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Dynamic structure of strongly coupled one-component plasmas
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We study the dynamic behavior of the strongly coupled one-component classical plasmas by cal-
culating a dynamic structure factor for various coupling strengths and momentum transfers in terms
of the dynamically convergent calculation method recently developed. It is shown that the dynami-
cally convergent calculation yields fast convergence, especially at large momentum transfer. We an-
alyze the molecular-dynamics data for an intermediate rnomenturn transfer at which the origin of
the peak of power spectrum may be unclear, and show which elementary excitation is responsible
for the peak. Our analysis also shows the disappearing process of plasma oscillation.

I. INTRODUCTION

The classical one-component plasma (OCP) that con-
sists of homogeneous charged particles with neutralizing
background has been thought of as a good nontrivial
model to study classical many-body correlation eftects. '

It has been believed that the strongly coupled classical
OCP exists only outside the Earth in places such as the
interior of highly developed stars like white dwarfs, or
the center of Jupiter. For this reason, experimental data
for this system can only be obtained through computer
simulation. Recent experimental developments, however,
indicate that the strongly coupled classical OCP may be
realized in the laboratory in the near future. Therefore
it becomes more practical to study this system. The
strength of coupling is expressed by a parameter
I =Ze /akim T, where Z, k~, and a are the atomic num-
ber, the Boltzmann constant, and the average radius of
the ion, respectively. The strong and weak couplings are
divided at I =1.

There are many interesting studies of this system made
via a computer. The pair correlation function and the
static structure factor have been obtained by Monte Car-
lo simulation and other numerical calculations such as
by solving the hypernetted chain equation. In many
cases, one is also interested in dynamical properties. The
dynamical property of a many-body system is usually
studied through the dynamic-structure factor which is a
Fourier transform of the time autocorrelation function of
the density Auctuation operator and is proportional to
the inelastic scattering cross section. The dynamic-
structure factors through molecular dynamics have been
given by Hansen et al. A number of theoretical
works to explain the computer experiments have been
undertaken. But most of them introduce an appropriate
damping function or memory function to explain the
broadening phenomenon and the fine structure of the
power spectrum. One of the typical dynamical theories
in this field is the linear response theory, ' in which the
dynamic response function y(k, co) is an essential quanti-
ty for describing the dynamical behavior of many-body
systems. The Auctuation-dissipation theorem links
theory and experiment by relating the imaginary part of

y(k, co) and the dynamic-structure factor, which is direct-
ly proportional to an inelastic scattering cross section
measured by experiment.

It is usual to express the dynamic response function in
terms of the dynamic local-field correction, for example,
as

y(k, co) = y (k, co)
(1)

1 —u(k)[1 —G(k, co) jy (k, co)

where y ( k, co ) is the response function for the nonin-
teracting system known as the Vlasov function, "v(k) the
Fourier transform of the interaction given by 47r(Ze ) /k
for Coulomb interaction, and G(k, co) the so-called
dynamical local-field correction. The variables k and co

mean transferred momentum and energy, respectively,
during inelastic scattering between system and probing
particle.

It is well known that in the dynamical theory the dy-
namic property, especially at intermediate momentum
transfer, can never be fully understood by the static ap-
proximation G(k, co)=G(k). ' Therefore a correct fre-
quency dependence in G(k, co) is needed for an under-
standing of many-body dynamics. There have been
several theories' ' providing analytic forms of G(k, co)
for quantum electron liquids. But no theory can explain
satisfactorily the dynamic properties of a quantum elec-
tron liquid at intermediate momentum transfer where
plasmon mode and single-particle excitation mode com-
pete with each other and the multiple-particle excitation
mode may not be negligible.

The classical OCP, on the other hand, has not been
studied as much as its quantum-mechanical counterpart.
An early attempt using the linear response theory for the
classical OCP has been given by Kugler, and a recent
work considering dynamic local-field correction by Tana-
ka and Ichimaru in their viscoelastic formalism. But
they did not illustrate G(k, co) explicitly. In this work,
we calculate the dynamic local-field corrections in terms
of the so-called dynamically convergent calculation
method developed recently by Hong and Lee. ' This
first-principles method, of course, does not contain any
assumption or undefined parameter, and the approxima-
tion process is so systematic that it gives more precise
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II. EXACT FORMALISM AND APPROXIMATION

It is natural to choose the density Auctuation operator
pk for a dynamical variable to study the dynamic proper-
ties of a homogeneous many-particle system. The dy-
namic properties we want to know in this work may be
given by solving the generalized Langevin equation de-
rived first by Mori' and later more easily by the re-
currence relation method' in a dynamical Hilbert space
defined by the Kubo scalar product' ' as an inner prod-
uct. The slowly varying linear part of the solution of the
generalized Langevin equation for p& in the above Hil-
bert space is called the relaxation function and is related
to the density-response function (1). Therefore the latter
function is a fundamental quantity in the dynamica1
theory of linear response.

Since we are interested in linear response of the system,
calculating response function (1) is sufficient for this
work. To obtain the response function, we need to know
X (k, cv) and G(k, cv). General classical noninteracting
response functions given by Vlasov" such as

X (k, co)= ——8'(x),n

k~T
(2)

G(k, co) as the order of approximation increases. In our
formalism, the static approximation G(k, cv) =G(k) is
just our first-order approximation, and the frequency
dependence in the local-field correction appears from the
second-order approximation. The first-order approxirna-
tion G(k, cv) =G(k ) does not explain the power spectrum
appropriately except for the case of small momentum
transfer at which only the plasmon peak appears prom-
inently. Therefore the frequency dependence in the
local-field correction is crucial to an understanding of the
fine structure of the power spectrum. We show the
frequency-dependent local-field correction explicitly and
calculate the dynamic-structure factor in terms of the
local-field correction obtained by our method.

Most theoretical results for studying dynamic structure
of OCP would be compared with the results obtained
through molecular dynamics. One can hardly under-
stand the data by computer experiment without theoreti-
cal explanation. Especially at intermediate momentum
transfers, the character of the peak in power spectrum
may be unclear. It may not be simple to decide whether
the peak is a decaying plasmon mode or a rising single-
particle excitation mode. In our analysis, we will show
that a misunderstanding could be possible if only first-
order approximation is adopted. We will also analyze
molecular-dynamics data in terms of the dynamically
convergent calculation method by which the process of
decaying plasmon and rising single-particle excitations is
seen clearly.

This paper is composed of four sections. We introduce
an exact formalism and systematic approximation for the
dynamic local-Geld correction through the recurrence re-
lation method' in Sec. II. In Sec. III, our formalism is
applied to the classical OCP and the dynamic-structure
factors are obtained. Comparison with molecular-
dynamics data and their analysis is performed there. We
give some discussions in Sec. IV.

where

8'(x) =1—xe
1/2

X yX dy exp — +ix
0 2 2

x
exp

2

x =(cv/k )(m /kii T)', and n and m are density and par-
ticle mass, respectively, can be used for the classical
QCP. Since v(k)=4m(Ze) /k, the remaining effort for
obtaining X(k, co) is to calculate the dynamic local-field
correction G(k, cv). We show in what follows the expres-
sions of G(k, cv) in systematically approximated forms
through the dynamically convergent calculation
method. '

The dynamically convergent calculation method is
constructed by using the recurrence relation method' as
follows. Let 2 by a dynamical variable whose time evo-
lution is required to understand the dynamics of a system
under consideration. The time evolution 3 (t) may be ex-
panded in terms of orthogonal bases If,
v=0, 1,2, . . . , D —1] spanning a D-dimensional dynami-
cal Hilbert space, i.e., A(t)=QD:0'a (t)f, . The inner
product of this Hilbert space is defined as
(X, Y) = (XY*), where ( ) and the asterisk mean the
classical ensemble average and complex conjugate, re-
spectively, and X, P are elements of the Hilbert space.
The inner product is just the classical form of the Kubo
scalar product.

If we set f0 = 3 and take orthogonalization process in
terms of the property (X, Y) = —(X, Y), the following re-
currence relation' '' for f, is obtained:

A, a, (z) = 1 —zaa(z), v=O,

b, +,a +, (z)=a, , (z) —za, (z), v~ 1 . (6)

The a0(z)=( A(z), 2 )/( 3, 3 )= ( A(z)A *)/( 3 3 *)
is the normalized Laplace transformed relaxation func-
tion of the dynamical variable A. The relaxation func-
tion in this paper appears as an autocorrelation function,
because we treat the classical system. By choosing the
density fiuctuation pk =g; iexp( —ikr; ) as a dynamical
variable, one can relate aa(z) to the density-response
function' such that

1 —zaa(z) =X(k,z)/X(k),

where X(k) =X(k, O). The frequency-dependent response
function is obtained by setting z =ice+0 . Dividing Eqs.
(5) and (6) by a0(z) and manipulating a little we have a
continued fraction expression for aa(z) as

where 6 =(f,f, )/(f i,f, i), f &

——0, and
f& j IJ f I pB 0 is the Hamiltonian. Here I, I pB
represents the Poisson bracket. Another recurrence rela-
tion' for the coefficients a (t) of Eq. (2) can be obtained
by substituting (3) into (2), i.e. ,

6,+,a,+, (t)= —a (t)+a, (t),
where a, (t)—:0. Laplace transform of Eq. (4) is written
as
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where

1

z+h, b, (z)
(8)

of Eqs. (9), (10), etc. as

G(k, z)=G(k)+ [b c (z) —5 c (z)]
v(k)y (k)b, ,

b, (z) = 1

z+ 62c2(z)

1
c~(z) =

z + 63d3 (z)

(9)

(10)

=G(k)+
v(k)y (k)A,

X
z + 63d3 (Z)

(17)

gO
(18)

z+b, d (z)

(k~z ) 61b 1(z)

z+ ao1bo1(z)
(12)

Dividing (12) by (13) and using the identity
b, 1/b, 1=g(k)/g (k) which comes from the property
f, = [H,p1, IpB [H,pk JpB=f1 valid in this system, one
gets the following form for y(k, z ):

y(k, z) = y (k, z)
b, (z) z+b, ,b, (z)

b, (z) z+ ~', b', (z)

(13)

Since b1(z) contains all b, 's except 61 in the same
manner as ao(z), it can be understood that b, (z) is the re-
laxation function of the random force f, . Similarly, we
get the same structure of continued fraction for cz(z),
d3(z), etc. starting from b.3, b,4, etc. , respectively. There-
fore one understands that they are relaxation functions of
higher-order random forces f2, f3, and so on. Combin-
ing (7) and (8), one obtains

y(k, z)
y(k ) z+ 61b1(z)

One can also imagine that the same form as (11) can be
written for the noninteracting system as

G"'(k, o3) =G(k ), (19)

The frequency-dependent local-field correction is given
by taking z=ico+0+. Up to now we did not make any
approximation. But for practical applications we need to
make approximations for random force correlation func-
tions appearing in (16), (17), (18), etc.

The conventional approximation method in many-body
theory is the random-phase approximation (RPA) which
corresponds to setting G(k, z)=0. A little improved ap-
proximation is the static approximation, i.e.,
G(k, z) =G(k ), which corresponds to setting

b, (z ) =b, (z) in Eq. (16), which we call the first-order ap-
proximation. For the quantum electron gas, the static re-
sults obtained by the static approximation' were reason-
ably good, but the application to studying dynamic be-
havior was not good enough to explain dynamic struc-
ture. We also show in this work that the static approxi-
mation cannot explain the dynamics of a strongly cou-
pled system.

Our higher-order approximations are given by replac-
ing the relaxation functions of higher-order random
forces, cz(z), d3(z), etc. , with their noninteracting coun-
terparts, c2(z), d3(z), etc. , respectively. Then we find the
following approximated forms of the dynamic local-field
correction:

A(z) = 1

y (k, z)

If we set y(k, z)—:y (k,z)/[1 —A(z)y (k, z)] like Eq. (1),
A(z), compared with Eq. (13), is written as

b, (z) z+h, b, (z)
o o ob (z) zb+, , b( ) zy (k, z)

il2Q(k, co)
G' '(k o3) =G(k )+

v(k)y (k)
[il,—rj3R (k, co)]Q(k, o3)

G' '(k, co)=G(k)+
u(k)y (k)[1+i13R(k,oi)]

(20)

(21)

Substituting (12) into (14), A(z) is given by where rI;=(b,; /b, , )
—1, Q(k, oi)=g (k)/g (k, cu)+o3 /

Qo1 —1, and R(k, o3)=1—b, 1Q(k, o3)/bz. We will show in

the following section that the frequency dependence in

G(k, co) plays a crucial role in describing the dynamic be-
haviors of the strongly coupled OCP.=u(k)[1 —G(k)] — [b, (z) ' —b, (z) '] .

III. STRONGLY COUPLED CLASSICAL OCP

A(z)=[y (k) ' —y(k) ']— [b, (z) ' b, (z) ']—

(15)

Since A(z)=v(k)[1 —G(k, z)] from Eq. (1), the dynamic
local-field correction is expressed as

G(k, z)=G(k)+ o o [b, (z) ' —b, (z) '] .
u(k)y (k)b. ,

(16)

This is an exact formal expression for the dynamic local-
field correction. We can write other expressions in terms

Now we study the dynamic properties of the classical
OCP through the method introduced in preceding sec-
tions. We take p& as our dynamical variable, and define
the inner product of the dynamical Hilbert space of pj, as
a classical ensemble average of the product of a vector in
the Hilbert space and its complex conjugate. Then we
have the following set of orthogonal vectors spanning the
Hilbert space from the recurrence relation (3) as fo

=pk,
f, =pk, f2 =p1, +b, ,p&, and so on. The 6's are given by
frequency moments;
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&f&fl &
&

&)

(fof,*) (~') *

&f f*, ) &
') (~') ' (23)

2 2
cop k

k, T 3r

n ~pk k
kT 3r '+r

(24)

+—g, [S(p—k) —S(p)]1 (pk)
p

COp k
1+ I(k)— (25)

where

I(k)= J dpp [1—S(p)]
377 0

5
X

6 2I 2 4 g3 p

(26)
co =(4nne /m)'~, the plasma frequency, and we set
Z = 1 for convenience. The noninteracting counterparts
of Eqs. (24) and (25) are (co ) =(n /k~ T)(copk /31 ) and
(co ) =(n/k~T)(co k /3I ).

Thus the 6's and 6 's are given, respectively, by
~, =~~ [1—G(k ) ]+ co~k'/3r, bol =co'k'/31, and

a, =2~2k'/3r —~,'l(k)+~,'G(k), so=2~2k'/3r.
Then we can find i)z = b.z/h2 —1 = ( 3r /
2k )[G(k)—I(k)].

There is an exact relationship between G(k) and the
structure factor S(k) for a classical many-body system
such as

1 k
G(k) =1+ 1— (27)

S(k) 3I
Using this relation and Eq. (26), the ilz is given by the
static structure factor only, i.e.,

[1 I(k) ]+— 1——3I 1 1

2 S{k) (28)

where (co ")—:(pI,"'(pI,"')*) means 2nth frequency mo-
ment.

According to the dynamical theory of the preceding
section, we are required to know some static information
such as it; and G(k) before performing dynamic calcula-
tion. So we calculate b, 's first, since g, =(b, , /b, ', ') —1.
The 6's are given by Eqs. (22) and (23) in terms of fre-
quency moments. The zeroth moment (p&pI*, ) is just the
negative static susceptibility whose noninteracting ex-
pression is —g (k) =n /kii T. The second and fourth mo-
ment are easily allowed. ' They are written, respectively,

Hence if we have the static structure factor S(k), our
first- and second-order approximations will be followed.

In this work, however, we do not perform static calcula-

tions to get S(k) and I(k). Instead, we will borrow the

data obtained by Monte Carlo method by Hansen. ' To

ge the third-order approximation (22), we need a sixth

frequency moment (co ) to obtain rli, the precise value of
which is not easy to evaluate, because it contains three-

body correlation. To our knowledge there is no reliable

calculation treating three-body correlation. Therefore we

use g3 as a parameter to see the effects of our third-order
approximation. One can imagine that the three-body
correlation does not play an important role in the case of
large momentum transfer. Therefore the second order
may be enough for the case. We will verify this later.

Having this static information, it is straightforward to
get dynamic local-field corrections and dynamic-structure
factors up to third order for a chosen I and momentum
transfer. To make things easier, we reexpress given for-
mulas in terms of dimensionless variables so that wave

vector k and frequency m are in units of inverse ion ra-

dius a ', a =3/4~n, and plasma frequency co, respec-
tively. Then the argument x in the Vlasov function (2) is

represented by x =[(31 )'~ /k]co. The dynamic local-
field corrections in (20) and (21) are also rewritten as

G' '(k, co) =G(k) — Q(k, co),3I" (29)

S(k, co) = Im
1 W(x)

1+(3I /k ) W(x )[1—G(k, co)]
(31)

Now we are in a position to compare molecular-
dynamics data with our theory. For a meaningful com-
parison, we fix momentum transfer at k =6.187, which
corresponds to comparatively large momentum transfer,
then select various coupling strengths such as I =1%2.4,
110.4, and 9.7. For each case, corresponding G(k) are
0.9273, 0.9308, and 1.0046 and q2 are 1.9250, 1.3790, and

0.1226, respectively. These values are given by using Eqs.
(27) and (28), and the results for S(k) and I(k) in Ref.
6(b). We show the first- and second-order graphs of
S(k, co) for these cases in Fig. 1 with graphs of RPA cor-
responding to G(k, co)=0, and compare with data ob-
tained by molecular dynamics. %'e do not need third or-
der in these cases, because the approximation gives fast
convergence. Let us look at the case I"= 152.4, for exam-

ple; the RPA and the first order still have a prominent
plasmon peak which should be damped ofF' completely at
this large momentum transfer as molecular-dynamics
data show. But the second order which includes the fre-

quency dependence in G(k, co) causes a drastic change in

dynamic form factors, and the collective mode, in this or-
der, nearly fades away. That means our approximation
process is very effective for a large momentum transfer.

il~
—i),R (k, co) (k, co)

G' '(k, co)=G(k ) — —, (30)3r I+q R(k, ~)

where Q(k, co) = 1/W(x)+x —1 and
R (k, co) = 1 ——'Q(k, co). The dynamic-structure factor,
defined by S(k, co)= —(kii T/nmio)I ym(k, co) for the clas-
sical case, is giveri by
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FIG. 3. Dynamic-structure factor for I =9.7 and k = 1.3837.
Here G(k) =0.1955 and g~ =0.5084. Dash-dotted line is RPA,
dashed line, first order and solid line, second order.

method provides us with a clear understanding of the dy-
namic structure of the strongly coupled classical OCP.
We also studied the small momentum transfer case in
which the molecular-dynamics data show a single
plasmon peak near plasma frequency with some width.
Theoretical dynamic-structure factors obtained by the
present method and even RPA show very sharp peaks
near plasma frequency. No discernible diA'erence is seen
among them. We illustrate this property for k =1.3837
and I =9.7 in Fig. 3. One can see that the positions of
the plasmon peak are nearly the same. Therefore we can
say that our approximation scheme is not that useful at
low k regime because even RPA is very good at the re-
gime. Since the dynamic local-field correction, on the
other hand, has never been plotted for the classical OCP
as far as we know, it is interesting to plot the real and
imaginary parts of G(k, co). For this reason, we plot real
and imaginary parts of G(k, co) for k =2.315 and I =9.7,
for instance, in Fig. 4.

IV. DISCUSSION
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The method used in this work is the classical version of
quantum-mechanical theory' which has been applied to
the electron gas at metallic density. The correct frequen-
cy moments are the only necessary static information to
study dynamic properties in applying this method. The
zeroth moment, the negative static susceptibility, con-
tains the static local-field correction G(k) as an unknown
quantity, but fortunately there is a nice relationship be-
tween the static structure factor S(k) and the G(k) for
the classical systems. For quantum systems, however,
this is not the case. On the other hand, since the second
frequency moment is easily given for a system having
velocity-independent potential and the fourth frequency
moment is given by a functional form of S(k), the static
structure factor which describes two-body correlation,
therefore, gives rise to the correct zeroth, second, and
fourth frequency moments. Thus our approximation pro-
cess can reach to the second order in terms of given S(k).

The difficulty arises in calculating the sixth frequency
moment in which three-body correlations are involved.
Unfortunately, there is no information about static corre-
lations for more than two bodies. For large momentum
transfer, nevertheless, the three-body correlation efT'ects

could be neglected, since the scattering time may be very
short. Thus our second-order approximation is enough
to yield very good agreements with molecular-dynamics
data at large k. As we saw in the preceding section, only
intermediate momentum transfer requires higher-order
approximation. But the convergence of our method is
very fast so that only third order may be enough to de-
scribe dynamic behaviors of the system.

FIG. 4. (a) Real part and (b) imaginary part of dynamic
local-field correction for I =9.7 and k=2. 315. Dotted lines
mean second order and solid lines third order.
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