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Computer simulations of the elastic properties of liquid crystals
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We have carried out extensive computer simulations of the Lebwohl-Lasher model of a nematic
liquid crystal to determine the Frank elastic constant A for this system as a function of temper-
ature. We use equilibrium, k-dependent, Ructuation expressions, valid at small wave vector k,
and also measure the response to applied, spatially varying fields that couple to the k-dependent
molecular orientation tensor. We find good agreement between these two methods. The ratio

2
K/Pq, where P2 is the nematic order parameter, adopts its molecular-field value at low tem-
peratures, but rises by over 20% on approaching the nematic-isotropic transition temperature
T~ I. We note that this temperature dependence cannot be accounted for by molecular-field
arguments. However, spin-wave theory correctly relates the k-dependent elastic constant with
the order parameter at low temperatures, and is quite accurate up to T/Tiv I 0.8. Finally,
direct simulations of the Freedericksz transition give results in reasonable agreement with the
value of A as calculated by the other methods; however, we find that this is not a very efficient
route to IC.

I. INTR.ODUCTION

In a nematic liquid crystal, the distribution of molec-
ular positions is translationally invariant but the orien-
tational distribution shows preferential alignment along
some axis. This axis is called the director. The de-

gree of alignment in a macroscopic region containing N
molecules is conveniently measured using the second-rank
order parameter P~, given by

The angle brackets ()o and the overbar both indicate
equilibrium ensemble averages in the absence of an ex-
ternal field. n(r;) and e; are unit vectors along the local
director and the axis of molecule i, respectively, and 0;
is the angle between them. P2 is the second Legendre
polynomial. The director may be taken to be a slowly
changing function of r. Indeed, microscopically (in the
absence of a defect or an externally induced distortion)
it can be taken to be constant, the e; being distributed
about it according to some distribution function P(n e, );
P2 is the lowest-order nonvanishing average over this dis-
tribution.

At long range, orientational correlations decay slowly
(algebraically) with distance. Short-wavelength fluctu-
ations are unimportant and become ill-defined here be-
cause of the spatial coarse-graining implicitly needed to
define n(r). Those on macroscopic length scales, A, are
more important, however: due to the broken symmetry
associated with the director they can be long-lived,
decaying with typical hydrodynamic time scales oc A .

For nematic phase stability, any inhomogeneity in the
director field must lead to a free energy increase, LT.
Since (as shown by Franks) all such distortions can be
reduced to a combination of splay, twist, and bend defor-
mations, this can be expressed phenomenologically as

dr( Iti[V'. n(r)] + Iiq(n(r) . [V' x n(r)])

+I~a(n(r) x [V' x n(r)])'. (2)

The parameters Iii, Iii, and Iis in Eq. (2) are the splay,
twist, and bend Frank elastic constants respectively.

The Frank constants play a role in a great number
of the properties characteristic of nematic liquid crys-
tals. As well as determining the relaxation of director
field inhomogeneities, I~i, K2, and I~3 govern the shapes
of defects (disclinations) (Ref. 3) and flow patterns,
the extent to which liquid crystals transmit torques and
their response to applied fields, Since the last two of
these are the main properties exploited in liquid-crystal
displays and switching devices, developments regarding
the values and variation of the elastic constants clearly
have technological relevance. At a more fundamental
level, the behavior of the Frank constants at the nematic-
isotropic (N I) transition is-still unclear and warrants
further study.

Traditionally, experimental determinations of the
Frank constants have been based on the observation of
the Freedericksz transition. In this a sample of liquid
crystal in slab geometry, subject to two aligning fields
(one due to surface coupling, the other to an externally
applied bulk field, H), shows a second-order bulk orien-
tation transition at a critical field, II, . Saupe derived
a continuum theory for the Freedericksz transition and
showed that both the value of II,. and the behavior of the
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slab for H ) H~ are determined by the Frank constants.
Subsequently, Ki, I&s, and I~a have been found experi-
mentally through the measurement of various optical
and other properties of such samples.

A difFerent technique used to determine the Frank con-
stants is that based on quasielastic Rayleigh scattering.
Through the application of fluctuation-quenching fields,
this method has been used to give results with accu-
racies approaching those obtained using well-developed
Freedericksz systems. Another recent development has
seen accurate estimation of the twist constant I&2 (which,
for geometrical reasons, has been the hardest of the three
to measure using the older techniques) by direct torque
measurements.

The Frank constants have also been investigated by
computer simulation and theory. Three types of model
have been used: lattice models, hard-particle models, and
soft-particle models.

In the Lebwohl-Lasher model, ~ which has its origins
in the work of Maier and Saupe, is a system of spins on
a simple cubic lattice with nearest-neighbor interactions
is considered. This model, though idealized, has proved
a valuable test bed for theory and simulation, and it is
the main subject of this paper. Extensive studies of its
bulk 8 and surface behavior have shown it to
exhibit many of the properties characteristic of the N-I
transition (e.g. , a small latent heat and pretransitional
divergence of orientational correlations). The simplicity
of the model is a major advantage in simulations since it
enables systems of tens of thousands of molecules to be
studied.

For this particular model all of the Frank constants
are equivalent, K~, K2, I~3 ——A'. Priest calculated
I& within a simple molecular-field approximation and
Simpson made the first attempt to measure it through
a computer simulation of the Freedericksz transition. We
return to this, and give full details of the model, in the
following sections.

Many theoretical predictions regarding K~, K2, and
I~a, inspired by the work of Onsager, 2" are based on
systems of hard rods, spherocylinders, or ellipsoids.
There has been one attempt, by Allen and Frenkel,
to calculate the Frank constants for hard ellipsoids and
spherocylinders by computer simulation. A limitation of
this work, however, was the small system size that had
to be employed (a few hundred molecules at most). Al-

though dependence of Kz, I~&, and I~3 on system size
seems not to be very serious, 2 there remains consid-
erable uncertainty in the results given in Ref. 27 since
the method used therein involves an extrapolation to low
wave vector. In the current work we are able to examine
much larger system sizes, and hence go to much lower
wave vector. This enables us to make a check on the
method employed for the smaller hard-body systems by
Allen and Frenkel. Finally, some attempts have been
made to calculate I~~, A2, and I~3 for soft-potential
models2 3 but to our knowledge no comparisons with
simulation have been made as yet.

The main body of the work presented here consists of
two different Monte Carlo measurements of the Frank
constant of the Lebwohl-Lasher lattice model. The first
method used is the same as that employed in Ref. 27.
The second, based on the system's response to a spa-
tially dependent field, is a new approach to this problem.
Through the use of linear-response theory, however, the
two can be shown to be formally equivalent. In addition
to these two techniques, we also describe the results of a
simulation of the Freedericksz transition. Here we follow
Ref. 23, but extend the work to much larger system sizes
and simulation run lengths.

In Sec. II, we give the theoretical bases for these tech-
niques. Section III contains the simulation details and re-
sults. Finally, we compare the different sets of simulation
results with each other and with theoretical predictions,
and draw our conclusions.

II. THEORY

In the Lebwohl-Lasher model the molecular centers
of mass are held fixed at the sites of a simple cubic lattice.
The molecules are treated as ("headless" ) vectors and are
free to rotate about their centers subject to the nearest-
neighbor interaction

'Ro — s) P2—(cos 0; z ) = —s ) P2(e; ez ),

where 0;& is the angle between the axes of neighboring
molecules i and j. The lattice spacing a and thus the
number density N/V are set to unity. The (positive) cou-
pling constant z is also set to 1 and we measure temper-
ature in reduced units, T' = kBT/s The bulk .transition
temperature in the thermodynamic limit is estimated
to be T~ J

——1.1255. Equation (3) is degenerate to
uniform rotations of all molecules, and this leads to the
equivalence I&~, Kq, I&3 ——K mentioned previously. We
define a dimensionless elastic constant Ii* = I~ a/s.

In the following we use both a coordinate system
(z, y, z) based on the cubic lattice and a system (1, 2, 3)
based on the director n, which is taken to lie in the 3 di-
rection. For the unperturbed Harniltonian of Eq. (3) the
angular and spatial coordinates are separate, and it is not
necessary to relate these two coordinate systems. When
we model the effect of an applied field it becomes neces-
sary to specify the transformation (z, y, z) +-+ (1,2, 3).

Spatial variations of molecular orientation may be de-
scribed by the wave-vector-dependent ordering tensor
Q(k) whose Cartesian components are given by

1V

Q p(k) = —) ~(e; e;p —~sb p) exp(ik r, ),
i=1

a, P = z, y, z (4)

where b~p is the Kronecker delta. The spatial Fourier
transform of this is the orientation density
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Q p(r) =——) Q p(k)exp( —ik r).
k

In the unperturbed system the average orientation den-
sity is a constant, (Q(r))0 — (Q(0))0/U. The bulk
order parameter P2 is given by the highest eigenvalue
of (Q)0, and n is the corresponding eigenvector;~s s~

this prescription is equivalent to Eq. (1), once the di-
rector has been determined. In the director-based coor-
dinate system with n = (0, 0, 1), (Q)0 is diagonal with

(Q&l)0 —(Q22)0 —
2 P2 and (Qss)0 = P2.

To describe orientational fluctuations we follow
Forster. 2 Without loss of generality we consider a wave
vector in the 1-3 plane of the director-based system,
k = (kj, 0, ks). Then, a transformation of Eq. (2) into re-
ciprocal space gives a free-energy quadratic in the Fourier
components, nq(k), n2(k), of the director fluctuations.
From equipartition, this yields the thermal average2

(
9 t P2UkgyT

Q s(k)Q s(—k) = — . 2 2, n=1, 2
( &n y+ s"sj

E'8 = F Re Q s(k) = F 2 [Q s(k) + Q 2(—k)j
N

= F —) 2e; e;2 cos(k r;)
$=1

and this gives the responses

n = 1, 2 (10)

(Q (k)) = (Q (—k)) =
y T (Q (k) Q (—k)) o

(Q ())=""'"""'"'F-(k )VkBT

9 t'

n = 1, 2 (12)

with (Q s(k')) = 0 for k' g k. In terms of the real-
space orientation density Q p(r) this corresponds to an
oscillatory profile

valid in the limit of small k = ~k~. Allen and Frenkel
used this expression to calculate K1, K2, and I~3 for hard
ellipsoids and spherocylinders, through double polyno-
mial fits in the variables k& and k3 to the inverse of
(Q~s(k)Q s(—k))p. As well as the need to measure these
fIuctuation values to a sufFicient statistical precision, this
method requires that a large number of 0 values be stud-
ied, particularly at low k. These can all be accumulated
in a single simulation, but clearly the system size imposes
a lower limit on k.

Linear-response theory provides an alternative way of
measuring the I&1, K~, and K3. Consider a perturbed
Hamiltonian of the form

'R = Mp —b:8,

where &0 is the unperturbed Hamiltonian. Averages
measured in the perturbed system () are related to equi-
librium ensemble averages as follows:

(A) = (AA'H)p.
1

B+

Formally the choice A'8 = FQ s(k), where F is the
strength of a field coupling to an element of the order-
ing matrix and k a chosen wave vector, would lead to a
measurement of the fluctuation average of Eq. (6) via the
response

(Q s( k)) (Q s(k)Q s( k))0.

In practice, a real-valued perturbation is applied, typi-
cally of the form

where we have again made the choice k = (kq, 0, ks).
Thus, by measuring the amplitude of the response to a
chosen perturbation we can evaluate K1, I~2, and A'3.
In practice, a space-fixed perturbation would be applied,
and it would be necessary to fix the director coordinate
system with respect to the lattice.

In simulation terms, the advantage of this approach is
that (Q p(k)) is measurable with greater statistical pre-
cision (signal-to-noise ratio) than (Q p(k)Q p( —k))p, if
F is made suKciently large. This is subject to the con-
dition that the applied field is small enough to ensure
the applicability of linear-response theory. An additional
drawback is that each simulation produces results for one
k vector only: thus it is not immediately obvious whether
the applied-field method is more or less efIicient than the
equilibrium fluctuation method. Note that the require-
ment to extrapolate to low k, and hence the need for
large system sizes, is unaltered.

The third technique used in this paper is a direct sim-
ulation of the Freedericksz transition. taupe's formula-
tion of this problem is well documented in the standard
texts and so we limit ourselves to a brief description
here before quoting the final equations.

It is well established that the director of a nematic liq-
uid crystal in contact with a specially treated glass plate
can be anchored rigidly along some easy axis. Thus, a
sample of liquid crystal confined between a parallel ar-
rangement of two such plates of common easy axis can be
considered as a slab of nematic liquid crystal with known
director and two pinned boundaries. Saupe's theory ap-
plies to the cases in which this director is either parallel
to or perpendicular to the plates. In such cases, a mag-
netic field of magnitude II applied perpendicular to the
initial director is shown to reorient that director if
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(I- 1/2

H&H'a= I, a=1,23
~ &x.

I&~
jV

)3L~Pg
(16)

where L is the slab thickness and g is the volume
anisotropy in the diamagnetic susceptibility. The choice
of n in Eq. (13) is determined by the relative orienta-
tions of the plates, field, and easy axis. The theory also
predicts the size of the deformation at the center of such
a cell for H & H, . In its general form this expression
involves a ratio of two Frank constants, but for the case
where I~t s ——Ix it reduces to

n/2 1
dA )H, ~ s (1 —sin em' sin A) /

(14)

A'8 = FQ- (0) = F )P2(e;-—)

represents the efIect of a bulk field, of strength I', cou-
pling to the component e; of each molecular axis vector,
and favoring alignment in the z direction. For this Hamil-
tonian an essentially equivalent analysis to that of Saupe
can be carried out: this is described in Appendix A. The
critical field is given by

where e~'d is the angular deformation at the midpoint
of the sample and sinA = sine/sin0 '. Saupe's ex-
pressions are well obeyed in experimental studies of these
systems. 8 Furthermore, it is found that for some prop-
erty A, the results from difIerent cell sizes are successfully
mapped onto each other by the scaling form A = A(HL)
for all but the smallest L . This breakdown at small L
is usually attributed to the increased relative efkct of
imperfect surface anchoring as the cell thickness is de-
creased.

A simulation of this slab geometry is easily set up with
periodic boundary conditions applied only in the z and y
directions. Surface ordering is then achieved through the
use of sheets of perfectly aligned molecules positioned at
the top and bottom surfaces. We choose to align these
surface molecules in the y direction. A perturbation term
in the Hamiltonian of Eq. (7), taking the form

where L is the slab thickness. The appropriate scaling
form is A = A(FI2) rather than A = A(HI) The
deformation at the center of the slab is linked to the
applied field, for I' & F„by

/2 ~/r
dA

(1 —sin 0~'dsin A)'/ )
(17)

and sin 8~'" = (n 'd)~, the square of the appropriate
component of the director.

III. SIMULATION DETAILS AND RESULTS

All of the simulations for this work were carried out
using standard Metropolis Monte Carlo algorithms on
a DAP 510-8 computer, a massively parallel computer
which is ideally suited to lattice systems of this kind.
Full technical details are given elsewhere.

A. Unperturbed system

Simulations of the unperturbed Lebwohl-Lasher model
were carried out using a system with periodic boundary
conditions in all three directions. All measurements were
averaged over blocks of 1024 cycles, where one cycle cor-
responds to one attempted move per molecule. Error es-
timates were made on the assumption that results from
difI'erent blocks were uncorrelated.

Extensive simulations were carried out at five temper-
atures, T' = 0.40, 0.75, 0.90, 1.00, and 1.08, and shorter
runs were conducted at T* = 0.10, 0.20, and 0.30. In
all these cases a 32768-particle system (32 x 32 x 32)
was employed. To test for size dependence, the run at
T' = 0.75 was repeated with a system of 16384 spins,
being half as wide in the z direction. Full details can be
found in Table I. Wherever possible equilibration runs
were started from the final configurations obtained at
neighboring temperatures.

TABLE I. Fluctuation measurement results. Estimated errors in the final digit are given in
parentheses.

0 ~ 10
0 ~ 20
0.30
0.40
0.75
0.75
0.90
1.00
1.08

12]
12]
12]
12]

48 [
48 [
48 [
48 [
48 [12]

Run length'

14 [6]
14 [6]
14 [6]

48 [12]

0.9749(1)
0.9488(1)
0.9213(1)
0.8922(1)
0.7672(2)
0.7668(2)
0.6863(4)
0.6038(4)
0.4822(6)

I4
0.9189(2)
0.8393(3)
0.7611(3)
0.6845(3)
0.4216(5)

0.3014(5)
0.2162(5)
0.1256(5)

K'/P2
3.026(7)

3.177(3)
3.355(3)
3.377(6)
3.492(5)
3.594(5)
3.693(6)

Run lengths are measured in "blocks" of 1024 attempted moves per spin. The figures quoted are
the production run length and (in square brackets) the equilibration run length.

Results for the 32 x 32 x 16 system; all others are for 32 x 32 x 32.



1922 DOUGLAS J. CLEAVER AND MICHAEL P. ALLEN 43

The order parameter P2 was calculated at each tem-
perature from the largest eigenvalue of the run-averaged
ordering matrix. P4 was calculated using the method de-
scribed by Fabbri and Zannoni. Director fluctuations
were measured as follows. After each cycle, all of the
molecules in the system were rotated equally such that
the mean director (defining the 3 direction) was aligned
with the z axis. (The Hamiltonian is invariant to this ro-
tation. ) The 1 and 2 directions were taken to lie along the
z and y axes. In this way variation of the components k~,
ks of the wave vectors, due to director drift in the space-
fixed axis system, was avoided. Two three-dimensional
Fourier transforms were then performed to obtain values
for the two independent functions (Q s(k)Q s(—k))p,
n = 1, 2. Since these modes are equivalent, the two sets
of results were simply averaged before fitting.

I ow-k fits of the orientational fluctuations to the form

I

I

I

I

I

I

(Q s(k)Q s(—k))o
' c2k + c4k

are shown in Fig. l. In each case we used all reciprocal-
lattice points for which k2 ( 30k2,„where k;„=2x/32.
The fits are excellent, with very little curvature: the coef-
ficients t."4 are very small throughout. This confirms that
the range of k available in our simulations was suKcient
for Eq. (6) to hold.

The coeKcients e2 from these fits yield values for
)}0IS'/P2. These are presented in Table I. P2, Ix*, and

I&*/P2 are plotted as functions of temperature in Fig. 2.
These are the principal results of this paper. We note

* —2.
that the ratio I&*/P2 increases as the transition temper-
ature is approached from below. A detailed comparison
with theoretical predictions follows in Sec. IV.

We note that a slightly larger value of Ix*/Pz is seen
for the 16384-spin system than for the 32768-spin sys-
tem at the same temperature, while the order parameter
P2 is essentially unaltered. This is consistent with the

0.40

0.75
0.90
1.00
1.08

0
0 10 20 30

(k/k~jp j

FIG. 1. (Q s(k)Q s(—k))o plotted vs (k/k;„) where
k~ = 2ir/32, at temperatures T' = 0.40, 0.75, 0.90, 1.00,
and 1.08. In each case the statistical errors are smaller
than the plotting symbol. The curves are fits obtained us-
ing Eq. (18).

0.5 1.0

FIG. 2. Temperature variation of K', P2, and the ratio
2I&'/P2. The solid circles denote results from the unperturbed

simulations; the open circles are based on Eq. (20) with fitted
parameters c22, c24. The lines through the data points are to
guide the eye. The vertical dashed line indicates the nematic-
isotropic phase transition temperature T~ I ——1.1255.

"stiffening" expected to result from a decrease in the dis-
tance between the periodic images of a given spin. The
measured shift is very small, however, indicating little
effect of system size on these simulations.

B. Perturbed system

Simulations of the perturbed system were carried out
using the Hamiltonian described above but with the ad-
ditional perturbation term of Eq. (10). We made the
(1, 2, 3) and (z, y, z) axis systems coincident, the direc-
tor lying along the 3 direction as before, and chose to
apply the perturbation to the Qis matrix element [thus
taking n = 1 in Eq. (10)]. We took k = (0, 0, k), with
k/km;„= 1,2, 3. Results were obtained for a 3'2 x 32 x 32
system at reduced temperatures T' = 0.75 and 0.9, and
to test for size dependence two runs at T* = 0.75 were
repeated for a system half as wide in the z direction.
Simulation parameters appear in Tables II and III.

As in the unperturbed case, after each cycle a uniform
rotation of all molecules must be carried out to align the
director with the z axis. This is necessary for the orien-
tational perturbation to take the required form. Strictly,
this rotation does not leave the perturbed Hamiltonian
invariant, but for a large system size the error incurred
is entirely negligible.

Simulations were carried out for a range of I" at each
given temperature and wave number. Starting with the
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TABLE II. Perturbed system results for T' = 0.75. 0.04-

32k/2x

1
1b
1b

2
2
2b

2c
2c

3
3

0.006 25
0.0125
0.025
0.0125
0.025
0.05
0.0125
0.025
0.025
0.05

Run length

60 [18]
36 [12]
36 [12]
6O [24]
6o [i8]
36 [i2]
60 [24]
60 [18]
60 [24]
48 [24]

0.111
0.209
0.351
0.054
0.109
0.205
0.054
0.109
0.049
0.097

K'/P2

3.29
3.49
4.16
3.36
3.35
3.56
3.37
3.36
3.33
3.35

0.02—

0.00
0.00

I

0.02
I

0.04
I

0.06

Run lengths are measured in "blocks" of 1024 attempted
moves per spin. The figures quoted are the production run

length and (in square brackets) the equilibration run length.
Outside limiting linear regime (see text).

'Results for the 32 x 32 x 16 system; all others are for 32 x
32 x 32.

9&P,'l
4 Ii. 'k2 (19)

In Fig. 3 we plot Ak as a function of F for various wave
numbers at T* = 0.75. The results for T* = 0.9 are
very similar in form. At suKciently low values of F,
the results for diferent k become consistent with each

TABLE III. Perturbed system results for T' = 0.90.

32k/2s

1
1b
1b

2
2
2b

3
3

0.006 25
0.0125
0.025
0.0125
0.025
0.05
0.025
0.05

Run length

60 [18]
48 [18]
36 [i2]
6O [24]
48 [24]
36 [i2]
6O [24]
48 [24]

0.109
0.201
0.340
0.053
0.105
0.198
0.047
0.095

K'/P2
3.33
3.63
4.29
3.47
3.47
3.68
3.46
3.43

Run lengths are measured in "blocks" of 1024 attempted
moves per spin. The figures quoted are the production run
length and (in square brackets) the equilibration run length.

Outside limiting linear regime (see text).

largest F, the system was first equilibrated from a per-
fectly ordered configuration. Then, a number of pro-
duction runs were executed, each one using the same
equilibrated system as its starting point. On comple-
tion of the runs at one phase point, the value of F was
halved and the process repeated, the initial equilibration
starting from a configuration taken at the previous field
strength.

During each run, the ordering matrices Q(r) were cal-
culated and averaged over sheets of constant z. On
completion, the function (Qis(z)) was fitted to the form
A cos kz. From Eq. (12) we expect an amplitude

FIG. 3. Response Ak vs applied field I" for T' = 0.75 and
wave numbers k/k;„= 1, 2, 3 (k;„=2x/32). The lines are
to guide the eye.

other, and show a linear variation with F. For each run

a value of I&'/P& was deduced from Eq. (19). The run
lengths and results for these phase points are summarized
in Tables II and III.

We observed significant deviations from the asymptotic
linear response for amplitudes A & 0.12. Five points at
each temperature lie within the linear regime defined by
A ( 0.1'2. Given standard errors of order 1' in each of
these, the spread of results is reasonable. Linear least-
squares fits of the function Ak versus F for these points

2
give our final perturbed-system estimates of Ii.*/P2
3.349 at T' = 0.75 and I~*/Pz —3.429 at T* = 0.90.
We note that these values are in good agreement with
those found using the equilibrium fluctuation expression.
Although there are too few data points for any rigorous
error estimation to be carried out here, the spread of the
results suggests that these values have an error of less
than l%%uo overall.

We note from Fig. 3 that the linear regime in F is least
extensive for the longest-wavelength perturbations. This
is as expected, since for fixed F the response amplitude
is predicted to vary as k 2: saturation of the response
occurs more readily for the longer-wavelength perturba-
tions.

As in the unperturbed case, we note that slightly larger
values of I~ '/Pz are seen for the 32 x 32 x 16 systems than
for the 32 x 32 x 32 systems under the same conditions.
Once more the measured shifts are very small.

C. Freedericksz transition

In the simulations of the Freedericksz transition peri-
odic boundary conditions were applied in the z and y
directions, while the top and bottom sheets of surface
molecules were aligned in the y direction. The perturba-
tion given in Eq. (15) was applied to represent the effect
of a bulk field favoring alignment; in the z direction. We
used a 16 x 16 x 34 system (i.e. , 32 mobile layers and two
fixed ones) and the simulations were limited to a single
temperature, T' = 1.0. We found that very long runs
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were required: at several values of the field close to I"„
over half a million cycles were used. This was the reason
for the use of a smaller system size in these simulations,
and the restriction to one value of T*.

These extremely long run times were necessary because
for I" ) I", two degenerate orientational states exist. At
large I" one or the other state is indefinitely metastable,
but as I'" —+ I",+ Hips between the two states become
more frequent. This leads to large orientational fluctu-
ations and poor statistics. An explicit example of this
behavior is given in the "time"-series (with "time" in
units of 1024 Monte Carlo cycles) in Fig. 4. We observe
the orientation of the mean director (n~' ) at the mid-
point of the slab (actually averaged over the two central
layers). The component (n„'d) is chosen to be positive
throughout, to fix the overall sign, and our interest lies in

the behavior of n 'd (= sin 0 '
) For + ) P' ~n~' ) is

nonzero: there are two degenerate states corresponding
to n 'd ) 0 and n ' & O. In Fig. 4, the system is clearly
seen to be Gipping between these states. These Aips are
analogous to the spontaneous jumps made by an Ising
system in zero field, below the phase transition, between
two degenerate states with nonzero spontaneous magne-
tization. The transitional flips became more frequent and
the change in n ' less dramatic, as I'" ~ F,+. However,
the associated slow fluctuations hinder equilibration, as
mentioned previously, and necessitate rather long runs.

The simulations themselves were carried out very much
as before. The first run was made with a large field

strength, and lower field systems were prepared using
configurations from neighboring phase points. In view

of the equilibration doubts present here, however, long
single runs were employed in preference to a number of
short ones. The details of these simulations are given in
Table IV.

TABLE IV. Freedericksz transition results for T' = 1.00.
Estimated errors in the final digit are given in parentheses.

0.0
0.004
0.005
0.006
0.007
0.008
0.0085
0.009
0.0095
0.01
0.0105
0.011
0.012
0.013
0.015
0.02

Run length

25]
7O]

110]
1OO]

15O]
140]
15O]
9O]
14O]
17O]
15O]

o]
o]

145 [
35O [
5oo [
43O [
45o [
5oo [
45o [
5oo [
430 [
45o [
45o [
15O [5
105 [6
9o [3o]

100 [20]
100 [20]

(sin 0 '
)

0.023(3)
0.042(3)
0.048(3)
o.o66(5)
O. 13(1)
O.21(1)
O.23(1)
0.38(1)
0.39(1)
0.40(1)
0.49(l)
0.61(1)
0.66(1)
0.74(1)
0.81(1)
0.901(5)

0.621
0.620
0.619
0.619
0.619
0.620
0.620
0.621
0.622
0.622
0.622
0.623
0.624
0.625
0.626
0.631

Run lengths are measured in "blocks" of 1024 attempted
moves per spin. The figures quoted are the production run
length and (in square brackets) the equilibra, tion run length.

1.0—

The signature of the transition, needed to determine
F„ is an increase in the order parameter (sin 0 '") (=

mid(n~ )) at the midpoint of the slab (again averaged over
the two central layers). The measured F dependence of
(sin 0~'d) is shown in Fig. 5. For F ( I'„ the Saupe
theory predicts that this quantity should be zero; in fact,
it does not vanish even at I" = 0 because of fluctuations.
This is the usual behavior expected of an order parameter

E
CD
C:
V) 05-

I

500

0.0'
0.00

I

0.0't 0.02

FIG. 4. Time evolution of the angular distortion sin 8
midn~ in the middle of the slab, with time t measured in blocks

of 1024 Monte Carlo cycles. The system temperature T' =
1.0, close to the Freedericksz transition, and the applied field
I" = 0.008.

FIG. 5. Field-induced response (sin 8 '
) = (n '

) at the
rniddle of the slab vs applied field I' at T* = 1.0, showing
the Freedericksz transition. The solid line is to guide the eye.
The arrow indicates the critical field I', calculated from the
value of Ii measured in the unperturbed simulation at this
temperature. The dashed line is the prediction of the Saupe
theory, Eq. (17).
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in a finite system.
Rather than calculating K' directly from our

Freedericksz results, we have determined the critical field
strength predicted by Eq. (16), assuming Pq(z) const,
and using the data in Table I. We take L = 33 and ob-
tain F, 0.0066; this value is indicated on Fig. 5. Also
shown is the prediction of Eq. (17) for (sin 0 '

) as a
function of F, for E ) F, . These predictions are rea-
sonably consistent with the simulation results. However,
it is clear that a value of I&* obtained by inverting this
procedure would not be very accurately determined.

IV. DISCUSSION AND CONCLUSIONS

We have calculated the elastic constant K* as a func-
tion of temperature for the Lebwohl-I asher model using
fluctuation expressions and a perturbation method, and
have also simulated the Freedericksz transition for this
system, extending the original work of Simpson. Re-
sults from the first two methods are consistent with each—2
other, and show that the ratio Ii*/P& increases as the
transition to a disordered phase is approached from be-
low. The Freedericksz transition occurs at a critical field
consistent with the independently measured K', but the
form of the field-induced response curve and the obser-
vation of very slow fluctuations as F ~ F, indicate that
this is an inaccurate and ineffective way of determining
K'.

The question remains: which is the most eFicient route
to an accurate value of Ix*'? Each of the five sets of
fluctuation measurement simulations took 50 h of com-
puter time. The statistics of these measurements were
improved by a factor of ~2 due to the equivalence of the
modes n = 1, 2. The perturbed system results for the
phase points lying inside the linear regime took 16—20 h
each. Thus, taking into account the time spent simulat-
ing points outside this regime as well as that needed for
equilibration and production at the smaller F' values, we
estimate that about 150 h of computer time were used
at each of the temperatures studied. The fluctuation re-
sults have substantially better statistics, however, and a
major advantage of this method is that fluctuations at
a great number of wave vectors are calculated simulta-
neously. Bearing in mind the importance of establishing
the k dependence of the results in either case, the equi-
librium fluctuation method seems preferable.

2
The temperature dependence of Ii.*/P~ can be com-

p ared with theoretical predictions and with experi-
ment. Standard molecular-field theoryi predicts Ii oc—2
P2, and for this specific model Priest has calculated

Ii'/Pz ——3 for all T ( Tjy ~. This result is in fact
only correct as T —+ 0. While early experimental
measurements of I~/Pz found no discernible tempera-

2

ture dependence, subsequent studies detected signifi-
7 2

cant variation with T In most case. s, Ii/Pz decreased as
T rose, but in a few cases the reverse trend was seen. An
alternative approach ~ has been to fit to the more gen-
eral power law K oc Pz. Again, most fits were found to

give z ) 2 (i.e., a decrease in Ii~/P& with increasing T,
since P& shows such a decrease), but those for I~& yielded
1.74 & z ( 2.01; our results give z = 1.76 when analyzed
this way.

There are a number of more complicated molecular-
field treatments ' which attempt to explain the tem-
perature dependence of Ii*/Pz. These theories yield an
expansion of the form

I~ =) ) c((iP(P(, l l'=2 4, . . .
l E'&1

(2o)

where the c~~ are determined by the form of the inter-
molecular potential. Since the expansion (20) converges
rapidly, it is usually truncated after the second term.
We have fitted our data for I~"/P~, Pq, and P4 to this
curtailed form to obtain c22 and c24 "experimentally. "
Using Priest's exact result for T = 0, this one-parameter
fit yields c22 ——3.905, t.-2@ ——0.905. The corresponding
curve, illustrated in Fig. 2, is reasonably consistent with
our simulation results. Unfortunately, however, when we

apply the methods of Refs. 25 and 30 to this particular
model we obtain cq4 = 0 (see Appendix B), so the rnod-
ified molecular-field t,heories cannot explain the temper-
ature dependence in this case. This failure suggests that

p 2
the temperature dependence of Ii*/P& is due to fiuctu-
ations completely neglected in these molecular-field the-
ories. It also demonstrates that it is not necessary to in-
voke strongly anisotropic short-range forces to explain

p 2
a temperature-dependent Ii*/P& (although that is not
to suggest that such forces are unimportant). However,
it does imply that it might be incorrect to interpret ex-
perimental Frank-constant data entirely on the basis of
molecular-field arguments, no matter how sophisticated
the molecular model.

A spin-wave theory, which does take some account
of orientational fluctuations has been proposed by
Berreman and extended by Faber. In both cases the
theory predicts a link between the order parameter P2
and the elastic constant Ii. Berreman's formula is (in
our notation)

I~ a(1 —Pg)
kBT

Ii '(1 —Pg)

where a is the lattice spacing and the constant C is
evaluated as a sum over cubic reciprocal-lattice points.
Faber's derivation takes account of large-amplitude libra-
tions, and this leads him to replace the term (1 —Pq) by
—ln Pq. Also the constant C is evaluated approximately,
by k-space integration rather than summation, but this
is a minor diA'erence. It turns out, however, that neither
theory gives an accurate value for C without modifica-
tion to correctly account for the amplitudes of the high-k
modes in this lattice system. We discuss this in Appendix
C. With this modification we obtain C = 0.7371.

To compare our results with these expressions we
present in Table V the calculated values of I~"(1—Pq) /T*
and Ix'(—In Pg) /T*. These are plotted in Fig. 6, and
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TABLE V. Tests of spin-wave theory.

0.10
0.40
0.75
0.75'
0.90
1.00
1.08

A' '(1 —P2)/T'
0.722
0.682
0.613
0.617
0.573
0.519
0.412

—A' ' ln Pz/T'
0.754
0.721
0.698
0.703
0.688
0.661
0.580

Results for the 32 x 32 x 16 system; all others are for 32 x
32 x 32.

they extrapolate smoothly to the spin-wave value at
T* = 0. The Faber ratio remains almost constant up
to T* 0.9, i.e., T/Trv I 0.8, while the Berreman for-
mula shows marked deviation from the T* = 0 limit at
rather lower temperatures.

We can express our results in terms of a k-dependent
elastic constant defined for our system by

1.00 0

)Q

9 P2VT*

(k~ (Q p(k)Q g( —k))
)

A': 1) 2.

(22)

FIG. 7. Wave-vector-dependent elastic constants A '(k) for
k = ki(1, 1, 1). We show the simulation results at T' = 0.10,
0.40, 0.75, and 1.00. The predictions of T' = 0 spin-wave the-
ory, Eq. (C13) (solid line), and the spin-wave form scaled to
the zero-k values of A at higher temperatures (dashed lines)
are also shown.

This is shown in Fig. 7, at several temperatures, for k
in the (1,1,1) reciprocal-lattice direction. Also shown is
the spin-wave (T" = 0) approximation for this quantity,
discussed in Appendix C, and curves obtained by scaling
the spin wave form to fit the k = 0 value of I~ at the
higher temperatures. This scaled spin-wave prediction
fits the data quite well even at high T*; presumably this
is associated with the simple form of the potential for
this model, and it is consistent with the accuracy of the
Faber and Berreman formulas.

We have commented already on some interesting fea-

1.0—

0.0
I

0.5

I

I

I

I

I

I

I

I

I

I

&I
I

I

I

I

I l

1.0

FIG. 6. The ratios A '(1 —P2)/T' (open circles) and
A '(—ln P2)/T' (solid circles) vs T'. The lines through the
data points are to guide the eye. The spin-wave prediction is
shown by the horizontal dashed line. The vertical dashed line
indicates the nematic-isotropic phase transition temperature
Ter-I = 1 1255

tures of the Freedericksz transition as simulated for this
model. Our main conclusion is that, despite requiring
very long runs, our estimate of F, must be subject to
an error of 5—10%%uo. This makes it a very inefficient way
of determining I~* computationally. A further caveat is
that in any inhomogeneous system finite-size effects will
be significant. The original simulations of Simpson em-
ployed a 10 x 10 x 10 system. We were able to use a
larger system in all dimensions, but particularly in the
slab thickness: 16 x 16 x 34. The order parameter P2(z)
certainly varies across the simulation box and this varia-
tion is most marked close to the fixed boundaries. Thus,
any value for the Frank constant obtained by this method
will be some sort of average over a range of P2. The
approximation P2(z) = const becomes less accurate as
the slab thickness is decreased. Notwithstanding these
reservations, it is interesting to note that the estimates
obtained from Simpson's simulations2 s7 of I~*/P2
3.56, 3.68, and 3.96 at T* = 0.90, 1.00, and 1.08, re-
spectively, are quite close to our own results, reported in
Table I.

In conclusion, it seems from the results of our simula-
tions that it is satisfactory to calculate the Frank elastic
constants by taking the low-wave-vector limit of the ap-
propriate fluctuation expression. The simple form of the
model employed here has allowed us to use a large sys-
tem to test this procedure, but the results suggest that
smaller systems could be employed without jeopardizing
the accuracy of the method, provided that attention is
paid to wave-vector dependence. It is also possible to
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calculate the elastic constants by a formally equivalent
applied field method, but in view of the limitation to sin-
gle wave-vector perturbations (or superpositions of a few
such perturbations) and the need to check for linearity
of response, it is doubtful whether this gives greater efB-
ciency overall. Simulation of the Freedericksz transition
is an interesting and challenging area of research in its
own right, but does not constitute a reliable and accurate
route to the elastic constants.

Xofe added in proof Eq. uation (C13), and the corre-
sponding analysis giving the value of C used in Eq. (21)
of the text, have appeared in: T. E. Faber, Proc. R. Soc.
London Ser. A 370, 509 (1980). We are grateful to T. E.
Faber for pointing this out.
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APPENDIX A: THEORY OF THE
FREEDERICKSZ TRANSITION

a. = scoso+ f sino, (Al)
0 = 0(z) being the rotation angle. At the surface, z = 0,
0 = 0. In a semi-infinite system 0 ~ vr/2 as z ~ oo,
but in a slab of thickness I, 0 attains its maximum value
0 ' at the midpoint z = I/O.

The bulk field perturbation term in the Hamiltonian
'8 = Ho —L& may be written in terms of the orientation
tensor density

b.'0= F f Q(D) f = F dr f g(r) f. (A2)

Taking the director-based (1,2,3) coordinate system to

Here we relate the critical field I", at which the
Freedericksz transition takes place to the elastic constant,
for our perturbation Hamiltonian, Eq. (15), and discuss
the behavior of the system for F ) I'", . We follow the
derivation of Saupe. i s

Consider a slab geometry in which molecules are per-
fectly aligned in a chosen direction s at both top and
bottom surfaces (perpendicular to the z direction). A
uniform bulk field is applied which favors alignment in a
direction f, perpendicular to s. If s and f are chosen to
lie along two of the Cartesian axes then the field will in-

duce a pure twist, bend, or splay deformation, governed
by the appropriate elastic constant A' . In the current,
model all the elastic constants are equal and it is not nec-
essary to specify any relation between the various axes,
other than that s and f shall be mutually perpendicular.

We may assume that as z varies the director rotates in
the s-f plane, i.e. ,

rotate with n, keeping n in the 3 direction as usual, and
assuming that the orientational distribution is otherwise
unperturbed, we may use the diagonal form of (Q) in this
representation to evaluate the average energy density as a
function of z. We have (Qii) = (Q22) = —&P2, (Q33) =
P2, and so f Q(r) f = P2 (z sin 0 —z), P2 being the
order parameter. Hence the field-induced energy density
is

&fn, &d = F&—Q(r) & = —FPq(z sin 0 —2).

This gives rise to a torque density

7field = 3EP2 sin 0 cos 0. (A4)

The free-energy density due to distortion of the director
field is

, . )d0 '
+ftiistartian =

8z (A5)

and this gives rise to a torque density

d20
i

rtiistartian = ~~
dz2 j (A6)

The total torque on a volume element of the system must
vanish, so

d'0'~
I4

~ ~
+ 3FPg slil 0 cos 0:0.

dz~ p
(A7)

We may identify the magnetic correlation length ( by

= I~/3FP2 (A8)

and write

(d'0 &
~

+sin0cos0 = 0.
(dz2p

(A9)

The same equation is obtained in Saupe's derivation, but
with (~ = Ii/y, H, H being the magnetic field and

y~ the volume anisotropy of the diamagnetic susceptibil-
ity. From this point onward the derivation is completely
standard. i Multiplication by d0/dz yields

d 2 (d0 + sin 0 = 0.
dz (dz

(A10)

The undistorted solution 0 = 0 always satisfies this equa-
tion, but above the critical field the distorted solution will

be the more stable. Integration gives

2 (d0'i
+sin 0=sin 0

(dz) (A11)

dg
(sin 0~' —sin 0) &~

(A12)

This equation is usefully rewritten in terms of a new vari-
able A defined by sin A = sin 0/ sin 0

where the constant is determined by the vanishing of
(d0/dz) at 0 = 0 '~. On taking the square root and
separating variables, this gives
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1
dA

(1 —sin 8 'd sin A) l (A13)

The critical Geld is determined by setting 0 ' = 0, from
which (, = I/x and

I~ x2

3P2L2

This is Eq. (16) of the text.
An alternative route to this equation is to write 0(z)

as a Fourier series

valid for F ) F„and this is Eq. (17) of the text. Fi-
nally we note that, for our lattice system, spatial integrals
should be replaced by sums in the above derivation, and
the key differential equation, Eq. (A9), then becomes a
difFerence equation. For a system of the size treated here
we have verified that this discretization makes a negligi-
ble diA'erence to the final results.

APPENDIX B: ELASTIC CONSTANT
EXPANSION

8(z) = ) eq sin kz,
k

(A15)

with k an integer multiple of x/I. Then, assuming that
0(z) is everywhere small enough to write sin 6( 02, the
free energy per unit area relative to the undistorted state
can be expressed

= —) e'(-'I'k' —'I P,)-2
k

(A16)

The undistorted state will be stable provided this remains
positive for distortions of aH wavelengths. The lowest-
wavelength mode, with k = vr/I, will dictate the point at
which distortion becomes energetically favorable; choos-
ing this value and equating the term in parentheses to
zero yields Eq. (A14) immediately.

The diA'erence between this result and Saupe's equa-
tion IEq. (13) of the text) arises simply through the dif-
ferent relationship between the field and the correlation
length. For the same reason the form of the equation
linking 0 ' and the applied field I" is slightly diA'erent.
Direct substitution into Eq. (A13) gives

'g(n, n') = —g de de'P(n e)P(n'. e')P2(e e'),

(B1)

where f de - stands for integration over the polar an-
gles J dP Isin 0 d0 . Assuming that the distribution
functions are undistorted by the director variation, they
may be expanded in Legendre polynomials:

2(+1'P(n e) = Q P(P((n. e)
1

(B2)

Here we apply the methods of Refs. 25 and 30 to
the potential of Eq. (3), and show that, within this
molecular-field approximation, the expansion coeKcients
c((1 of Eq. (20) vanish, except when I = I' = 2. To this end
we consider a distortion of the director field n(r). The
orientation e of a molecule is distributed about the direc-
tor n according to the function P(n e). The distribution
function for a neighboring molecule will be assumed to
be 'P(n' e'), where the director n' is slightly rotated from
n; this is the only eA'ect taken into account. For the po-
tential of Eq. (3), the average interaction energy between
these two molecules is

dA
(1 —sin2 0 'd sin2 A) (' )

(A17)
to give

(2t+I 2l +1'8(n, n') = —z de de') ) ~

— P( P( P((n. e) P(I(n'. e') P2(e e').
4~

(B3)

For a more general interaction potential the P2(e . e')
function would be replaced by a sum of Legendre poly-
nomials, and this would give rise to the expansion of the
form P( P(, c(( P(P( seen in Eq. (20). In the current
case, however, it is easy to show that only one term sur-
vives. Each Legendre polynomial may be expanded in
spherical harmonics C'~ in the following way:

4x
de C( (e)C( (e) = 6(( 6 2l+ 1

(B5)

(B6)

allows the angular integrations to be performed easily,
yielding

P((n. e) = ) C( (n)C; (e) (B4)

Consequently the change in energy due to the director
variation is

3~~—2
4'R(n) n') = —sP~(P2(n n') —1) = P2 sm 0)—2

The orthogonality relation (B7)
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APPENDIX C: SPIN-WAVE THEORY

In this appendix we summarize the spin-wave theory
for the order parameter in the Lebwohl-Lasher model.
We follow the general arguments of Berreman and
Faber, but our main aim is to highlight the need to deal
correctly with the high-k modes. We write the Hamil-
tonian, Eq. (3), in the form

&o = --,'~):):(-',[e(r) e(r+ )]' ——.')
r a

(Cl)

Here e(r) is the unit vector along the axis of each
molecule situated at, a position r on the cubic lattice. a
is one of the six nearest-neighbor lattice vectors, and the
factor z avoids double counting. Setting e = (ei, ez, es)
and taking the director along the 3 axis as usual, small
orientational fluctuations are described in terms of the
components ei and eq. In the usual development e(r + a)
is expanded in a Taylor series to second order about e(r).
Taking the continuum limit

1
dra3

where 8 is the angle between n and n'. Only the t =
(' = 2 terms in the Legendre polynomial expansions have
survived the angular averaging.

This equation can be used to calculate the elastic con-
stants by taking the variation in n to be induced by a
splay, twist, or bend deformation of chosen wave number
k. The free-energy density at a given lattice site will be
given by a sum of contributions of the form of Eq. (B7)
from each of the neighboring sites, divided by 2 to avoid
double counting. Entropic contributions are assumed to
be negligible by comparison at low k. Selecting the wave
vector k to lie along one of the lattice axes eliminates
contributions from all but two neighbors; for these two
the angle 8 is equal to ka, a being the lattice spacing.
The result is that the change in free-energy density due
to director variation is given by

3E' —2
Af = Pepsin ka,2a3

which is proportional to k at low k. From this we can—2
identify the elastic constant I& = 3sP&/a, or in reduced

2
units I~*/Pz ——3, as obtained originally by Priest. ~~

Thus, despite the reasonable fit of the expansion of
Eq. (20) to our simulation results, we see that the
molecular-field arguments on which it is based yield
c~~ oc b~~b~ ~ for the I ebwohl-Lasher model. Equation
(B3) shows the origins of this expansion, and makes it
clear that higher terms in the expansion are directly re-
lated to higher-order terms in the interaction potential.

proximation is made, however, the Fourier-series expan-
sions

1
e (r) = —) e (k) exp( —ik r), o; = 1, 2

k(go)
(C2)

(C3)

where V = Na3 is the volume of the sample. We can
immediately identify I& = 3s/a and use equipartition to
deduce

lei(k)l'= I"(k)l'= I,.„,
VkBT

(C4)

This is equivalent to Eq. (6), used to determine the Frank
constant at all temperatures.

The link with the order parameter is made through
Parseval's theorem, which gives us

kBT 1 kBT 1=
I'V )-~ = I;.

k BZ

where we introduce the Brillouin-zone average ( )Bz =
i pk( ), the sum being over the X points (except

the origin) in the first Brillouin zone. The same equation
applies for leq(r) l~. The order parameter is then written

Pq ——

dies(r)

—
z

—1 —
z [ei(r) + eq(r) ]

(C6)

Thus we arrive at Berreman's formula, Eq. (21); we ob-
tain C' = 0.5616 for a cubic system, N = 32 x 32 x 32.
This underestimates the observed low-temperature vari-
ation of Pq by 30%.

The error arises because of the restriction to low k im-
plicit in the original Taylor-series expansions of e (r),
and the resulting k~ (squared-gradient) form of the
Hamiltonian. A formula correct at all k is obtained by
setting

1
e~(r+ a) = —) exp( —ik . a)e~(k) exp( —ik r),

k~o

n = 1, 2. (C7)

The nearest-neighbor interaction term may be expanded,
assuming small relative angular displacements,

P~(e(r) e(r + a))

allow the Hamiltonian to be written in the form

1 r'3s) 1
&o = —3' &+ —

I

—
I

—) .k [lei(k)l + Ien(k)l ],2 gap V

and performing an integration by parts yields the usual
squared-gradient spin-wave Hamiltonian, which is equiv-
alent to the phenomenological free-ener gy equation,
Eq. (2) of the text. Whether or not this continuum ap-

= 1 —~{ [ei(r) —ei(r+ a)]'

+[e (r) —e ('+a)]') (C8)
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) [1 —exp(ik . a)][1 —exp( —ik . a)]Je~(k)J
k

, ) 2[1 —cos(k a)]ie (k)i'.'
k

(C9)

and the orientation-dependent terms, when summed over
r for fixed a become

).[-(.)- -(.+ )]'

This 2[1 —cos(k a)] form, familiar from standard spin-
wave analysis of the Heisenberg model tends to the k a
limit at low k. However, these low-k modes do not com-
pletely dominate the Brillouin-zone average (because of
the eA'ective k weighting in the sum or integral over re-
ciprocal space), so it is important to retain this full form.
Performing a sum over all six nearest-neighbor vectors a
gives the new equipartition result for orientational fluc-
tuations

a
ie (k)i2 =

K 6 —2 cos k~a —2 cos k&a —2 cos k, a
(C10)

where k = (k~, k&, k, ). [Note that the lattice-based (x, y, z) coordinate system can be taken to be quite independent
of the director-based (1,2, 3) coordinate system here. ] The final result, which is to be compared with Eq. (Cfi), is

3kBT 1

Ii a 6 —2 cos k~a —2 cos k& a —2 cos k, a

I~(k) =
k~(e (k)('

(C12)

The spin-wave prediction gives us

Now the Brillouin-zone average gives us Eq. (21) of the
text, with C = 0.7371 for our cubic N = 32 x 32 x 32
system.

We can express these results in terms of a k-dependent
elastic constant, defined by

6 —2 cos k a —2 cos k„a —2 cos k, a
k2a2

(C13)

At low k we see Ix(k ~ 0) = A but I~(k) decreases
towards the Brillouin zone boundary. Equation (C13) is
expected to hold at low temperature, with It = 3s/a, but
it may also be used to fit the observed I~(k) at higher
temperatures, with I~ chosen to equal the observed k = 0
value. This is illustrated in Fig. 7 of the text.
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