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Kinetic equation of a plasma in a strong magnetic field
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The kinetic equation of a quantum plasma is derived by means of the Wigner distribution func-
tion and the Bogoliubov approach in a strong magnetic field. The equation includes correctional
binary collisions, which account for the inhuence of a magnetic field on the collisions of particles
and the effect of many-body effects.

I. INTRODUCTION

In previous works' the kinetic equation of a quantum
plasma was derived for the spatially quasihomogeneous
unmagnetized case. Because the inAuence of the magnet-
ic field on the collisions of particles is neglected, the equa-
tion can be used only for weak external fields.

However, many plasmas occur in the presence of mag-
netic fields. %'ith a stronger magnetic field and a lower
particle density, the mean gyroradius R, can be less than
the Debye length D. For example, when B=1 T and
n =10' m, then D/r, =3.11 for electron collisions. In
this case the influence of a magnetic field on the collisions
of particles cannot be neglected.

The Landau equation has been applied in general to
study the nonequilibrium properties for a plasma in a
strong magnetic field. The equation is expressed in
natural guiding-center variables. In addition, the

Bagoliubov-Born-Green-Kirkwood- Yvon hierarchy has
been applied. The inAuence of a strong magnetic field has
been accounted for in the collision terms, but quantum
efI'ects are neglected, and spatial homogeneity is assumed.
Thus this equation can be applied only to study the typi-
cal particle's problem.

The principal purpose of the present work is an exten-
sion of the improved Boltzmann-Uehling-Uhlenbeck
equation to the case for a strong magnetic field.

II. FUNDAMENTAL EQUATION

For convenience we first consider a one-component
plasma. In fact, it is assumed that there is an extended
neutralizing background of a positive charge. The ex-
change e6'ect of quantum mechanics is disregarded. The
quantum one-body Wigner distribution function f (x)
satisfies'
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U(q, ) is the external potential, g (x, , xz ) is the two-body correlation function, which satisfies
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4' ' is the displacement operator. Its action is that q
and p displace r backward in time for g (x&,xz).

The motion of the particle is axisymmetric in a strong
magnetic field. It is convenient for choosing the cylindri-
cal coordinate. The derivation of the magnetic field is
selected for the z axis. The components of p are pj, 0,
and p, . The condition of the spatially quasihomogeneous
1s
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The Fourier transformation

x indicates all of q and p. The boundary condition of
equation is

«k pi S'z)= fg(e;S i pz)e '"'dq .

In the spatially quasihomogeneous case, the variance of
f (x) is slower. The variance can be disregarded in the D
region. When r, (D, the variance of f (x) can also be
disregarded in the r, region, so that f (x) is dependent
only on pj and p, and independent of to 0. Using
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then Eq. (3) can be rewritten for
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In the cylindrical coordinate
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where kj, a, and k, are the three components of k. Since
the displacement operator 4' ' satisfies the equation

g(x„x,~f)= —f 4"~~(x„xz~S',"f)dr,
0

where 4'," is the one-body displacement operator. Fol-
lowing displacement, q and p become
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III. CALCULATION OF THE CORRELATION
FUNCTION

the formal solution of g (x„x, ) is obtained by means of
the displacement approach as

The techniques of Fourier transformation in space are
used in the right-hand side of Eq. (l) to obtain
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where

h(k, s i) =f dpzg(k, P1,72)

We may substitute Eq. (5) into Eq. (6) performing the Fourier transform to obtain
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We apply the Bessel function expansion
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We substitute Eq. (9) into Eq. (8), performing some manipulations to obtain
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Equation (10) can be rewritten as
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The imaginary part of h, can be solved from Eq. (10) to
find
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IV. QUANTUM KINETIC EQUATION

Substituting Eqs. (9) and (12) into Eq. (7), one finds
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However, n = n
' is required so that the o. integral is not zero and one obtains
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Hence the kinetic equation of the one-component plasma is

(13)
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It is not dificult to generalize the equation for a plasma consisting of multicomponents, including the exchange effect
of quantum mechanics. Let us suppose there are M components in the plasma. The number of particles is X. a, b, and
d indicates the appendant sign of a component. The number of the particles is Xb for a component b. The kinetic equa-
tion of the component a is
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Equations (16) and (17) are the kinetic equations of a quantum plasma in a strong magnetic field. There are two restric-
tions in the application of the equations, according to some approximate conditions that are applied in the process for
the derivation of the equations. (i) fhe system is spatially quasihomogeneous, the nonhomogeneous case can be neglect-
ed in the Debye length D region. (ii) The variance of the function f (x) can be neglected in the interval of the™D IU

ere U is the mean speed of the particle. The equation considers correctional binary collision with a many-body effect
and the quantum e6'ect, so that the collision integrals can be converged spontaneously.
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