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A series of random growth models has been studied in which the growth probability at position r
on the surface of the growing cluster is given by P (r) =p(r)l~, where p(r) is the harmonic measure
at r and l is the distance from the seed or origin. The distance l can be either the Pythagorean dis-
tance or the minimum path distance measured on the growing cluster. The introduction of this
scale-invariant perturbation of the usual diffusion-limited-aggregation (DLA) model (/=0) intro-
duces a distance-dependent correlation length, /= 1 /~ P~, that characterizes a geometrical crossover
in the cluster structure. Although the structures generated by these models have an appearance
that is quite different from that of DLA clusters (for ~4) ~

&&0), the growth of their radii of gyration
and the internal density profile p(r) have simple power-law forms with the same exponents as those
associated with DLA. The difference in scaling is manifest in the amplitudes of the power-law
forms. These amplitudes exhibit a power-law dependence on the radial bias exponent P. For 4 » l

the clusters become self-affine structures with the same exponents as those associated with DLA on
length scales r «g'. These clusters exhibit a crossover to self-affine wedgelike linearly growing
structures at r =A„=P. For P « —l the growth probability is enhanced in the core of the clusters.
These clusters exhibit a dense core having radius %„—~P~. For r =%, the structure crosses over to
a structure having the same scaling behavior as DLA. For growth from a line in a strip of width L.,
the density-density correlation function in the lateral direction can be represented by the scaling
form Cq(x)-g g(x/P "), where h is the distance from the line substrate (height) and exponents a
and v have values of about —,

' and —,', respectively. The scaling function g(x) has the form

g (x)=x for x « 1 and g (x)—const for x ))1.

I. INTRODUCTION

Even though the diffusion-limited-aggregation (DLA)
model of Witten and Sander' is still not well understood
from a fundamental point of view, it has been used suc-
cessfully to describe a wide range of nonequilibrium
growth processes including electrodeposition, dielectric
breakdown, fIuid-Quid displacement processes, the disso-
lution of porous materials, random dendritic growth, and
a variety of biological growth processes. A description of
these applications can be found in Refs. 2 —10 and in the
original literature cited in these references. In all these
cases highly ramified fractal" patterns are formed that
closely resemble those generated by the X)LA model. The
striking similarity between the patterns generated by
these apparently diverse growth processes is a conse-
quence of a common underlying growth mechanism con-
trolled by growth probabilities that are determined by a
scalar field obeying the Laplace equation, V p=0, with
absorbing boundary conditions at the growing interface
and a fixed value for p at "infinity. " The growth proba-
bility p(r) is also the harmonic measure of the growing
structure.

In many systems a relatively small change in the
growth conditions' leads to patterns thai are quite

different from DLA and the origins of these patterns are
poorly understood. Since these diverse growth processes
appear to be quite closely related to DLA, they have
stimulated further investigations of a variety of
growth models closely related to DLA. In the original
13LA model' the growth probability at position r on the
surface of the growing structure is proportional to the
harmonic measure p(r) (or its gradient normal to the sur-
face). In most DLA models the Laplacian field is simu-
lated using random walks. Here we explore the patterns
generated by a simple modification of the DLA model in
which the growth probability P(r) at position r is given
by the product of the harmonic measure p, (r) at the
growth site and a statistically independent power-law ra-
dial bias acceptance probability l~:

l = ~r —ro~, model I
P(r)=p(r)l~ with 'l d( ) d l II

In Eq. (I) l =l(r) is the distance from the position r to
the position ro of the "seed" or origin. This distance is ei-
ther simply the Pythagorean distance (model I) or the
minimum path distance d (r) from the position r on the
growing surface to the origin measured on the growing
cluster (model II). Note that the DLA model is
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recovered in model I, as the radial bias exponent van-
ishes, i.e., P =0.

These models were motivated by the idea that for some
(particularly biological) systems the growth probability
might depend on the distance from the growth sites to
the origin as well as on the magnitude of the Laplacian
field (concentration of nutrient or toxic waste products,
for example). It also seemed probable that this simple
model might provide insight into other growth processes,

particularly those leading to the formation of "dense ra-
dial" patterns (P(0) and patterns more tenuous than
DLA (tt &0).

This work was also motivated by the results of simula-
tions in which DLA clusters were probed using particles
that followed random walk trajectories that were ter-
minated on contact with the cluster. Such simulations
provide an estimate of the harmonic measure p(r) or
growth probability measure on the surface of the cluster.

S=

500 DIAMETERS 450 DIAMETERS

(c)

= -16
q =1.5
s = 25000

420 DIAMETERS 400 DIAMETERS

FIG. 1. Clusters of 25000 particles generated using an off-lattice version of model I (I = r —r„~) with negative values of the ex-

ponent P. (a), (b), (c), and (d) show clusters generated with P = —2, —4, —8, and —16, respectively.
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The number of contacts at a distance ~r —ro~ in the range
[R,R+5R ] was found to be given by %(R)5R where
X(R)-R and the exponent 5 had a value of about 8.1

for interior regions of the cluster. It appears reasonable
to suppose that this exponent is characteristic of the
growth process and that the models explored here might
change this exponent and the fractal sealing properties of
the clusters.

II. COMPUTER MODEI.S

The models used in this work were based on efficient
two-dimensional ofF-lattice and square-lattice DLA mod-
els. ' In the simplest version of these models random
walkers are launched, one at a time, from outside of the
region occupied by the cluster. When a particle contacts
the cluster the distance l [i.e. ~r —ro~ or d(r)] from the

(b)

{I) =1
S= 25,000

/=2
S= 25,000

800 DIAMETERS 1300 DIAMETERS

Q
—4

S= 20,000
{I)= 8
s = 15,000

1300 DIAMETERS 1050 LATTICE UNITS

FIG. 2. Otf-lattice clusters grown using model II [I =d(r)] with positive values of the exponent p in Fq. (I). (a), (h), (c), and (d)
show clusters generated with p= I, 2, 4, and 8, respectively. Each cluster started growing at the center of the square hox that sur-
rounds it.
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center of the contacting particle to the origin is calculat-
ed. If the radial bias exponent P is positive then the par-
ticle is incorporated into the cluster at its position of con-
tact if a random number x uniformly distributed over the
range 0&x (1 is smaller than (I/I )&. Here I is the
largest possible value for 1. If the particle is not incorpo-
rate into the cluster, the random walk trajectory is ter-
minated and a new random walk is launched from a ran-
dom position of the launching circle that just encloses the
cluster. The process described above is repeated many
times until a sufficiently large cluster has been generated.

If the radial bias exponent P (0 in Eq. (1), the contact-
ing particle can be incorporated into the cluster if
x &(q//I )~ where the parameter q is selected to be
sufficiently large so that (ql /l )~ is (almost) always
smaller than 1. Correct results are obtained by choosing
q sufFiciently large. However, in practice care must be ex-
ercised in selecting the appropriate value of q since a
value that is too large will lead to very inefficient simula-
tions and a value that is too small will lead to systematic
errors. For tI) )0 we may set q = 1 since (//l )~ is always
smaller than 1.

For the off-lattice DLA clusters there are no loops and
the distance d is the length of the nonreentrant path from
the center of the contacting particle to the origin consist-
ing of vectors between the centers of contacting particles
in the cluster. For the square-lattice model small loops
do occur and the distance d is the minimum path consist-
ing of vectors contacting the centers of nearest-neighbor
lattice sites.

from Fig. 4 that as the value of the parameter q is in-
creased the systematic uncertainties due to the use of a
finite value for q decrease; the dependence of Rg on s con-
verges and the asymptotic dependence of R on s can be
written in the form

Rs =Ro(P)s~,

where /3=1/Dii and D& has a value close to 1.70. Simi-
larly, results were obtained for model II with P= —8 and

III. RESULTS

Most of the simulations were carried out using the off-
lattice models. Figure 1 shows four clusters generated us-
ing the off-lattice version of model I [Eq. (1), l = ~r

—ro ].
Values of —2, —4, —8, and —16 were used for the ex-
ponent P and the corresponding values for the parameter
q were 4.5, 3.0, 2.0, and 1.5, respectively. Very similar
patterns were obtained using model II. Similarly, Fig. 2
shows clusters generated using model II with four
different positive values of the exponent P in Eq. (1)
(/=1, 2, 4, and 8). The clusters shown in Figs. 1 and 2
(particularly for large positive and negative values of P)
have a quite difI'erent appearance than ordinary DLA
clusters. Figure 3 shows quite extreme examples (a clus-
ter of 10 particles grown using an off-lattice version of
model I with P= —32 and q =1.2 and a cluster grown
using the same model with /=16). In qualitative terms
the cluster in Fig. 3(a) looks more like a dense radial pat-
tern than a DLA pattern.

(b)

800 DIAMETERS

A. Scaling of the radius of gyration

To obtain a more quantitative description of the cluster
geometry the dependence of radius of gyration R on the
cluster size or number of particles s was measured. Fig-
ure 4 shows the dependence of ln(R /s "~' ') on ln(s) ob-
tained from clusters generated using model I with P = —8
and three different values for the parameter q. At least
20 clusters were used for each value of q. It is apparent

P =16
s = 8950

1000 DIAMETERS

FIG. 3. (a) shows a 100000 particle cluster grown using an
off-lattice version of model I with P= —32 and q =1.2. 3(b)
shows a cluster of particles using the same model with P = 16.
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FIG. 4. Dependence of In(R+/s" '"') on In(s) obtained from model I simulations with a radial bias exponent P= —8. Results are

given for three different values of q to illustrate the rapid convergence with increasing q.

for both models I and II with (t = —16. For P= —2 and—4, it is possible to use sufBciently large values for q that
uncertainties due to finite q can be reduced to negligible
proportions without seriously compromising the
emciency of the simulations.

Figure 5 shows the dependence of ln(R /s "/' ') on
In(s) obtained from simulations carried out with eight
diff'erent values for the exponent P using model II. It is
apparent from this figure that the dependence of the clus-
ter radii of gyration on cluster size can be described quite
well by Eq. (2) with a value of about, ', for the exponent
P. In this case the clusters generated using all the values
of (t have a fractal dimensionality D& of 1.70+0.03. This
value is the same (within statistical and systematic uncer-
tainties) as that of ordinary off-lattice DLA (Ref. 35)
(Dp

= 1.715+0.004).

B. Scaling of the cluster mass N (r)

A method that is frequently used to estimate the fractal
dimensionality of clusters grown from a seed is to mea-
sure the number of particles X(r) within a distance r
from the seed or origin.

For a fractal structure we expect to find that

X(r) =Xo((I) )r (3)

for distances r )) 1 (i.e., the particle diameter) and
r (&Rs. Figure 6(a) shows the dependence of
In[%(r)/r' ) on ln(r) obtained from model II off-lattice
simulations with five negative values for the radial bias
exponent (P= —1, —2, —4, —8, and —16). The results
shown in Fig. 6(a) indicate that the exponent Dr has an
effective value of 1.69+0.02 for all five values of P. Fig-

—.50 I

-.75
MODEL 1I

0 = -2(q = 4)
L

p =4

= -4(q = 3)

!-1.25
4

g = -1 6(q = 1.5)
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In (s)

FICx. 5. The dependence of ln(R~/s" ' ') on ln(s) obtained from off-lattice model II clusters with eight different values for the ex-
ponent P in Eq. (1). In those cases where a finite value for q was used that value is given in parentheses. In all cases 20 or more clus-
ters were used to generate these results for each value of P. For small cluster sizes slopes of —0.088 and 0.412 corresponding to
R -s ' and R -s, respectively, are expected for large negative and positive values of P respectively. The dashed line has a slope of—0.088. The R -s behavior cannot be seen in this figure but has been found for larger values of P and/or smaller s.
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FICx. 6. The dependence of 1 InN(r)/r' ] on ln(r) obtained
using the oft-lattice version of model II. (a) For Ave negative
values of the radial bias exponent P. The dashed line corre-
sponds to the scaling N(r)-s expected for r (A„. (b) Similar
results for four positive values of P. The dashed line corre-
sponds to the scaling N(r)-r expected for r (A

ure 6(b) shows the results of a series of simulations with
positive values of P. Now the statistical uncertainties are
much larger but the results are also consistent with the
idea that Dz has an asymptotic value close to 1.70.

C. Cluster shape

It is apparent (particularly from Fig. 3) that as the
value for the radial bias exponent P is made more nega-
tive the cluster takes on a more round overall shape.
Garick has measured the overall shape anisotropy of
off-lattice DLA clusters using the ratio of the cluster ra-
dii of gyration about the principal axes of the inertial ten-
sor. Here we have measured the inertial tensor 2 of the
clusters as a function of cluster size s. The elements of J
are given by

where & r ) is the position of the center of mass. The iner-
tial tensor 2 is diagonalized and the quantity IR =A, , /A, 2

is calculated where A. , and A, 2 are the eigenvalues of 2 and
A.z) A, I. Garick found that the ratio of the principal radii
of gyration increased with increasing cluster size reach-
ing a value of about 0.87+0.07 (I =0.76+0. 12) for clus-
ters of size s =50000 particles. He concluded that the
average radius of gyration ratio slowly approaches an
asymptotic (s ~ ~ ) value of 1.0. However, it is not possi-

FICx. 7. Dependence of the mean value of the ratio I& of the
principal values of the inertial tensor (averaged over 20 clusters
for each value of P) on the cluster size s. Results are shown for
model II using nine diAerent values for the radial bias exponent

The double-headed arrow shows the value obtained from
off-lattice DLA (Ref. 37) for clusters containing about 25000
particles.

ble to determine from the simulation results alone if this
ratio is exactly 1.0 or merely close to 1.0. Figure 7 shows
the cluster size dependence of IR obtained from simula-
tions carried out using an off-lattice version of model II
with nine different values for the radial bias exponent P.
Our results suggest that for P ~ 1 the ratio Iz asymptoti-
cally approaches a limiting value that is neither 1 or 0
and that the limiting ratio Iz increases as P decreases.
For P + —1, Iz increases with increasing cluster size and
has reached a value quite close to 1.0 for s =25000 parti-
cles. However, it is not clear if the asymptotic (s~ ~ )

value for IR is 1.0 or a value close to 1.0.

D. The active zone

For simple DLA models the growth of the width of the
"active zone" (regions where growth is occurring).
with increasing cluster size s can be described by the
effective power law.

5-s (5)

Plischke and Racz measured the exponent v using rela-
tively small clusters and found an effective value of about
0.48+0.01 that is much smaller than the value of 1/D
( =0. 5888 for D = 1.70) expected for the growth of a
homogeneous self-similar fractal with a fractal dimen-
sionality of D. Larger-scale simulations, ' however, in-
dicate that the effective value of the exponent v increases
with increasing cluster size and most probably reaches an
asymptotic value of 1/D as s~~. Figure 8 shows the
dependence of jn(b, /s" r'

) on ln(s) obtained from mod-
el II clusters with seven different values for the radial bias
exponent P. For negative values of P the effective value
for the exponent v in Eq. (5) is significantly smaller than
1/D (0.588) and for off-lattice model II clusters generated
with P= —16 in the size range 100~ s ~ 10000 the ex-
ponent v has an effective value of about
0.588 —0.21=0.38. We have not been able to carry out
sufTiciently many simulations to reduce statistical uncer-
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FICr. 8. Dependence of ln(b. /s ~'~'") on In(s) obtained for seven values of the radial bias exponent P for the off-lattice version of
model II. Here 6 is the width of the active zone obtained from the mean difference between the deposition radii for successively add-
ed particles.

tainties to a level where the cluster size dependence of v
can be systematically explored. However, our results are
consistent with the idea that the exponents v and /3

describing the growth of the active zone and the radius of
gyration converge to a common value that is equal to the
asymptotic value of P for off-lattice DLA. To obtain the
results given in Fig. 8 the width of the active zone, 6, was
obtained by calculating the quantity

(6)

where r, is the distance measured from the cluster centers
of mass at which the ith particle is deposited. The quan-
tity ~( ~r; ~

—~r;+, ~ )~ is averaged over both a small incre-
ment in the growth of the cluster size (s~ 1.05s) and
over a sample of (about 20) clusters.

K. Sealing in a strip geometry

Most of our simulations were carried out using off-
lattice versions of model I and model II. However, quali-
tatively similar results were obtained using square-lattice
models. Simulations were also carried out in "strip
geometry" using periodic boundary conditions in the la-
teral direction. Figure 9 shows deposits of 4X10 sites
grown on a square-lattice strip width 2048 lattice units
with the parameters P= —16 (q =1.5) in Fig. 9(a),
P= —8 (q =2.0) in Fig. 9(b), and P= —4 (q =3.0) in
Fig. 9(c). In this model the growth probability at position
r is given by

P(r)-p(r)h ~,

where h is the y coordinate of r measured from the linear
"substrate. " The density profiles obtained from these
simulations are shown in Fig. 10. It is apparent that over
a substantial range of length scales (more than two de-
cades) the density profile can be described quite well by
the simple power-law form

L
C~(x)= —P p(h, x')p(h, x'+x),

x'=1
(9)

where p(h, x) is the deposit density at height h and lateral
position x. In practice the quantity p(h, x) was averaged
over a small height range.

At short length scales x this correlation function ap-
pears to have a power-law form

Ch(x) =x (10)

with an effective exponent v of about —,'.

where p(h) is the mean density at a height of h =y —yo.
For P= —16 exponent cr has a value of about 0.35. The
value obtained for rr appears to decrease as P increases
from —16 to 0 (DLA) and our results are consistent with
the value of 0.28 found for the ordinary DLA model.
While this observation might be taken as an indication of
nonuniversality we believe that the apparent variation in
a over the range —16(P(0 is smaller than the com-
bined uncertainties due to finite size and statistical. effects.
To test the hypothesis that n is indeed independent of P
might be a direction for future (massive) simulations.

It appears that the density profile can be described in
terms of a fractal dimensionality D =d —n that is ap-
proximately equal to the fractal dimensionality D& ob-
tained from the growth of the radius of gyration.

Figure 11 shows the density correlation functions in
the lateral x direction at several heights h for deposits
generated with bias exponents P of —4 [Fig. 11(a)] and
—16 [Fig. 11(b)j. Here the correlation function Ch(x) is
defined as
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IV. DISCUSSION

At the onset of this work we had expected that the in-
troduction of a power-law radial bias might be sufticient
to change the geometric scaling properties. This impres-
sion was strengthened by the appearance of the clusters
shown in Figs. 1 —3. In these models the growth proba-
bility measure can be written in the form Iu, (r)l~ where

p(r) is the harmonic measure and I is either Pythagorean
distance or minimum path distance at r to the seed or ori-
gin of the cluster. Consequently, it was initially surpris-
ing to find that the exponents 13=1/D& and Dr were un-
changed for all values of P. There are, however, cross-
over eAects visible at small cluster sizes as discussed
below.

It is not surprising that models I and II in Eq. (I) give

g = -16 (q = 1.5)
s =4x105

P = -8 (q = 2)
s =4x105

2048 LATTICE UNITS 2048 LATTICE UNITS

2048 LATTICE UNITS

FIG. 9. Deposits consisting of 4X10' sites grown on strips of width L =2048 lattice units from a linear substrate. Results are
shown for (a) —P= —16 (q = l. 5); (b) —P=——8 (q =2); (c) —P= —4(q =3).
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The distance g over which the bias function b(r)=l~
changes by a significant amount is given by

1 db(r) l=1
b(r) dl

so that g has a value that is proportional to ~P~
' and

diverges as the DLA limit, /=0, is approached. This
means that the cluster is expected to have a structure
essentially that of an unbiased DLA on length scales up
to a length g equal to l/~PI. It appears from Fig. 3(a) and
the simulations carried out using strip geometry that the
structure is essentially uniform for negative P on longer
length scales. The length g corresponds roughly to the
width of the main branches in the clusters. For P (& —1,
this width also corresponds to the spacing between the

-2.25

-2.50
0

In (r)

FIG. 10. Density profiles obtained from the simulations
shown in Fig. 9, The initial increase in the density p{h) with in-

creasing height, h, for P = —8 and —16 is a consequence of the
finite value used for the parameter q. For heights h, greater
than about 5 lattice units this effect becomes negligible.
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very similar results since the exponent D;„relating r and
d,

mind(r)-r
has a value ' of 1. Here d is the minimum path distance
and r is the Pythagorean distance measured in the Eu-
clidean embedding space. Although D;„was not mea-
sured for the models used in this work, it seems most
likely that D;„ is 1 for these models also. This seems
particularly evident for clusters such as that shown in
Fig. 3 that have been generated using large negative
values for the radial bias exponent P.

The correlation length g
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Perturbations of fractal growth models generally intro-
duce new length scales that characterize the crossover be-
tween diferent scaling regimes. We find that the intro-
duction of the radial bias exponent introduces geometric
changes in the DLA structure. The DLA structure itself
has several length scales. The fundamental length is the
particle diameter a = 1. The other length scale of DLA is
the overall size of the cluster as given by radius of gyra-
tion A or the maximal diameter of the cluster.

Self-similar fractal structures have no length scale
apart from the small-scale (particle size) and large-scale
(cluster size) cutoft' lengths. However, the self-similarity
of DLA has been under discussion for some time and is
not entirely clarified. In particular it remains an open
question to what extent one may say that DLA is a self-
similar fractal.

-1.25C3

C

-1.50

-1.75

-2.00

-2.25
0

(b)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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FIG, 11. Lateral correlation functions Cz(x) obtained from
simulations shown in Fig. 9{a). The correlation functions for
P = —4 and q = 3 at five height ranges. (b) The results for
P = —16 and q = 1.5 at the same heights.
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main branches. This spacing increases with increasing
distance I from the seed since g —l.

The fact that the clusters have the same scaling struc-
tures as DLA up to length scales g can be expressed in
terms of crossover functions. It turns out that the visual-
ly very different behavior observed for positive and nega-
tive values of the radial bias exponent P is refiected in
separate scaling functions that are discussed below.

In the extreme limit P»1, the cluster will grow only
at the most distant tip producing a linear structure (this
has been demonstrated explicitly in computer simulations
carried out using values as large as 512 for the exponent

P ). This will continue until the correlation length
g= l /~P~ becomes of the order of 1. This occurs when / is
of the order of A = ~P~. Thus the radial bias exponent
leads to an increased lower cutoff since the single-particle
steric constraints now extend to %„=a

~ P ~, where a = 1 is
the particle diameter. For distances much greater than

the cluster will have a finite width approximately
equal to the correlation length which increases with dis-
tance leaving a wedge-shaped structure [see Fig. 3(b)].
The structure inside the wedge is like that of DLA. As a
consequence the mass in the wedge per unit length at a
distance l from the origin will be proportional to P
Therefore a cluster of maximal extent l will have a mass

scaling given by
D —

1

di- /y/ (13)

Since the radius of gyration is proportional to I we con-
clude that the radius to gyration will asymptotically scale
as

~y~(D
— )I I

g + (14)

This result is consistent with Eq. (2), and we conclude
that P= 1/D, for positive values of the radial bias ex-
ponent P. For small values of s there are deviations from
this scaling behavior as shown in Fig. 5. For P & 0 the be-
havior is consistent with R -s for small s as expected.

For large positive values of P the wedge-shaped cluster
has a DLA-like structure on length scales 5 smaller than
g=l/P. The mass density up to 5=/ is
p=g /g =g' ". The mass per unit length of this
structure is then pal provided l &A, . For l &% the
mass increases linearly with /. The number of particles
inside a radius r will scale as N(r) —r for r &W and
N(r) —r for r &%„as just discussed. This behavior
may be summarized as follows:

(15)

Here the scaling function 9+(x ) has the form
V+p+(x)-x + with v+=D —1 for x »1 and

p+(x) —const for x & 1. This crossover is consistent with

the results shown in Fig. 6 where we find a crossover to
N(r) —r for small r.

Arian et al. have discussed a modification of the
dielectric breakdown model where only growth with

p(r) & p, is allowed. This modification favors growth at
the tips and Arian et al. find a crossover from DLA on
short length scales to a new spiky behavior (at large sizes)
that looks quite different from the wedge-shaped struc-
tures we find for P »1. The crossover radius R„ is pro-
portional to 1/p, .

From Eq. (15) it follows that we expect the following
scaling for the amplitude No(P) in Eq. (3):

the asymptotic regime of large P has not been reached for
the values P =4 and 8 used in the estimate of v+.

The wedge-shaped structure is a self-affine structure in
the sense that if one determines the box counting dimen-
sion by covering the structure with boxes of size 5 one
finds that the the number of boxes needed to cover the
structure is N(6)-5 for 5«g,„=l,„/P, but

v = 0.26

No(P)==N+ P~
+ with v+=1 D for $&&1 .— (16) 0

C

As already discussed the data in Fig. 6(b) show that N (r)
indeed exhibits the r ~ scaling assumed as a basis for Eq.
(15). Figure 12 shows the amplitudes In[No(P)] (from
Fig. 6) as a function of In(~P~). Figure 12 shows a fit of
Eq. (16) to the results of the simulations. The eff'ective

value obtained for the exponent v+ from the largest ~P~

values in the data shown in Fig. 6(b) is about
v+-——0.90, in reasonable agreement with the value of
(1 D) or about —0.70—predicted by Eq. (16). Clearly

o
N=N

v = -0.90

1n (I Q I)

FIG. 12. Dependence of the amplitude No(P) on the bias
function exponent P obtained from the data shown in Fig. 7.
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N(6)-5 ' on long length scales 5)g,„. Therefore we
have the usual result for self-aftine structures, namely,
that one has to distinguish between the local and the glo-
bal fractal dimension. The wedge-shaped branches are
globally one dimensional or "linear. "

Clusters grown with negative values of the radial bias
exponent also have interesting scaling properties. Using
the notion that the clusters have the DLA structure any-
where in the cluster up to the length scale g, then the
number of points inside a circle of radius g is g and
therefore the mean density p(r) at a distance r from the
substrate or seed is given by

where a is the fractal codimension for DLA
(a =d D-0. 3—, where D is the fractal dimensionality).
According to this picture we expect to find that the
power-law shape of the density profile and the growth of
the radius of gyration can be described by the exponent
that describe the same quantities in DLA. In this sense

the models described here and DLA belong to the same
universality class.

In the extreme limit P « —1, the cluster will initially
grow as closely to the center as possible producing a
dense two-dimensional structure. This will continue until
the correlation length /=1/lPl becomes of the order of 1,
which occurs when l is of the order of %,= l P l:

(18)

Thus also in this case the radial bias exponent leads to an
increased lower cutoff since the single-particle steric con-
straints now extend to A =alPl, where a =1 is the parti-
cle diameter, and the particle density given in Eq. (17) is
valid only for r ))% . As shown in Fig. 5 we find that
the scaling R -s is approached for small cluster masses
s in the case P « —1.

Thus we expect a crossover for N(r) from N(r) —r for
r «% to N(r) —r for r ))A„controlled by a scaling
function 9

r, r&%„
N — / (1 N)% —+N lyl' 'r r &% for y(( —1

(19)

A fit of this relation to the amplitudes obtained in simula-
tions (see Fig. 6) is shown in Fig. 12. The effective value
for v =0.26, which is consistent with the expected value
2 —D =0.3. The crossover to a compact core described
by Eq. (19) is consistent with the result shown in Fig. 6
where we find a beginning of a crossover to N(r) —r for
small r and P (& —l.

Arguments similar to those used to obtain Eq. (19) can
be used to calculate the exponent o. describing the
dependence of the amplitude Ro(P) in Eq. (2) on P. In
this case it follows directly from Eq. (19) that the ex-
ponent o. defined below is related to v by

with o. = —v /D, (21)

or o. = —0. 176 for D =1.70. From the results shown in
Fig. 5(a) a value of about —0. 14 is obtained for the
effective value of o- . For positive values of the radial
bias exponent P, there is no simple relation between the
scaling of the amplitude of the radius of gyration Ro and
the amplitude No in Eq. (3) for P &) 1 since in this case
the growing cluster crosses over to an inhomogeneous
self-aftine structure and the center of mass and the origin

Here the scaling function 7 (x) has the form
2+(x)-x ' for x ))1 and 2 (x)-const for x & 1. In
order to obtain the correct limit for small r we conclude
that we have v =2—D. From Eq. (19) it follows that
the amplitude No(P) in Eq. (3) has a power-law depen-
dence on the radial bias exponent:

with v =2 D for P«——1 .

(20)

grow far apart (Fig. 2).
The density profiles in the strip geometry (see Fig. 10)

can be understood in terms of a similar model. Here we
expect that the density profile p(r) is given by Eq. (17) so
that the density should have values proportional to g
This implies that the dependence of in[p(h)] on ln(h) for
values of P differing by a factor of 2 should consist of
parallel straight lines with slope —o. separated by a dis-
tance of ln(2 ) or 0.208. The results shown in Fig. 10 are
consistent with these ideas. These results and the scaling
form proposed in Eq. (8) suggest that it might be possible
to express all the lateral correlating functions for different
values of h and P in terms of the simple scaling form in
terms of the length scale g= h /l P l:

Cz(x)=g g(x/g ~ ), (22)

where the scaling function g (x) has the form g (x)=x
for x &(1 and g (x)-const for x ))1. This idea is tested
in Fig. 13. Figure 13(a) shows the correlation function
CI, (x) obtained from simulations with P= —4, —8, and
—16 averaged over the height ranges h = 19—20, 61—67,
and 168—184. Figure 13(b) shows the data collapse ob-
tained using the scaling form given in Eq. (22) using
values of —,

' for a and —,
' for v. The data collapse is quite

good and lends strong support to the scaling form given
in Eq. (22).

The results obtained from the strip geometry simula-
tions for deposition on a line are fully consistent with the
strip geometry DLA simulations of Meakin and Family
and the more recent work of Evertsz using dielectric
breakdown models that both indicate that the deposit
structure has self-affine scaling properties.
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FIG. 13. Scaling of the lateral correlation functions. (a)
shows the correlation functions Cz(x) obtained using the pa-
rameters P= —4 (q =3), P= —8 (q =21, P= —16 (q =1.5} at
three diA'erent height ranges. (b) shows how these correlation
functions can be scaled using the scaling form given in Eq. (22).
In (b) the height h represents the mean height for each of the
three narrow ranges.

al change caused by the radial bias function b (r) —l~ is
analogous to a second-order structural phase transition
and the radial bias exponent P plays a role analogous to
the reduced temperature in phase transitions. In the
language of renormalization group theory we might say
that the perturbation b (r) is a relevant perturbation of
the DLA model. However, such an analogy is limited in
that we have no property analogous to the order parame-
ter that distinguishes the ordered phase from the disor-
dered phase in ordinary phase transitions. The "phase"
found for P ( 1 is characterized by having a dense non-
fractal core with a radius given by % —

~ P ~. In the P )0
"phase" there is a "linear" structure up to the length
scale A, which develops into a wedge-shaped self-affine
structure. In this analogy the DLA structure represents
the critica/ point of the class of models discussed here. It
is interesting to note that the fact that N0 exhibits a
better scaling with P —1 (see Fig. 12) than with P is simi-
lar to the experience from phase transitions where extra-
polations based on observations far from the critical
point give a wrong estimate of the transition temperature
and where renormalization effects change the behavior
near the critical point.

From this point of view it is perhaps not surprising
that the geometrical structure of DLA has been so
dificult to clarify since it represents the critical point in a
"geometrical phase transition. " Computer simulations
indicate that in DLA itself the structure is also inhomo-
geneous with the seed origin being at the center or a re-
gion of anomalously high density but still having fractal
scaling. The DLA structure may be analyzed in terms of
a hierarchy of branch orders of decreasing length. The
conclusion from such an analysis ' is that DLA is in a
state of geometrical crossover where branches of a given
order have a characteristic length L, that depend on the
branch order. Branches of order n are essentially linear
on length scales 5 &L„, whereas these branches are frac-
tally distributed over the cluster on length scales 6 &)L„.
Simulations also indicate that the density correlations in
the angular (tangential) direction are quite different from
the density correlations in the radial direction. ' These
characteristics are exhibited quite dramatically by the
clusters grown with a radial bias exponent of —32 in Fig.
3. We speculate that DLA itself represents the geometric
analog of a critical point in phase transitions that is
essentially of a self-similar structure. The clusters such
as that shown in Fig. 3 may be helpful in understanding
the structure of DLA and other related growth models.

The introduction of a power-law radial bias acceptance
characterized by an exponent P can be considered to a be
perturbation of the DLA model. This perturbation intro-
duces a length scale g that diverges at the DLA point.
This behavior is reminiscent of the behavior at second-
order phase transitions where the correlation function g
diverges at the critical temperature but remains finite
both above and below the phase transition. The structur-
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