technique as in the derivation of Eq. (23') one finds

Comparison with Eq. (30') shows that the ions increase
the stopping power by a factor &M =43.

(iii) Medium projectile velocities When .the velocity is
between the electronic and the ionic thermal velocity
v,h, ((v ((v,h „ it is X(pv~)=1, X(&M pv )
= Y(puz) = Y(&M puz)=0. We find
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dE

acoustic

Z X
, f'dkk'f'dp~

(2~)'
&(V —uo) Vo~

1+k /2 &M
U V

&M (1+k /2)

Z XD

4~v' 4~ (42')

This is negligible compared with (dE/dx)„ii and (dE/dx);„d;, . It is straightforward to show that the ion-acoustic con-
tribution increases by a factor ( T, /T, ), provided that T, ))T, . Only then the beam ions will lose appreciable amounts
of energy to the ion-acoustic mode.

From these considerations it follows that the combined stopping power of ions and electrons may be calculated
without large error by first treating only the electrons dynamically, then only the ions, and finally adding the two con-
tributions. Figure 7 shows the stopping power by electrons and ions in plasma with (a) no=10' cm and (b) no=10
cm . The peaklike contribution of the ions adds appreciably to the electronic stopping power only at very small pro-
jectile velocities. It should be noted that the displayed calculation is done for constant ion charge Z,z= 10; however the
charge drops at the end of the range due to electron recombination, and this further reduces the ionic contribution.

G. InAuence of a collision term on the stopping power

Finally we consider the question of electron-electron collisions approximated by Krook s term
(Bf/Bt)„&&=v(fo f)= ——vf i, where fo and f i are the unperturbed and first-order particle distribution functions, re-
spectively, and the collision frequency v is given by Eq. (5'). Instead of Eq. (18') one obtains

dE D max + 1Z X 1
dk k dppIm

dx (2rr)~ o —i e(k, kpu„+i v)
(43')

First we calculate the friction coefficient %, for vanishing projectile velocities. The Taylor expansion of the disper-
sion function 8'(pv +i v/k) around iv/k, using 8"(g) =(1/g —g) W(g) —I/g and K = 8m/~ Z

~
)& 1, yields in first or-

der of v

inK —1 —&2~ —— v2 1

2 16
(44)

f d(X(g)
dX

The contributions by the collisions in this regime never exceed 0.1%. Much higher contributions are to be expected at
very high densities when the linearized theory breaks down anyway.

For large velocities we repeat the investigation of the collective and individual particle terms in Sec. II C. The collec-
tive term is characterized by the relation k = —ReW(pv +iv/k)=Re(p U +2ipu v/k —v /k ) '. The evaluation
of the real part shows that v appears only quadratically; hence, in first order, collisions make no contribution to the col-
lective stopping power. For the individual particle contribution the integral f odpplmW, (pu +iv/k) has to be solved.
Using the Taylor expansion ImW= Y(pU )+(v/k)X'(pu ) one finds

dE Z XD 2 1
lnkm» —v—1— (45')

4~v'

dE
dX

Z XD 4vru'
ln ' —v

4''Up
(46')

Up

The remaining integral can be recast to give Dawson s in-
tegral. It is easy to show that

This is a lowering compared with the collision-free theory
of at most l%%uo if one assumes JVD ~ 1 and uses Eq. (5) for
V.

III. PLASMA STOPPING POWER
IN THE NONLINEAR VLASOV THEORY

0.6

UJJ x
0.2—

(o)
40

30-

20-

10-

0 2 4 6
v t(kT/m) ]

2 4 6 8
v [(kT/m) ]

FIG. 7. The electronic and ionic contribution to the stopping
power of an ion with constant charge Z,II-=10 in plasma with
k&T=1 Ry and (a) no=10' cm or (b) no=10 cm

We present results of a nonlinear description of the
stopping power for heavy ions in plasma with emphasis
on small velocities, i.e., at the end of their range. This re-
gion is of special interest because deviations from the
linear behavior are expected to be largest. It will be
shown that the nonlinear effects in lowest order yield an
increase in the stopping power and therefore a further
range shortening. In a recent paper an exact nonlinear
result could be derived for a one-dimensional plasma and
low ion velocity, showing that the friction force is twice
as large as predicted by linearized theory. Here, the full
three-dimensional case is treated.
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It is important for heavy-ion stopping that high non-
equilibrium charge states are expected to play an impor-
tant role at the end of the range of the projectile ions.
This will be a major result of paper II. When slowing
down, the ions maintain a high charge Z,& and only after
they have come to rest they capture the missing elec-
trons. Due to this high Z &, the condition
Z=(4~/3)Z, s/JVD (1 required for the linear stopping
theory to be valid may be violated even though the plas-
ma parameter is 1/JV'D &1. As one may check in the
phase-space diagram in Fig. 2 the condition Z (1 is
violated for a number of experimentally relevant exam-
ples, and nonlinear effects should be expected.

For small projectile velocities the nonlinear friction
coefficient is derived in Sec. III B. The result may be ex-
pressed in terms of a form factor F. The deviation of F
from the linearized result in lowest nonlinear order yields
an additional term in the stopping power, which is pro-
portional to Z for negative ions (Sec. III C) and propor-
tional to Z ~ for positive ions. In both cases dE/dx will
grow due to the nonlinearity.

Also for high projectile velocities v nonlinear effects in
the stopping power play a role, even though they are
smaller. The coupling parameter determining the non-
linearity of the interaction between projectile ion and
plasma in this case is (Z,ft/XD)(u, h/u„) . The Z,s. term
of the stopping power was calculated for fast projectiles
in cold matter in a paper by Ashley, Ritchie, and
Brandt (ARB). In the following we start the discussion
in Sec. III A by applying the high-velocity treatment by
ARB to the plasma case and then turn to the even more
interesting regime of low velocities in Secs. IIIB and
III C.

A. Nonlinear stopping power at high projectile velocities v~

Experimental evidence for nonlinear behavior in fast
particle stopping was first observed by Barkas, Dyer, and
Heckman. They observed a difference in the energy loss
of positive and negative (but otherwise identical) pions.

g'(t) = f dt'f(t', b)sin[co„(t —t')],
p

with the force

(u t+g„)e +(b+g )ey
f(t, b) =Z, tte

[(u t+g ) +(b+g ) ]

(47)

(48)

The energy transfer is

bE(b)= (g +to g ),
2

dtf tbe
2m —oo

(49)

These integral equations describe the full three-body
problem, which is nonlinear in Z,z. ARB solved Eqs.
(47) and (48) iteratively for small displacements

((vent

+b . For f there is the expansion

f(t, b) = f, (t, b)+ f2(t, b)+

with

(50)

The energy loss of the positive particles is larger by some
percent than that of the negative particles. The linear-
ized theory with a square dependence on Z,z cannot ac-
count for this difference. The ARB theory gives a valid
description of the "Barkas effect" for fast projectiles stop-
ping in matter. Jackson and McCarthy generalized the
theory to relativistic velocities, Hill and Merzbacher ' in-
vestigated the agreement with quantum theory, and May-
nard and Deutsch studied its application to ICF prob-
lems.

ARB calculated the energy transfer b.E (b) in a distant
collision with the impact parameter b between an elec-
tron and the projectile ion. The electron is assumed to be
bound harmonically with frequency co. For a plasma
electron we take co=co . During the collision the elec-
tron will be displaced by g' due to the force by the projec-
tile ion: /+cd„g=f/I, where f(t, b) is the force by the
ion, which moves into positive x direction. The equation
of motion can be rewritten in the form

v te„+be
1(t» ) =Zeft

[(v t) +b ]

Z,~e' I

[( t)2+b2]3/2
3v 3b

(v te„+be ) +g e — (u„te„+be )

(50a)

(50b)

cu b+z'0
Up

with modified Bessel functions K0 and K &. The stopping power reads

In lowest order it is /=0 and the insertion of Eq. (50a) into Eq. (49) yields

2Z co co b
~E, (b)= ', ' SC',

mv
(51)

=2mno f db bhE, (b)=
min

2Z gccop
ln

Up

28 Up

~pbmln
(52)

with @=0.5772 (Euler s constant), which is in accordance with the result of the dielectric theory if we identify
b;„=1/k,„as the distance of closest approach defined by Eq. (20). The simple description of the electron as a har-
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monic oscillator hence describes correctly the collective effects of the plasma.
In second order if one inserts the force Eq. (50a) into Eq. (47) and calculates the displacement g(t, b), then one knows

the force Eq. (50b) and the second-order correction of b,E. Because of Eq. (49) this correction reads

bE2(b)= —I dt f, (t, b)cos(co t) f dt f2(t, b)cos(co t)+ —I dt f, (t, b)sin(co t) f dt f2(t, b)sin(~u t) . (53)

3tO cos(co t)
+3to f dt t sin(cozt)si(co t),2+, z o, (,2+, z )5n

Z,se cos (co t)
(54)

This result is linear in m, the m term vanishes, because according to the Rutherford theory for free electrons the rela-
tion dE/dx cc Z,~ is exact and Z,~ contributions do not occur. The Barkas-term reads

Since in second order g ~ Z, tr and f2
~ Z,s, then AE2(b) ~ Z,s..

ARB calculated the remaining integrals numerically. We investigate only the analytically accessible case of weakly
bound electrons (co ~0); it leads to a new practical result for the energy loss in a plasma not given by ARB. After
lengthy calculations one obtains

=2~no db bAE2 b
dx min

r

ZeW o 1 y
2 ~

—
~u~

— dy 3 sin(2cy)si(cy) — dy cos (cy)si(cy)
mv

co�(1+y)~

o ( 1 +y2)3/2 (55)

where c =~ b;„/v . Using 1'Hospital's rule for c ~0 it
is easy to show that the term in large parentheses in Eq.
(55) is —(3vr/2)inc+ A. ARB obtained 2 = —2.4. In
the dimensionless quantities of Eq. (8) the final result for
the case m ~0 reads

dE
dx

dE
dx

Z ND 4rrv (v~+2)
ln

4~U,'

3 Z' 47TU&(v +2)+ — ln —2.4
8 u,

'

(56')

This is the final result for large v and small m, which
later will be compared with the stopping power for small
u„. The eft'ective parameter for linearizability in Eq. (56 )

is Z/u =Z, tr/(NDU ).

B. Nonlinear Vlasov-Poisson theory
for small projectile velocities v~

The theory of the Barkas effect described above does
not apply to small projectile velocities and cannot de-
scribe the stopping power at the end of the range, where
the effects of nonlinearity are expected to be largest. In
this section we develop a different approach which is val-
id for all velocities and is particularly useful for the
derivation of nonlinear corrections in the regime
v « v,h. An important point is that the modifications of
the linearized theory of dE/dx can be expressed in terms
of a form factor 9'(k) under the k integral of Eq. (18'). It
can be directly evaluated in the case of negative projectile
ions (Sec. III C). For positive projectile ions (Sec. III E)

there exists the additional problem of how to treat the
"trapped" electrons with negative energy comoving with
the projectile in its potential trough. In both cases the
friction coefFicient may be computed numerically without
further perturbative assumptions. In the following, how-
ever, we restrict ourselves to an analytic calculation of
the lowest nonlinear order in the energy loss.

Starting from Eq. (17) we express the stopping power
in terms of the induced potential in the rest frame of the
projectile ion

n (r') —no
Zse Jd r

r=O

r'. vz= —Z,se Jd r' [n (r') no], —(r')' (57)

where N;„d is written as solution of the Poisson equation.
We introduce the linearized density in the integrand

eff
[n&(r') no]= ' f d—k e'"'' 1—

(2~)
1

e(k, k v )

Interchanging integrals this reads in the dimensionless
variables of Eq. (8)

dE z &D t. d k 'k'&p

(2~)' k'
—1 V(k),1

ek, kv

(59')

y(k) k d3 p 'Q. B (r) —1

4~i k.v„r3 n, (r) —1

dE 21 d3,
'

p

dx u (r')3

n (r') no—
X [n, (r') —no]

n, (r' no—
(58)
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This representation is a new important element in treat-
ing the nonlinear terms. The form factor V(k) is a mea-
sure for the nonlinearity of the problem. In the case
V(k) = 1 the linear result Eq. (18') is recovered.

The form factor V(k) contains the nonlinear electron
I

density n (r) that we do not know. However, for small
projectile velocities v «U, h the angular integration in
Eq. (62') may be performed assuming the potential of the
beam ion to be approximately spherically symmetric

(2ir)2 o —i [k +X(pv )] + Y (pu )

(60')

V(k)=k I dr j,(kr)
o ni(r) —1

dE
dx

Z ND
dk V(k) .

6~&2~ o (k'+1)'

(61')

with the spherical Bessel function j,(x ) = ( sinx—x cosx)/x .
In order to calculate the terms of dE/dx linear in U, it

is sufficient to know P(k, v =0) for the static case, and
the so-called friction coefficient W

&
is obtained with

K =8~/~Z~ [cf. Eq. (29')] from

1 d'
(r(g)) e@ 1 @+ ) @2+ i (g)3+ ) g)4+

I d 2 2 6 24

The expansion @= g"=, N, with &0 o- Z' yields

1 d
(r4&, ) =4, , first order

I' dr

( r 42 ) =42+ —,
' 4„second order

I" dr

1 d 3(1 4 3) 43+ PiC 2+ 6@„ third order
I" dr

(66')

(67')

C. Nonlinear friction coe%cient for negative projectile ions

E is the total energy of an electron, which is a constant of
motion. The special solution Eq. (62') reduces to the
Maxwell distribution for ~r~~ ~. It is normalized such
that the electron density assumes the unperturbed value
at infinity. It is

n(r)= Jd u f(r, v)=e

Hence the differential equation

(63')

The calculation of the nonlinear friction coefficient is
simpler for negative ions than for positive ions, because a
repulsive potential has no bound or trapped electrons at
small velocities. For negative ions (Z (0) with v =0 the
solution of the Vlasov-Poisson equations reads

f (r, v)= 1 1—E g
—[(& /2) —+(I)]

[(277)' ] [(277)' ]

(62')

The first order gives the usual Debye-Huckel potential
—r

C'i(r) =
4~ r

(68')

y =a, e "+a2e "+a3[—e "E,(3ro)+e "E,(3r)

+e "E,(ro) —e "E,(r)] (69')

with constants a„a2, a3, and ro; E, (x)=I,"dt e 'It is
the exponential integral. The upper line of Eq. (69') is
the homogeneous solution, the lower line a particular
solution of the inhomogeneous differential equation. The
physically meaningful solution with correct behavior at
the boundaries reads

C&(r) =4,(r)+@2(r)+

After the substitution y =(16~ IZ )r@z, the second or-
der reduces to the linear differential equation with con-
stant coefficients y" =y+e "/(2r). The general solu-
tion is

1 d
2 [r@(r)]= —Z5(r)+e '"' —1

dI'
(64') 4,(r)=+ e

4mr
(70')

has to be solved. This is equivalent to the integral equa-
tion

@,(r) =—Z2 1 3 Z
[e"E,(3r) —e "E,(r)]— e

e(r) = + dr (1—e~'"') (r')'
4mr 0 r&

(65')

where r & =max(r, r'). It may be solved numerically. In
the following we will restrict ourselves to a perturbative
expansion of Eq. (64'), which yields an analytic solution
in lowest order of Z. For r&0 it is

In the repulsive case (Z (0) the nonlinear potential N is
slightly deeper than in the linearized approximation and
the electron density in the vicinity of the negative ion de-
creases further; W2 &0 can also be directly deduced from
Eq. (65'). For the calculation of V(k) from Eq. (60') we
need (nz —1)/(ni —1), with ni =exp(4&) and
n2 =exp(@,+Nz). In the lowest order of Z it is
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n~(r) —1

n, (r) —1

This yields

@2(r)=1+
4', (r)

=1— [e "E I(3r) E—, (r)+In3] .
167T.

(71')

V(k) =1— ln3 arctan —+ —ln(4+k )arctank —f dg ——f dg
Z k 1 2 k In(1+/ ) 1 k In(4+/ )

8~k 2 2 o 4+/ 2 o I+(
In good approximation (exact for k ~0 and k ~ ao ) it is

(72')

Z k kP(k) = 1— 21n3 arctan —+ ln 1+ arctank
16~k 2 4

(73')

We insert this into Eq. (61') and find

Z'ND x k' Z k kdk ~ 1— 2ln3 arctan —+ ln 1+ arctank
6mV2vr o (k + I )~ 16wk 2 4

(74')

with K =8m/Iz~, cf. Eq. (29'). The integrand in Eq. (74') was evaluated numerically and is plotted in Fig. 8. Analyti-
cally the friction coefficient may be approximated as

ZND'
ln(1+K )

1 K
6~&2~ 2%+1

ln3 E—Z arctan a— arctanK—
16~ 2

E
K +1

(75')

where +=0.76 is an adjusted parameter. For the case
Z

~
((8~ this simplifies further to become

Z ND
lnK+[Z/ " (76')

6~&2~ 16~ 2

and is now independent of a.
For negative ions (Z(0) with small U the stopping

power rises due to the nonliner effects. For Z = —1 the
increase is 2%%uo, for Z= —10 about 25%. Figure 8 also
shows the evaluation of Eq. (75').

It should be noted that this increase is opposite to the
behavior at high velocity; the stopping power of fast neg-
ative ions decreases due to nonlinear effects as we found

within ARB theory.
We can check the sign of the Z term for Z & 0

without having to rely on the approximations made in
the derivation of Eq. (76'). Since the function
y =(16vr Iz )r@2 solves the equation y" =y +e "l(2r)
both y and N2 have to be negatively definite: y would be
a concave function, cf. Fig. 9(a), and could not satisfy the
boundary conditions y (0)=y ( ~ ) =0 provided it is posi-
tive in a certain interval [r„r2]. Hence, 42(r) &0 for all
r in the case of negatively charged ions. This yields
CI, +CI2 (4, &0 as illustrated in Fig. 9(b), and because of
n exp(C&) it is n2 (n, & 1, with n, =exp(C&, ) and
n2=e p(xN, +C2). IDue to the monotonous behavior of
the densities as functions of r it follows

10
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FIG. 8. The ratio of the second-order (proportional to Z')

and the first-order (proportional to Z ) terms of the stopping
power as a function of Z for negative ions (Z &0). Solid line,
numerical evaluation of the Z term of Eq. (74'); dashed line,
the analytical approximation according to Eq. (75').

FIG. 9. The illustration concerning the sign of the Z term
in the stopping power. (a) The concave section of the function
y(r); (b) the electrostatic potential 4 vs radius; different orders
of the expansion in Z are shown.
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Z)0 n2 1 ) 1-—
n1 —1 dX non]in dX

(77')

For Z )0 similar considerations would yield the opposite
result, namely, a reduction of the stopping power. How-
ever, because of the captured electrons in an attractive
potential positive ions need a modified treatment outlined
in the next section.

Only electrons with E ~ 0 are treated by the Vlasov
theory in this way, whereas electrons with E &0 are left
for an atomic physics description, i.e., the calculation of
Z,~. It is

n(r)= Jd u f(r, v)

=e '"' —e '"'erf[&C&(r)]+ —i/4(r) .
2

v'7r

D. Nonlinear energy loss of positive ions with small velocities

For a derivation of the friction coefticient for positive
ions the question of how to treat trapped electrons must
be addressed. In the case of a repulsive potential (N (0)
the total energy E =

—,'u —&P(r) in the exponent of the
distribution function Eq. (62 ) [f ~exp( —E)] is always
positive. However, in the attractive case all electrons
with u ( [24(r)]'~ have a negative total energy, i.e., they
are trapped in the (almost) spherically symmetric poten-
tial of the slow positive ion. Within the collisionless
Vlasov theory there is no exchange between the trapped
electrons comoving with the ion and the free plasma
electrons —at least not for the stationary problem con-
sidered here. It is therefore our standpoint in this paper
to exclude the trapped electrons from the plasma calcula-
tion and to count them as bound electrons which contrib-
ute to the efFective ion charge Z,~. The calculation of
Z,z taking into account the exchange of E )0 and E & 0
electrons due to atomic collision and radiation processes
is presented in paper II. This way of handling the trap-
ping problem is not very satisfactory, in particular, for
fast ions, which excite a potential wave train trailing the
ion so that trapping may occur far away from the ion, but
a more detailed treatment is beyond the scope of this pa-
per.

The distribution function of plasma electrons in the
case of an attractive potential [instead of Eq. (62')] is
therefore given by

+ —i/N(r) —1
2 (80')

or, equivalently, the integral equation

&P(r) = + 5 dr' 1 —e '" '+ e '"'erf[ &&5(r) ]4~r 0

—— —i/@( r)
(r')'

i/7r r)
(81')

with r & =max(r, r') analogously to Eqs. (64') and (65') for
the repulsive potential. Solving

[rN(r)] =4(r)+ —4 (r) ——4& (r)+1 d 4 3/2 I 2

r dr 3&rr

(82')

by the expansion 4&= g, i 4&, with 4, ~ Z' one obtains

1
(rC&i) =iI&i, first order

r dr

1 d 4
2

(rixi2) =ixi2 — —@, , second orderrdr 3
(83')

For slow positive ions (Z)0) we have to solve the
diA'erential equation

1 d [rile(r)]= —Z5(r)+e '"' —e '"'erf[&4(r)]
r dr

f (r, v)= (78')

—f(U /2) —@'(f)]
)1/2]3

for Ivl )v'2@(r)
0 for I v I «2e(r ) .

The equation in first order is identical with Eq. (70 ) for
negative ions and gives the Debye-Huckel potential
0&, ( r) =Z /(4irr )exp( —r). With the substitution
w =(6' /Z )r4~, the equation of second order be-
comes w" =tv —e 3" 2/r with the general solution

1/2

w =aie '+a2e+a3 +5e "
1 —erf —e' ~ 1 —erf

1/2
5r (84')

Adjusting the constants a, , a2, a3 to the boundary conditions w (0)= w ( ~ ) =0, one obtains the physical solution

C&(r) =4,(r)+ @~(r)+

(85')

1/2 1/2

.—i/5e . 1 —erf
—r r

2
. +(i/5 —1)e

The nonlinear potential @ in the attractive case (Z )0) is slightly larger than the linearized approximation. Using the
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same arguments following Eq. (71'), it is ( n 2
—1 ) /( n, —1 ) = 1+tlirt/CI I. An integration by parts with

Idx j,(x ) = —jo (x ) yields

V(k) = 1+&Z 4 1—f dre" 1 —erf
3&10m k 0

sin(kr) (86')

The exact evaluation of the remaining integral gives

4 1
V(k) =1+&Z —arctan[ f (k) ]3&10~ k

with

f (k)=
[(1+4k2)I/2 1]I/2 2k+. 2k(1+4k2)I/2

&10

4 ——'(1+4k )' + —k[(1+4k )' —1]'
5 &10

(87')

The friction coefficient of Eq. (61') reads

Z ND 1 K' — 4 ~ k'
in'/ 1+K —— +VZ dk

z z
arctan k

6~&&~ 2 K +1 3&10vr o (k +1)
(88')

2 K+ Z arctan
3 10' 1.62+K

K
X arctanK—

K +1
(89')

with the adjusted parameter a=0. 87 is also plotted in
Fig. 10. In the case Z ((8ir, Eq. (92') simplifies to

1u I I I I I I I

FR I C T IO N COE F F I C I E N T

FOR A POSITIVE ION

10'
(dE/dx)2
(dE/dx)q

10-1

10

where K =8ir/~Z~. This result was evaluated numerical-
ly and is shown in Fig. 10. An analytic approximation is
motivated by the asymptotic form f~k/l. 62 for k ~0.
The approximation

Z ND
ln(1+K )

1 K
6~&2~ 2K+1

Z ND lnK+v Z arctan0. 87
6ir 2~ 3&107r

for Z ((8' . (90')

As a consequence of the restriction of the total energy
E in Eq. (81') to positive values the stopping power of
slow positive ions is increased by the nonlinear effects.
The nonlinear terms in the friction coefficients of positive
and negative ions have therefore the same sign, and they
are also of the same magnitude. However, the Z scaling
is diff'erent; the nonlinear term is proportional to Z for
negative ions, but proportiona1 to Z for positive ions.
The half-integer exponent is typical for analytic results of
the nonlinear Vlasov theory, as it was first shown by
Bernstein, Greene, and Kruskal in their fundamental
work on nonlinear plasma waves (BCxK waves). The fric-
tion coefficient for positive ions increases in lowest order
of the nonlinear eff'ects by almost 4%%uo for Z = + 1 and by
roughly 28% for Z =+ 10 as shown in Fig. 10.

E. Generalization for finite projectile velocities vp v&h

The relations derived in Secs. III C and III D are only
valid to lowest order in v . At higher velocities the
shielding of the projectile charge is reduced and the ap-
proximation of spherical symmetry for the potential will
fail. Qualitatively this an be taken into consideration by
interpreting kD W(pv„/Qkii T/m ) as an eff'ective Debye
wave number for a projectile with velocity v, see Eq.
(10). For not too large velocities it is

10
0.01

I I I I I I I I

10 100
(
W(=]1 p, mv /k~T+—i (rr/2)' pvq+m/k~T (

=1—(1 7r/4)pmv~ —/k~ T . ,

FIG. 10. The ratio of stopping powers (dE /dx )2 and
(dE/dx)& as a function of Z for positive ions (Z&0). Solid
line, numerical evaluation of the nonlinear Z'/ term [Eq. (88')j;
dashed line, analytical approximation according to Eq. (89').

Averaging over p yields in dimensionless quantities

&(jw/) =
1+ ,', (4 rr)v—— (91')
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By virtue of the substitutions k = k /(
~ W~ ) ' and

Z =-Z/(
~ W~ ) the relations of the preceding sections

may be generalized for the case of finite projectile veloci-
ties. Of course this procedure becomes very crude for
v ~U,h since deviations from spherical symmetry are

then essential. Starting out with the k integration in Eq.
(60 ) and again using the approximations adopted in the
derivation of Eqs. (75') and (89'), we can repeat the calcu-
lations for positive (+) and negative ( —) ions and find

dE
dx

where

kdE & 1 kmax Pkmax+& 1+5+ dp p Y ln + arctan
dx

&

—1 4p k —pk —
q 2I'

2k „—p + arctan
r 2I"

2k „+p
(92')

S+ = &Z(
( W( ) arctan

3&10+ 1+ l/ 5k,„/(( I Wl &
)'" for Z)0,

S = "
~Z~(~W &'arctan 0.76

16~
for Z (0;

(dE/dx), is the stopping power given in Eq. (21'), and

q =X + I', p =2(q —X) and r =2(q+X). These rela-
tions will be used for the following examples.

F. Two examples for nonlinear energy loss
of heavy ions in plasma

dE
dx
300—

MeV

mg/cm 2

20

ARB -Theor

ai«
Ae = 3x10 2cm-3

Te = 300eV

10

6

vs[(kTe/me) ]
10

FICr. 11. The nonlinear calculation [in lowest order, Eq.
(95')] for the stopping power of ious with constant charge
Z,g =40 in a plasma of temperature 300 eV and electron density
3 X 10 cm . Lower solid line: linearized Vlasov theory.
Upper solid line: nonlinear stopping power. The enhancement
of the energy loss due to nonlinear effects is at the most 10%%uo.

Dashed line: the result Eq. (59') of the theory of Ashley,
Ritchie, and Brandt (1972) for high projectile velocities.

First we investigate a case that is important for heavy-
ion-induced inertial fusion. We show in the subsequent
paper II that the efFective charge Z,z of fast Bi ions when
penetrating a fully ionized Li plasma will be considerably
larger than the equilibrium charge Z, up to the very end
of the stopping range. Because of this high nonequilibri-
um charge and consequently a large coupling parameter
Z [Eq. (9)], the nonlinear stopping effects will be strong.
We discuss the case of Bi ions with initial energy 30
MeV/u (u =35ac) in a fully ionized Li plasma with

kz T =300 eV and —,
' solid-state density (no = 3 X 10

cm ). At the end of the range the effective charge of
the Bi ions is of order 40. Figure 11 shows the result ob-
tained from Eq. (92') with Z,fr=40. In this example the
number of electrons in the Debye sphere is A'D =51.5
and the coupling parameter is Z =Z, ff/n o AD= 3.2,5.
The nonlinear corrections of the energy loss are most
prominent for velocities u 2U, h, but do not exceed 10%
as seen in Fig. 11.

At higher projectile velocities the coupling parameter
is Z/u~ according to Eq. (56'), and the nonlinear contri-
bution decreases rapidly. The comparison with the
theory of Ashley, Ritchie, and Brandt (dashed line) shows
that the description of dE/dx presented in the preceding
section overestimates the nonlinear effects at velocities
v ) 2u, h. The reason is that the assumption of spherical
symmetry of the potential breaks down at high velocities.

As a second example we discuss the question of non-
linear effects when cooling heavy-ion beams in accelera-
tors by means of electrons moving collinearly to the ions
with the same velocity as the ion beam (so called electron
cooling). For instance, the new accelerator SIS/ESR at
GSI, Darmstadt is equipped with such an electron cool-
ing line. In this cooling line the electron beam is initially
very cold, i.e., the motion of the electrons relative to each
other is small. Energy exchange between the electrons
and the accelerator beam ions, e.g. , U +, tends to equili-
brate the temperatures and to cool the ion beam. This
cooling is governed by the stopping power of the elec-
trons. The electron plasma in the cooling line envisaged
at GSI is on the borderline between ideal and nonideal
plasmas (JVD ~ 1), and the charge of the beam ions is
large (Z,tr/XD &) 1). The typical density of the electron
beam is n 0

= 10 cm, and typical temperatures are
kz T, = 10 —10 eV so that JVD =5.4—0. 17. In the fol-
lowing we investigate the case of k~T, =10 eV in
which the plasma then is still ideal. For U + ions the
coupling parameter is Z =71, thus the problem of ion-
plasma interaction is highly nonlinear.

Before discussing the result in Fig. 12 let us express
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FIG. 12. Nonlinear calculation of the energy loss of U

ions in the plasma of an electron cooling line with temperature
10 eV and electron density 10 cm . Lower line: the linear-
ized Vlasov theory. Upper line: the nonlinear theory in lowest
order, Eq. (95'). The friction coefficient is enhanced by roughly
70% due to nonlinear effects (see text concerning validity).

101

IV. SUMMARY

The theory of heavy-ion stopping power in plasma is
developed on the basis of the Vlasov-Poisson equations.

some points of caution. There are important differences
between the electron-cooling beam and a classical plas-
ma. The electrons of the cooling line are not held togeth-
er by a charge-neutralizing background of plasma ions
but by a strong magnetic field in the direction of the
beam. The magnetic field forces the electrons into the
helical motion along the field lines. Also, because of the
strong nonlinearity of the problem it is questionable
whether the restriction to second order [compare Eq.
(85')] makes sense. Taking the results of the preceding
sections nevertheless as a rough estimate for the effect of
nonlinear plasma response we obtain the cooling force
dE/dx acting on the ion beam as shown in Fig. 12. The
temperature of the electron beam is taken as kz T = 10
eV and the average velocity U of the U + ions relative
to the electron beam is obtained from m,.Up/2=k&T,

~~,

where T;~~ is the ion-beam temperature parallel to the
magnetic field. The dotted area in Fig. 12 indicates the
region of operation of the cooling line at GSI. The solid
lines give the coohng force according to the present
theory. It is seen that nonlinear effects increase the cool-
ing force and, correspondingly, reduce the cooling time
by about 70%. In previous papers ' the cooling force
was derived from the linearized dielectric theory.

The basic coupling parameter of the problem is found to
be Z=Z, &/nokD, t'he physics determining the effective
charge Z,& of the heavy-ion projectile is treated in the
subsequent paper, and Z,z =const is assumed in the
present paper. The stopping power dE/dx of fast ions
(v ))v,h) is well described by the Bethe-Bohr formula
Eqs. (1) and (2) and appears naturally as a limiting case in

our treatment. The focus of the present paper, however,
is on slow ions (v ~ v,„) and on nonlinear eff'ects in re-

gions with Z) 1, which actually occur for heavy-ion
stopping in dense target plasma close to the end of the
range, The results are of fundamental as well as practical
interest.

First, the linearized Vlasov theory for dE/dx is re-
viewed in Sec. II, and the low-velocity terms are derived
with emphasis on their density dependence. An approxi-
mate expression is given in Eq. (35) which represents the
exact linearized result for dE/dx in plasma very accu-
rately for high and low projectile velocity. It should be
used in future stopping-power calculations instead of the
Chandrasekhar expression, which is now commonly used,
but gives a poor approximation for U U,h.

The new starting point for treating nonlinear terms is
Eq. (59 ), which represents the nonlinearities in terms of a
form factor V(k). At low velocities they contribute to
dE/dx with terms proportional to Z for negative pro-
jectiles and with terms proportional to Z ~ for positive
ones in addition to the Z term of the linearized theory.
It is found that, for Up Uth the nonlinear contributions
always enhance the stopping power, up to 10% at the
maximum of dE/dx near vz =v, h in cases relevant for
heavy-ion stopping in plasmas close to solid-state density,
as illustrated in Fig. 11. For velocities U ))U,h, the non-
linear dE/dx treatment of Ashley, Ritchie, and Brandt is
extended to the plasma case, and the explicit result is
given by Eq. (56').

In conclusion, a unified description for the stopping of
high- and low-velocity ions in plasma is obtained and the
size of nonlinear corrections is given in the various pa-
rameter regions.
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