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Relative diffusion and formation of clumps in phase space of electrons in localized Langmuir fields
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A different relative diffusion coefficient for electrons interacting with coherent, localized Lang-
muir wave packets is proposed. It is shown that the coherent, localized wave packets can drive the
formation of clumps in phase space, and only when the relative velocity is zero does the lifetime of
clumps diverge logarithmically, with the relative positions of the constituents getting closer to one
another.

In this paper we report that trajectories of electrons in-
teracting with the localized, coherent Langmuir wave
packets exhibit an effect of the strong two-point correla-
tion. These wave packets are important in many aspects
of laser fusion, space plasma, and turbulent plasma, etc.
Thus the clump phenomena in phase space, as proposed
by Dupree in 1972, ' can appear in the case of the spatial-
ly inhomogeneous and coherent fields.

Write the localized, coherent fields in the form of a sol-
iton structure:

du;(t)

dt

lo

E&cos[k&x, (t) t], i = 1,—2
I = —lo

where k& =ko+(21~/L), l =0,+1,+2, . . . , +lo,
ko =~/L; E& is in units of +8nnk~ T, space is in .units of
the Debye length A,, =(T, /4vrne )', time is in units of
1/co .

It is shown that if the overlapping criterion is satisfied,
the periodically trapping trajectories of the electrons in
phase space may lead to stochastic processes that form a
stochastic region in phase space, accompanied by the ex-
istence of small regular islands in this stochastic re-
gion. Thus the stochastic motion may lead to strong
correlations of neighboring electrons in phase space, be-
cause relative diffusion is greatly reduced, and so may

E (x, t) =Eosech(gx)cos(kox —co t),
where g =I3Eo/+8~nks T, P is a parameter, Eo ampli-
tude, k0 Langmuir wave number, T electron temperature,
n electron number density, and co = (4trne /I, )

'

where m, is electron mass.
Extending sech(gx) to whole space with a periodic

length I, and expressing it in terms of wave packets, the
equations for electron trajectories in phase space are writ-
ten in the dimensionless form as follows:

dx, (t)
=v, (t),

dt

tend to enable clumps to form in phase space under local-
ized and coherent fields.

Introducing the relative and barycentric motion coor-
dinates

dI" dQ—0,
dt ' dt

= g 2E„sin( —,
' k„R —t)sin( —,

' k„r),

dA dV
dt ' dt

(4)
= —g 2E„cos(—,

' k„R —t)cos( —,
' k„r) .

According to the definition of the difFusion coefIicient,
we obtain the relative difFusion coeScient

D (R, r, V, u)= —([u(t) —u(0)] ),1
(5)

and the absolute diffusion coefficient

D, , (u, ,x, )=—([v, (t) —u;(0)] ),=1
(6)

where the symbol ( ) denotes an ensemble average.
Next we express Eqs. (5) and (6) in a specific form.

First of all, to integrate Eqs. (2), we obtain the trajec-
tories for electrons as follows:

x;(t)=x, +u, t

—f dt'(t —t') g E„cos[k„x;(t') t'], —

u, (t)=u, —f t'dQE„c s[o„k(xt') —t'] .
0

Substituting Eqs. (7) into Eq. (5), and transforming to
t, = t', t2 =t, —t", Eq. (5) can be rewritten in the form

I" =Xi X2, R =X)+Xp

u =U& —
U2, V=U&+U2,

from Eq. (2) we can write the following equations for the
above-noted coordinate system in the form

1D =—f dt, f dtz g E„E ( Icos[k„x,(t, )
—t, ]cos[k x, (t, t2) —(t, t2)]— —

0 0
t

—cos[k„x,(t, ) —t, ]cos[k x2(t, t2) —(t, t2—)]]+(1~2) )—, (8)
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where (1~2) represents the preceding terms with the indices 1 and 2 interchanged.
We now express the first integrand term inside the braces in the exponent form; then, we obtain

(cos[k„x,(t, ) —t, ]cos[k x, (t, —tz ) —(t, tz )—] )

=
—,'(cosIko(R +r ) —2[1—

—,'ko(V +u )]t, +[1—
—,'k „(V +u )]tzj

X5„exp[—
—,
' ( [k„bx, (t, )+k „bx,(t, —tz )] ) j

+cos [ [1—' k„(Vo+ u ) ]t z j 5„exp I
—

—,
' ( [k„hx, ( t, )

—k„hx, ( t, t z ) ] —) j ), (9)

where the cumulant expansion approximation has been used, and b,x, (t) =x, (—t) x; ——v; t.0 0

Treating the rest of Eq. (8) in a way similar to Eq. (9), then, we obtain

D =—f dt, f dtz g & E„(cos[g,+( —1)' 'q, ]expI —
—,'([k„Ax, (t, )+k „bx,(t, tz)] )—j

2t o
'

o

—cos[g, +( —1)' 'gz]exp[ —
—,'([ kb x(t, )+k „bx;(t, —tz)

—( —1)' 'k „Ar(t, —tz)]z) j

+cos[gz+( —1)' 'z13]expI —
—,'([k„bx;(t, )

—k„bx;(t, tz)] )j-
—cos[gz+( —1)' 'g~]expI —

—,
' ( [k„bx;(t, )

—k„bx, (t, tz )—
+( —1)' 'k„br(t, —tz)]z) j), (10)

where

br(t)=r(t) r u t, —g, =—koR —2(1 —
—,'ko V )t, +(1—

—,'k „V )tz,

rl, =kor +kou t, —
—,'k „u tz, zlz=(ko —k „)r +(ko —k „)u t, + —,'k „u tz, gz=(1 —

—,'k„V )t, ,

773
—

—,
' k„u t2, q4,

= —k„r —k„u t ] + —,
' k„u tz

In order to calculate the cumulant expansion in Eq. (10), we assume that the trajectory stochasticity in velocity space
can be described by a Wiener process. Then the probability density of finding a particle at time t with velocity incre-
ment b, v;, where b, v; (t=0) =0, is given by

P(hv;, t)=
+4~D, , t

(Av;)

4D;;t
for t)0. (12)

Using the Wiener average instead of an ensemble average, we have

([k„bx,(t, ) —k„bx, (t, —tz)]z) =
—,'D, , k„'t', (3t, —2t, ),

([k„bx,(t, )+k „bx,(t, t, )]')= , D, , t—k, (4t', 6t—,t', +3t,—t, )+2k, (k„—k, )[t', (t, t, }']— —

+(k„—k, )'t,'(3t, —2t, )j,
([k„Ax,.(t, )+k „bx,(t, t, ) —( —1)' 'k—. „br(t, tz)]z)—

=([k„bx,(t, )+k „bx,(t, —tz)]z) —2( —1)' '([k„bx, (t, )+k „b (tx, t, )]k —„b, (t, tz))—
+k' „(,[br(t, tz)]z), —

(13)

(1S}

([k„Ax,(t, ) k„Ax, (t, —t,—)+( —1)' 'k„br(t, —t, )]z)

= ( [k„bx,(t, ) —k„hx, (t, t )] z)+z2( —1)' '( [k„d—x, (t, ) —k„bx, (t, t, )]k„br(t, tz) )+kz( [—br (t, tz)]—z) . —

In Eqs. (1S) and (16) there exist the terms ( [br(t)] ) and (bx(t& )br(tz ~ t~ )). It is clear that ( ~Ar(t)~ ) is propor-
tional to D, so is (bx, (t)br(tz ~ t)), but (b (t&x)b (t&xtz)) is proportiona—l to D;, . In our case, D is much less
than D;; when r and u are smaller, so the contribution of ( ~hr(t)~ ) and (bx, (t)Ar(tz ~ t)) to D in Eq. (10) is very
small. For the convenience of discussions, we calculate them under the unperturbed trajectory approximation, and ob-
tain
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2

([br(t)] ) = g QE„[F(2kox, , —(1—k„u; ), —(1 k—„v, ), t, t)+F(0, 1 k—„u, , —(1 k—„u, ), t, t)

—F(2kox; —
(
—1)' 'k „r,—(1—k„u; ), —[1—k „u; +( —1)' 'k „u ], t, t)

+F( —( —1)' 'k„r, 1 —k„u, ,
—[1—k„u, +( —1)' 'k„u ],t, t)I,

(bx(t, )br(tz gati)) = QE„[F(2k ox;, —(1—k„v, ), —(1—k „v, ) t„tz)+F(0, 1 —k„u, , —(1 —k„v; ), t, , tz)

(17)

—F(2kox; —
(
—1)' 'k „r,—(1—k„u; ), —[1—k „v, +( —1)' 'k „u ],t, , tz)

+F( —( —1)' 'k„r, l —k„u, , —[1—k„u;+( —1)' 'k„u ],t„tz)], (18)

where function I' is defined as follows:

cosa —cos(a +bt, )
—cos(a +ctz )+ cos(a +bt, +ctz )

F(a, b, c, t„tz)=
26 e

(bt, +ctz )sina

b2c2

isin{a+c z) zsin{a+bt, )+
2

+
2bc 26 e

t1t2cosa

2bc
(19)

We find from Eq. (10) that D vanishes only for r =0, u =0; however, if u is a nonzero constant, D is not equal
to zero even if r vanishes. Because z)z

—7)&= —k „[r +u (t& tz)], zI4
—r—l3= —k„[r +u (ti —tz)] and ti & tz, we are

sure that D is of minimum when r &0, u &0 or r &0, u &0.
By using Eq. (7), the absolute diffusion coefficient in Eq. (6) can be easily rewritten in the form

DtI = dt1 dt2 E~ cos 2k0xt 2 1 k0UI
0

+(1—k „v, )tz]exp[ —
—,'([k„bx, (ti)+k „bx;(t, tz)] )]-

+cos[(1—k„v, )tz]exp[ —
—,'([k„Ax, (t, ) k„bx, (t, —tz)) )]) . —

With numerical solutions of Eq. (4), according to the
definition of Eq (5), we. write the absolute and the relative
diffusion coefficients to be computed in the form

( [v;(r) —v;(0)]'),1

D~ = ([u(r) —u(0)] ),1

2s

where

(21)

U2

1 I. I.+
2 U1

is the approximate time for one pass through the periodic
structure. The ensemble average is computed by averag-
ing over a set of particles with different start times but
with the same initial velocity and positions.

The spectrum of the wave packet is presented in Fig. 1

for parameters Eo /8mnkz T=0.53, I.=36, and P= 1/i/3,
where the overlapping conditions are satisfied except for
the modes n =0, —1. Figures 2 and 3 show the values of
D given by Eqs. (10), (4), and (21), where the factors
( [br(t)] ) and ( hx;(t~ )Ar(tz ~ t, ) ) in Eq. (10) have
been neglected to economize computing time. The fact
that D and D~ in Figs. 2 and 3 are almost identical ob-

o. 1 o—

Harmonic Number

FIG. 1. Spectrum of the Langmuir wave packet.
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FIG. 2. (a) Relative diffusion coefficients vs the relative posi-
tions when u =0. Curve A given by numerical results; curve 8
by Eq. (10). (b) Relative diffusion coe%cients vs the relative po-
sitions. Curves A and C given by numerical results correspond-
ing to u = —0.01,—0.05, respectively; curve 8 by Eq. (10) when
0 = —0 01.

FIG. 3. (a) Relative diffusion coefticients vs the relative ve-
locities when r =0. Curve 8 given by numerical results; curve
A by Eq. (10). (b) Relative diffusion coe%cients vs the relative
velocities. Curves A and C given by numerical results corre-
sponding to r =0.1,0.5, respectively; curves 8 and D by Eq. (10)
corresponding to r =0.1,0.5, respectively.
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viously supports the above approximation to be reason-
able.

One can see from Figs. 2 and 3 that D of Eq. (10) and
D~ of Eq. (21) are almost identical, therefore the numeri-
cal computation is reliable. Our results show that for
u =0 D decreases when r decreases, which is in keep-
ing with that proposed by Dupree, ' who gave the relative
diffusion coefficient as follows:

mula very well:

D~ =
—,'k, (r (r))(D„+D22), (23)

(24)

where the characteristic wave number k, =0.157 with the
parameters in Figs. 2 and 3. Under the condition of
u =0, and defining the lifetime of clumps ~,~

2
Dd = q I dt g ~Eq ~

exp[i(kv tv)t ——
—,'k Dt j

m

X(1—coskr ), (22)

Fig. 4 shows the dependence of ~,~
on the relative posi-

tions. We find that the results can be represented very
well by

where D is the absolute diffusion coefficient. However,
our results show a dependence of D on u as well,
which is just like r, whereas D" of Eq. (22) is not depen-
dent on u .

As we expected, D~ given by numerical simulation has
a nonzero minimum when r + —,

' ~u =0, as shown in

Figs. 2 and 3. The fact that D has a nonzero minimum
means that the lifetime of clumps is finite. It is easy to
understand, because D&&, D22, and D are non-negative,
and D approaches D»+Dzz when ~r ~~~ or
~u ~~ oo, so D varying with r or u must have a
minimum. Thus the relative diffusion is greatly reduced
close to D minima, and the two-point correlation is
considerably enhanced.

Analyzing the D~ given by Eqs. (4) and (21), we find

that the value for u =0 coincides with the following for-

w,l= 18.27 —6. 11nr

~,~
diverges logarithmically as r vanishes.

We also give the coherent time which is defined as

(25)

7
C

' 1/3

k, (D~„+D~~2 )

and Fig. 4 shows ~,&)&~, for small I",u .
Clumps can behave like a single discrete particle and

are considered to enhance the radiation emission, resis-
tivity, etc. ; the above-mentioned discussions assure us
that clumps can be formed in this case.

Figure 5 shows the values of D~ for different r at
different times. Curve 3 is from particles passing
through one periodic structure, and curve 8 is from par-
ticles passing through two periodic structures. The two
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FIG. 4. The lifetime of clumps vs the relative positions when
u =O. Curve 8 presents the lifetime of clumps, and curve B
shows the coherent time.

Relative Position

FIG. 5, The relative dift'usion coefficients vs the relative posi-
tions at difl'erent time. Curves A, B corresponding to one pass,
two passes, respectively.
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curves have the same shape, and are minimized at the
same position.

In addition, we find from numerical computation that
the values of the relative difFusion coefficient D~, to a
certain extent, are the varying function of barycentric po-
sition R and velocity V, and the profiles of D for
different R and V are similar to each other.

In conclusion we have found a general form of the rela-
tive diffusion coefficient for electrons moving in Lang-
muir field with soliton structure. The behavior of the rel-
ative diffusion coefficient substantially differs from the
prediction by Dupree. We also show that the coherent,

localized wave packets can drive the formation of clumps
in phase space. With the numerical solutions of the equa-
tions of motion, we verified that only when the relative
velocity is zero does the lifetime of clumps indeed diverge
logarithmically, with the relative positions of the constit-
uents getting closer to one another.
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