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An exact formulation of the impulse approach (IA), or quantum-mechanical spectator model, is
applied to atom-diatom collisions. Results are compared with previous work on the IA, which has
always involved the peaking approximation (PA). The PA is seen to overestimate (underestimate)
differential cross sections for processes involving projectile atom energy loss {gain). The internal
consistency of the IA is explored by subjecting it to semidetailed balancing. For small scattering an-

gles the IA is seen to be an inadequate theory, probably due to the neglect of double- and higher-
collision terms in the multiple-collision expansion of the three-body T matrix. For large scattering
angles, where the IA does appear to describe the'scattering process accurately, the exact calculation
is shown to give the same results as when only the energy-conserving on-the-energy-shell two-body
processes are considered. An accurate approximation method is also developed for rapid computa-
tion of inelastic differential cross sections. Finally, the calculated results are compared with the ex-
perimental measurements, and the need to explore two-body potentials more complicated than the
hard-core potential is pointed out.

I. INTRODUCTION

The basic idea of the impulse approach to analyzing
collisions was proposed by Chew' in his study of inelastic
scattering of high-energy neutrons by deuterons. When
the time duration of the collision is much shorter than
the period of characteristic motion of the bound particle,
the components of the bound particle may be considered
to act independently of each other, with position or
momentum amplitudes given by the bound-state wave
function. The binding potential only serves to create a
relative momentum distribution of target particles. The
three-body scattering amplitude thus reduces to an ap-
propriately weighted sum of two-body scattering ampli-
tudes. The constituent not taking part in the scattering
process is called the spectator. The impulse approach
has therefore also become known as the quantum-
mechanical spectator model. The scattered state is ob-
tained by combining the effects of the two two-body col-
lisions with proper phase factors. The probability ampli-
tude of a given final state is obtained by projecting the
scattered state onto it. It should be emphasized that the
perturbation of the initial state is not assumed small; the
only assumption is that the two scattering centers act
suddenly, and therefore independently. Formal develop-
ment of Chew's work has been provided by Chew and
Wick, Ashkin and Wick, and Chew and Goldberger.
The impulse approach has been discussed in texts by Gol-
berger and Watson and Rodberg and Thaler, the latter
giving a very readable account. The impulse approach

(IA) has been applied to a number of situations in scatter-
ing theory. Coleman has developed the IA with applica-
tions to electron-atom collisions and Korsch et al. have
developed the IA with applications to electron-molecule
collisions. It has also been applied extensively in nuclear
physics.

The IA was first applied to atom-diatom collisions by
Hogan and by Eckelt, Korsch, and Philipp (EKP). ' The
latter authors in a series of papers" ' have applied the
IA to a number of situations involving atom-diatom col-
lisions. The IA has also been applied to atom-diatom col-
lisions by Beard and Micha. ' In the IA, the T matrix is
expanded in a multiple-collision series' and only the
terms representing single collisions are retained —two
terms for an atom-diatom collision and so on. In addi-
tion, while not a part of the basic IA formalism, the
atom-diatom calculations cited above use another ap-
proximation as we11, namely the peaking approximation
(PA), to obtain results for comparison with experiments.
In the PA, (i) the t matrix representing the two-body pro-
cess is evaluated at a particular value of the spectator
atom momentum, and (ii) the slow variation of the t
matrix elements over a region of appreciable overlap of
the initial and the final states is used to justify the separa-
tion of the three-body T-matrix elements into two
parts —one containing information about dynamics (the
two-body t matrix) and the other containing information
about the target (the form factor). T" will be used to
denote the three-body transition matrix while the two-
body transition matrix will be denoted by t". The PA
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gives a very nice physical picture of the impulse scatter-
ing process. However, it was recently shown by the
present authors' that, except for elastic scattering, the
PA results are substantially different from the exact IA
calculation. We note here in passing that the PA was
also found to be inadequate for the excitation of atomic
hydrogen by 1 —500-keV protons. '

In this paper we give, in detail, an exact formulation of
the impulse calculation without invoking the PA. Also,
as in past studies, the target molecule has been taken to
be in a low state of internal excitation, and a large
translational energy of relative motion is assumed to jus-
tify the use of the IA and the PA. It was pointed out by
Sharma' that the IA can also be used in situations in-
volving large internal excitation and small or moderate
relative translational energies. Since our formalism does
not invoke any special properties of the T matrix or the
wave functions, the resulting equations are applicable for
arbitrary internal molecular and relative kinetic energies.
Section II formulates the problem, where we follow the
methodology of Eckelt et al. ' Section III derives the
peaking approximation to relate the present work to the
previous work and to set the stage for the exact calcula-
tion, which is derived in Sec. IV. Section V compares the
exact results with the PA results. Section VI checks the
internal consistency of the results obtained from the IA,
using semidetailed balancing. Section VII gives an ap-
proximation for the scattering amplitude, which is easily
computed, yet accurate. Section VIII compares the cal-
culated results with the experimental measurements.
Concluding remarks are given in Sec. IX.

II. FORMULATION

In a coordinate system with the origin coincident with
the c.m. of the three particles, only two momenta are in-
dependent, and any p or q may be expressed in terms of
two other p's and/or q's. The vibrational-rotational en-
ergy of the molecule 12 will be expressed through q3,
which will later be written in terms of q, (qz) and p, (pz)
when atom 1 (2) is the spectator atom. The spectator-
atom momentum remains constant during the collision.
At the end of the collision q3 is resynthesized from q,

' and
the spectator momentum p,'=p„s =1,2. The probabili-
ty amplitude of the final state is the projection of the state
( qg on the final state.

It has been pointed out that the validity of the impulse
approach requires that the time duration of the collision
be much shorter than the period of characteristic motion
of the target. Previous work on inelastic atom-diatom
scattering using the IA has assumed a hard-sphere or
hard-core potential between the incident atom and either
of the two atoms constituting the target. This potential
satisfies the IA criterion for any internal or relative
translational energy of motion. Another reason for using
this model potential is that the required half-on-shell, as
well as off-the-shell, two-body t-matrix elements are given
in literature in a closed form. In this work, we will also
use this potential. This will facilitate the comparison of
our results with those of earlier workers. In addition,
since our calculation is exact, we will be able to learn
about the impulse approach itself. We are, however,
aware that an infinitely steep potential overestimates
highly nonresonant transitions. In subsequent work, we
plan to explore this point by using less steep two-body
potentials.

The potential energy of the three-body system V can be
written as

The differential cross section, in the center-of-mass sys-
tem, for a rotational-vibrational transition is given by' V V3M(x, y, e)+ V3(y) (2)

( vip 3 ~v
'J 'p i «9 )

P3

(2j+1)p3

m m'
p (P' T(E+iO)~P )

where V3~ is the interaction between incident atom 3
and the diatom M. x is the distance of the incident atom
3 from the c.rn. of the molecule, y is the internuclear dis-
tance of the diatom, and a is the angle between x and y.
V3 is the potential energy of the diatom 12. To give a
description of the three-body scattering process in terms
of two-body scattering and a spectator atom requires that
the interaction potential be written as

where
~ p3 )—:

~ U,j,m, p3 ) denotes the initial state, the
final-state variables are denoted by primes, and p3 and p3
are the momenta of the incident particle before and after
the collision. p3 is also the momentum of the incident
particle 3 with respect to the center of mass (c.m. ) of the
molecule 12. p, denotes the momentum of particle a
with respect to the c.m. of bc, and q, is the relative
momentum of b and c. This set of momenta is called the
Jacobi momenta. p, denotes the reduced mass of the sys-
tem (a, bc). 0 is the scattering angle, i.e., the angle be-
tween p3 and p3. The summation over m and m' has re-
moved the dependence of the differential cross section on
the azimuthal angle. T(E+iO) is the three-body matrix
element with total initial (or final) energy E. p, & is the re-
duced mass of the two particles a and b, and
M =ml +m2+m3.

V3~ = Vi (y I )+ Vz(yz» (3)

where V, = Vb, and yz (y, ) is the distance between atom
1 (2) and atom 3,

y, (yz)= Ix +[c, (cz)y] +2xyc, (cz)cosaI'i

with c, (cz)=—mz (ml)/(m, +mz); the minus sign ap-
plies to subscript 1 and the plus sign applies to subscript
2. The form for the atom-molecule potential used in Eq.
(3) does not give a good fit to the more common form of
this potential in terms of Legendre polynomials. The two
potentials are applicable to different models of atom-
diatorn collisions. It is desirable to establish a connection
between the two models, and this wi11 be attempted in a
future work.

Following EKP, ' we write the three-body T matrix in
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the multiple-collision series

7 —
Z (i)+ y(&)+ Z (&)g Z (&)+ y(2)g Z (1)+.. .

3 3 (5) &o &o

where the three-body transition matrix T ', s = 1,2,
denotes the collision of atoms 3 and t, t =2, 1, s being the
spectator atom and 63 =(z Ho——V3) ' being the prop-
agator or the Green's function (Ho being the total
kinetic-energy operator). Equation (3) has a simple phys-
ica1 interpretation. The first two terms denote the col-
lision of atoms 32 and 31, respectively. The next two
terms denote double collision ij, where 3 collides first
with j and then with i, and so on. It should be stressed
that this is not an expansion in the Born series, and each
of the terms on the right-hand side of Eq. (5) represents a
three-body T matrix. The IA keeps only the first two
terms.

To reduce the three-body matrix T" into the two-body
matrix t", one writes

(10)

where the summation is over the initial and final free-
particle states Po and Po, and P3, as pointed out earlier,
denotes Ip3 &

= Ip3 & s I
vjm &, etc. The above expression

can be simplified by noting that lgo& = lq3& Ip3& plo-
vides a complete set for the free-particle momentum
states,

g I go & & go I P3 &
= f I q;p3 & & q3p3 I P3 & d p3d q3

4p

= f lq p3&4(q3)dq3,

with the molecular wave function in the momentum rep-
resentation given by

where the Mufller operator 0'" is defined by

(6)
=(2') fdr exp(iq3. r)& rlujm &

=(2/m)' i'I„(q3)Y (q3) . (12)
n'" =1+(z —H, —V, —V, )-' V, , (7)

V]:V/3 the potential between atoms 2 and 3. The
Manlier operator in Eq. (7) is still a three-body operator.
We now invoke the spirit of the IA, i.e., the time duration
of the collisions is much shorter than periods of charac-
teristic motion. This allows one to assume that the inter-
nuclear distance of the diatom stays constant during the
collision and to replace the operator V3, the potential en-
ergy between bound particles 1 and 2, by a number.
Writing z —V3 =zi~, we get the two-particle M611er
operator 0] describing the collision between particles 3
and 2,

Y are the spherical harmonics and I, is defined by

&, (q3)= f dr r g, (r)j (q3r), (13)
0

y, (r) being the radial part of the vibration-rotation wave
function and j representing the spherical Bessel function
of order j. Similarly,

&o&0 l of 0 (q3)dq3&q3p3l ~ (14)
0o

where P'(q3) is the final molecular state. Using Eqs. (11)
and (14) we can write Eq. (10) as

& &3I7'"I&3 &
= f0*'(q3) & q3p3lr" Iq3p3 &

Q, =1+(z,~ —Ho —V, ) 'Vi . (8)
XP(q3)dq, dq3 . (15)

IA P3 /(2@3)+q 3 /(2p»)+i0 (9)

z« is then the kinetic energy of the three particles in the
center-of-mass system. z,A are the eigenvalues of 00,
eigenfunctions being the free-particle states

I Po & de-
scribed in the next paragraph. We have now translated
into quantitative language the assertion of the IA that the
role of the diatom potential is to generate a relative
momentum distribution of its two constituent atoms. We
should point out that there are other choices for ziA that
have been used in literature. ' '

The transition matrix elements between eigenstates P3
of H0+ V3 can be written as

In Eq. (7), z =EvR+E„,&+i0, where -EvR is the
vibrational-rotational energy of the diatomic molecule,
and E„„=p,/(2p3) is the relative atom-diatom transla-
tional energy. Writing EvR —V3=q3/(2p, 2), where q3
and p, z are the relative momentum and reduced mass of
atoms 1 and 2, respectively, we get

'q3= —[p, +[m, /(m, +m2)]p3]

q3 [pz+ [m2/(m &
+m2 )]p3]

q& =[m3/(mz+m3)]p, +p3

and,

(16)

(17)

(18)

qz= —[[m3/(m, +m3)]pz+p3] (19)

Equations (16) and (18) are used when atom 1 is the spec-
tator, while Eqs. (17) and (19) are used when atom 2 is the
spectator. Expressions for qk are obtained from Eqs.
(16)—(19) by replacing pt, by p&. In a three-atom system,

To calculate the matrix elements of the two-body tran-
sition operator t", it is pertinent to recall that the spec-
tator Jacobi momentum p, stays constant during the col-
lision, and momenta p3 and q3 must be expressed in terms
of p, and q„s =1,2. q, is changed to q,

'
during the col-

lision and, after the collision, inverse transformation to p3
and q3 is carried out. These transformations are effected
by the relations
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&q3P3lr" Iq p & =&p,'Ip, &&q,'Ir "Iq, &

=&(p,' —p, ) & q', Ii"Iq, & (20)

where the basic assumption of the IA (namely that the
spectator momentum remains constant during the col-
lision) is reflected by the Dirac 5 function. We can now

with the origin at the center of mass, we have

p, +p2+p3=0, and only two momenta are independent.
This choice of momenta greatly simplifies the solution.

Noting that the state
I p3q3 & is also the state

I p, q, &,

s = 1,2 [Eqs. (16)—(19)],we are in a position to write

rewrite Eq. (15) as

&ellT"'l4 &= J dql&(p,
' —p, )dq 0*'(ql)

x &q,'It" Iq, &y(q, ) . (21)

Going back to Eq. (1), the expression for the
differential scattering cross section can be written as

Changing the integration variable from q3 to p,', analo-
gous to the transformation carried out in Eqs. (18) and
(19), we get

&&~IT"l&3&=f dq3&*'(q3)&q,'It"Iq, &P(q, ) . (22)

do.
(UJP3 U J p3~~)=

dA '
p3 2g+1

2

~(4' 2 T" 6) (23)

At this point we note a particular feature of the IA. It
has been pointed out that q, changes to q,

' during the col-
lision between atoms 3 and t. This change of the magni-
tude of the relative momentum during scattering from a
central field does not conserve energy during the two-
body collisions. After the collision, only those combina-
tions of p3 and internal molecular energy (u'j') that con-
serve energy are permitted. This nonconservation of en-
ergy during the two-body collision should pose no prob-
lem, since the uncertainty in energy, AE, and time dura-
tion of the collision, At, are connected by the uncertainty
relation b,E =A/b, t. In an impulse collision with a hard-
core potential, At~0. Therefore there is a large uncer-
tainty in energy. This was the reason, as we pointed out
earlier, that the hard-core potential probably overesti-
mates highly nonresonant transitions. Energy associated
with q, is physical in the sense that z~A
=q, /(2p, „)+p, /(2p, ), the kinetic energy of the three-
body system in the c.m. frame, whereas the correspond-
ing energy associated with q,'Aq, is not physical. For
this reason, the two-body t-matrix elements
t"(q„q,';z,A) are called half-on-the-energy-shell matrix
elements. The use of momentum q,', which does not con-
serve energy, has, as we have shown elsewhere, ' interest-
ing consequences for time-reversal (TR) symmetry. It
should be pointed out that half-on-shell and off-shell ma-
trix elements have also been interpreted as incomplete
collisions. ' The two-body t matrix discussed here does
not describe the complete scattering process; it is there-
fore consistent with this interpretation.

III. THE PEAKING APPROXIMATION

The peaking approximation (PA) is based on the idea
that the product of the initial and final state in Eq. (22) is
nonzero in a finite region of the spectator momentum and
the t matrix is slowly varying in this region. Thus we can
evaluate the t" matrix element at some particular value
of the momenta,

"=l&q,'I "lq, &), (24)

where q3 and p3 are related by Eq. (16) or (17).
The spectator momentum at which the t matrix is eval-

uated is arrived at in the literature by the following argu-
ment: Since the momentum distributions at which initial-
and final-state wave functions, (t3(q3) and $3(q3), are
nonzero only in the vicinity of

and

m,
93=o~ps =

p3 ~(m, +m, )
(25)

Ps= —
+ (P3+P3) .

2 mi+m2
(27)

This argument holds strictly for the U =0 and the j =0
state of the molecule. If there is a large amount of energy
in the vibration and/or rotation of the molecule, the
wave function is no longer substantially different from
zero only in the neighborhood of q3=0 (or q3=0), and
the PA may have to be evaluated at some other value of
the spectator momentum.

Proceeding further, we can now rewrite Eq. (22) as

&p,'IT"lp, &
=i" jdq, p*(q,')p(q, ) . (28)

The integral in Eq. (28) is an overlap integral, describing
the amplitude for the instantaneous transition from the
initial to the final state, due to impulsive momentum in-
crement,

m
q, ~q', =q, +( —1)' q,mi+m2

(29)

m,
q3=o~ps P3(m, +m~)

the product of the wave functions is substantially
different from zero only in the vicinity of their midpoint,
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q being the momentum transferred during the collision,
q=p3 —p3. This integral is cast in familiar form and, at
the same time, its evaluation is simplified by a transfor-
mation to coordinate space, leading to

& y3IT"Iy3 & =t'p„' f dr%'* (r)exp( —ia, q r)V(r), (30)

where

Taking initial- and final-state wave functions as

4'(r)=g„~(r)Y,. (r)

4'(r) =y„.j'(r ) Y, ,(r ),

(32)

(33)

a, —:( —1)'
m, +m2

(31) respectively, and using the expansion of the plane wave in
spherical harmonics, we get

(34)

' 1/2

&y'3I T"Iy3& =t p~4mg i'— c(jAj ';00)c(jkj ';m, p)f„",'. „i(q)Y. )'„„(q),4~j'

where )M—:m' —m, the C's are the Clebsch-Gordan coefficients, j =(2j+1), etc. , + means that the plus sign is taken
for s = 1 and the minus sign for s =2, and

f J'. „J. )„=f dr .r y„, '(r)ji(Ia, lrq)y, (r) . (35)

The differentia cross section is obtained by averaging over the initial azimuthal quantum numbers and summing over
the final ones, giving

dO

dQ
(vJP3~v J P3 8)=

A, =(j+j')
P3 X J J ' lf.",' . ) p~+( — "f,"' . 3. p'A I

~3 ~=lj —j'l
(36)

an expression available in the literature. ' The cross sec-
tion is factored into two parts, the t-matrix part deter-
mining the momentum transfer and the form-factor part
determining the probability amplitude for the given
momentum transferred. For homonuclear diatomic mol-
ecules, the contributions from the two target atoms are
equal in magnitude, and the phase factors are such that
only Aj =even transitions are allowed. The total cross
section is obtained from the differential cross section by
the relation

to obtain

& &3l T"
1&3 &

= fdr p*'(r)exp( —ia, q r)g"(r) . (40)

where we have written q3=q3+a, q, and cz, has been
defined earlier [Eq. (31)]. We now define a function
P"(r) by the relation

g"(r)—:(2m) f dq3exp( iq3 r—)&q,'lt" lq, &)t)(q3)

(39)

tr(vJP3~v J P3)
I

2m fP3+P3 do
/de

p3p3 lp3p3 l dQ
(37)

Now we expand the two-body t matrix in a spherical har-
monics expansion in the angle q3 as

IV. BEYOND THK PKAKING APPROXIMATION

&q,'It" Iq, &
= g tL'M(q3, p3, q) YLM(&3),

L, M
(41)

Xexp( —ia, q r)g*(r), (38)

It is useful to recall that the two-body t matrix depends
upon the momenta q, and q,

' and the angle between these
momenta. ' ' ' ' In terms of other momenta, this means
that the matrix element depends upon incident momen-
tum p3, internal molecular momentum q3, and momen-
tum transferred during the collision, q. Of these, only p3
and q are observables. To proceed beyond the peaking
approximation, the variation of the two-body t matrix
must be properly taken into account over the range of in-
tegration in q3 in Eq. (22). This is nontrivial, but can be
accomplished as follows. We first note that the final-state
wave function in the momentum representation is ob-
tained from the final-state wave function in the coordi-
nate representation by the Fourier transform,

p"'(q3)=(2m) ~ f drexp( —iq3 r)

with tLM given by

tL,'M(q3 p3 q)= f dy3 Y;,M(q3)&q,'lt" Iq, & (42)

exp( iq3 r)=—4m+i' 'Y. i„(r)Y&„($3)ji(q3r),
A, , )M

we get

(43)

q( )(r)— y i(J 3)~( ) (r) Y (r)
L, M, k, p

jL
4m',

where

X C (jL A, ;00)C (jL A, ;mM), (44)

oo

KL'3t3 (r) =— dq3q3J3(q3r )tr'w(q3, P3, q)I, (q3) (45)
0

Substituting this expansion into Eq. (39), and introducing
the plane-wave expansion,
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(q It Iq ~ YOOtoo ('q3) YOU 00 = PA (47)

and I, (q& ) is defined by Eq. (13).
Equation (40) has the form of an overlap integral, if )/

'
is viewed as the effective initial state that incorporates the
modification to the original wave function produced by a
nonconstant t matrix. In the peaking approximation, the
q& variation of (q,'It" Iq, ) is ignored, and Eq. (39) is ap-
proximated by evaluating this matrix element at some
specific, fixed value of q3, leading immediately to the
simplified form

y(s)(r) t(s) q(r)

and Eq. (40) then reduces to Eq. (28) of the preceding sec-
tion. In terms of the spherical harmonics expansion for
t", Eq. (41), it is as if t" is isotropic, i.e., only the L =0,
M =0 term is nonzero, and also independent of the mag-
nitude of q3. Then,

and Eqs. (44) and (45) lead to Eq. (46). The important
point about the modification brought about by the varia-
tion of the matrix element of t" over q3 is that various
terms now comprising the modified wave function inter-
fere to produce the final scattering amplitude. So, even if
the variation of t" over q3 is not significant and the non-
isotropic modifying terms are small, their infIuence on
the final result can be substantial. Ignoring this is the
major problem with the PA.

To evaluate the integral in Eq. (40), we substitute
another plane-wave expansion,

exp( —ia"q r)

=4m«g (+i )PYpr(r ) Yp (q j)p( I~, Iqr ),
P, y

with the plus sign for s =1 and the minus sign for s =2.
Then,

P, k, , y, p, L, M

lLp'
j Ypr(q)NL'Mqp(q, p3)C(j LA, ; 00) C(jLX;mMp)C(/t/3j ';/J, ym'), (49)

where

NLM) p(q P3) = f««'j p( I et, «q)&LM)„( «)gg'j '(«) (50)

C(jLA, ;m, M)C(APj ';m +M, o)

=g 8'(jLj '/3;M)(kJ)'~

Ypr(q) = (51)

Using the properties of Clebsch-Gordan coefBcients, we
note that, in Eq. (49), only the p= m

' term is nonzero and
M:—(m' —m). Noting the identity

To simplify Eq. (49) for computational purposes, it is
convenient to choose the z axis of the coordinate system
along q, the direction of momentum transfer vector.
Then,

1/2

X C(jJj ';m, M)C(L/3J;M, o), (52)

we get a relation between the total angular-momentum
change during the collision, J, and the initial and final ro-
tational quantum numbers j and j'. We also note the to-
tal angular-momentum change J is composed of two
parts: L, coming from the two-body t matrix, and P, the
usual component, derived from the momentum
transferred during the collision. Substituting Eq. (52)
into Eq. (49), we get

(y', IT"Iy, )= g (+i)pi'&-" ' /3N,"„(q)c(JLx;00)
P, ~,L,J

X C( lPj';00)C (jJj '; mM) C (LPJ;MO ) W(j Lj '/3; AJ ) . (53)

The expression for the differential cross section is now obtained by summing the absolute square of the collision am-
plitude over m and m'. Since M =m' —m, one can instead sum over m and then over M. Summation over m, for fixed
M, leads to

QC(j Jj ';mM)C(j Jj ';mM)= —o~J,J
where the second factor on the left-hand side comes from the complex conjugate of Eq. (53). Carrying out the m and
the J sums, we fina11y obtain

dO . . . 277

df ("JP3~U J P3~~)=
p' J=(j+j')

/ 3 & X IMMI',
~3 J=lj —j'I M

(55)
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where

(
~ )(j —i.+P)p

L,P, A,
4~ C(j LA, ;00)C (APj ';00)C(LPJ;MO) W(jLj 'P;M)[NL~i, &+( —1) NLMif3] (56)

This is the central result of this paper, invoking no ap-
proximations in evaluating the differential cross section
in the impulse approach, Eq. (23). The integrations and
summations become possible by separating angular parts
of all relevant expressions and repeated use of angular-
momentum identities. It should be noted that no as-
sumptions were necessary regarding the structure or the
properties of the t matrix. We have only invoked the
completeness of the spherical harmonics expansion, Eq.
(41), in arriving at this result. Equation (55) then consti-
tutes the full calculation of the differential cross section
in the impulse approach for any two-body potential.

To see how Eqs. (55) and (56) reduce to the PA, we
note that, in the PA, t" is assigned some fixed value in-
dependent of q3, i.e.,

t(q3 p»q) r "(p3 q)p

t() —Q4 t()
00 ~ PA (57)

all other tL'M =0, and we can set L, =0 and M =0 in Eq.
(56). Then,

C (OpJ;00)=5pJ,

C(jOA, ;00)=5.i,
W(jOj'J; jJ)=(jJ)

(58)

(59)

(60)

AT(s) ~/A~ p(s) t (s)
00jJ " J U'j', uj; J pA (61)

all other NLMj J
When Eqs. (57)—(61) are substituted in Eq. (55), we get

Thus L =M =0 is the only nonzero term in Eqs. (41) and
(42), and

dO . , I, 277
(j'+j]

pi g C'(jpj', 00)Plf,",' „gt'p'&+( —-1) f„",' „pt'p'~ l

~3 0=ii' —jl

Noting that p has the same parity as bj, we recover the
PA formula, Eq. (36). We have written —instead of =
in Eq. (61) to emphasize that N" is based on the aver-
aged isotropic component of t", whereas the PA evalu-
ates t" at a given fixed value of the spectator momen-
tum, and thus ignores the dependence on the molecular
momentum q3. One can take advantage of the
simplification afforded by the angular-momentum algebra
without completely sacrificing the q3 dependence of t"
by taking just the isotropic component of the t matrix,
leading to

Noo' J&0, (63)

all other XL'M J =0. We again recover the PA formalism,
with No(o' J replacing &4' ('t(p'j) in Eq. (62). We might
call this the isotropic approximation. Although the alge-
bra involved becomes the same, the numerical results
may be quite different.

V. COMPARISON OF THE EXACT AND PA RESULTS

In this section, we compare the results obtained by our
exact calculation [Eq. (55)] with those obtained by using
the PA [Eq. (36)]. We use both formulations to compute
the difFerential and total cross sections for the much-
studied process '

Li++ N~(U, j)~I.i+ +Nq(U', j') .

For homonuclear diatoms, the two amplitudes corre-
sponding to s =1,2 are equal in magnitude. The relative
phase of these amplitudes can be established by noting

& q) lr (1)lq) &(q3) = & qil t(2) lqi &(
—q3) (65)

giving

tLM ( ) rLM (66)

and

NLM), & ( —1) NLM
(1) I- (2) (67)

Since L +p must have the same parity as b,j for the
Clebsch-Gordan coefficients in Eq. (56) to be nonzero, the
last factor in that equation simplifies to

[NL'M, „L) + (
—1 ) NLM xp ]~ [ 1+(

—1 ) j]NL'Mi j3 . (68)

& q,
'

l
r "(e, ) l q, &—:r "(q,', q„e, ), (69)

where c., =q, /2p, „ is the relative translational energy of

Thus, 4j =odd transitions vanish, and the calculations
for the Aj =even processes are simplified.

The two-body interaction is represented by a hard-core
potential, for which the t matrix is available in a closed
form. ' Since this is the only potential used in the previ-
ous studies, a direct comparison of our results with those
of previous studies is possible. The two-body t-matrix
element is
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Eo =p, /2p3+q 3/2p»

=p,'/2p, +q, /2p, „. (70)

the two colliding atoms, I; and u, and is related to the
three-body kinetic energy Eo by the relation 10

0-17

~ v'=0 exact
o v'=0 peaking

Li — N 2

E = leV

v'=1 exact
a v'=1 peaking

The matrix elements in Eq. (69) are called half-on-energy
shells since the energy of the final state (q,'~ is not equal
to that of the initial state ~q, ), which has the physical en-
ergy. This choice of the t matrix is called the "post"
form. ' The other choice of the t matrix t "(q,', q„s,') is
called the "prior" form. Since 8,'—:q,

'
/2p, „&e„the two

sets of matrix elements can differ substantially under
some circumstances. This difference has been termed the
"post-prior discrepancy. "

The needed vibration-rotation wave functions for N~
were obtained by numerical integration of the
Schrodinger equation. The intramolecular potential
function used for N2 was constructed from spectroscopic
constants using the Rydberg-Klein-Rees method.

The computations are carried out as follows. The ma-
trix element t "'(qi, q„e, ) is evaluated using Eqs. (33) and
(39) of Eckelt et al. ,

' and the partial waves t& are
summed until the desired convergence is attained. We
use the exact expression for the angle between q& and

q& =q&+q. The range of interest for q, is given by

q, = [1—[m, /(m i +m2)][m3/(m2+m3 )]]p3
—[m 3/(m2+ m 3 )]q3, (71)

obtained by eliminating pi from Eqs. (16) and (18). It is
convenient to choose the coordinate axis so that q, the
momentum transferred, is along the z axis; p& is taken in
the z-x plane. pz —=p&+q, then, is also in the z-x plane at
the center-of-mass scattering angle 0. The range of q~ is
determined by the wave function of the initial state in the
momentum space, p(q3). The coefficients tLM(q3, p3, q)
are determined by integrating the product of
t"'(qI, q„)sand I'L3t($3) over the direction of q3, Eq.
(42). Subsequent integration over the magnitude q3 leads
to Kl~~, the radial component of the wave function of
the effective initial state P"', i.e., the initial-state wave
function modified by the t matrix, Eqs. (44) and (45). In-
tegration of ELM& over r, weighted by the amplitude of
the momentum transferred, q, and the final-state wave
function, Eq. (50), gives NL'M it3, the dynamical component
of the transition matrix between initial and final states,
Eq. (53).

The typical number of points required to obtain a
significant sixth figure is as follows: 64 points for the in-
tegration over the direction of $3 (eight points for the po-
lar angle and eight points for the azimuthal angle), 120
points for the magnitude of q~, and 70 points for the in-
tegration over r.

Now we study the excitation of N2 from the ground
state (U =0 and j=0) during collision with Li+. The ex-
act and PA results for this process, Eq. (64), at a relative
translational energy of 1 eV, are shown by plotting the
differential cross section, at a c.m. scattering angle of 30',
as a function of energy loss Ae=E„& E,', &

=(p3 p3 )/—

10
(o,0) — (v'.j')

08 =30

10
0.0 0.1

I

0.8
2r (~~)

0.3 0.4

FIG. 1. Differential cross section (cm ) for the exact and PA
calculations vs energy loss (eV) for the c.m. scattering angle of
30' and for the collision process I.i++Nz(u =0,j =0)
—+Li++Nz(u', j'), at an initial relative translational energy of 1

eV. The peaking calculation (c) for u'=0 and 4 for u'=1)
gives a larger cross section than the exact calculation (solid
symbols).

10O

0
V

10

0-QO

-81
0.5 O. B

0

v'=Z exact
o v'=Z peaking

Li —N 2
E „= leV

(0,o) — ( ', j')
08 =so

0.80.7
he (~~)

v'=3 exact
v'=3 peaking

jd

0.9 1.0

FIG. 2. Differential cross section {cm ) for the exact and PA
calculations vs energy loss (eV) for the c.m. scattering angle of
30' and for the collision process Li++ Nz(u =0,j=0)
~Li++Nz(u', j'), at an initial relative translational energy of 1

eV. The peaking calculation (o for u'=2 and A for u'=3}
gives a larger cross section than the exact calculation (solid
symbols}.

2pz, for v'=0 and 1 in Fig. 1 and v'=2 and 3 in Fig. 2.
The same differential cross section, at a c.m. scattering
angle of 150', is plotted as a function of energy loss for
v'=0 and 2 in Fig. 3, and for v'=1 and 3 in Fig. 4. The
hard-core radius for the Li -N two-body collision is tak-

0
en to be 1.62 A for this energy. ' For deexcitation pro-
cesses (As (0), we find, in Fig 5, th.at the PA, except for
small angles (where the IA is of dubious validity' ), un-
derestimates the exact IA results. Thus, we conclude
that the PA overestimates (underestimates) the exact IA
cross section for the excitation (deexcitation) process. It
is interesting to note that both the PA and exact calcula-
tions lead to the same general pattern for the differential
cross section. The oscillatory structure of the state-to-
state differential cross sections, especially the sharp final
peak calculated for each v' termed "rotational rainbow
structure, " is exhibited both by the PA and the exact
calculation. This similarity of patterns is a reAection of
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FIG. 3. Differential cross section (cm ) for the exact and PA
calculations vs energy loss (eV) for the c.m. scattering angle of
150' and for the collision process Li++ N2( v =0,j =0)
~Li +N2(u', j'), at an initial relative translational energy of 1

eV. The peaking calculation (0 for v'=0 and G for v'=2)
gives a larger cross section than the exact calculation (solid
symbols). Notice the larger rotational excitation than that for
30' scattering.

the fact that small LAO, M =0 terms in Eq. (56) interfere
with the dominant isotropic term. It has been pointed
out earlier' that keeping only the isotropic (L =0) term
has the same mathematical structure as the PA but with
a different t matrix. This interference between diFerent L
terms modifies the numerical value of the differential
cross section, keeping the general pattern intact. This
point is further discussed in Sec. VII.

Finally, we display the total cross section
o z-(00 - u'j') for the Li +Nz collisions at relative
translational energies of 1 eV (Fig. 6) and 10 eV (Fig 7). .
It should be noticed that for vibrationally inelastic col-
lisions the cross section increases rapidly at the thresh-
old, stays constant as higher rotational levels are popu-
lated with greater energy loss, and then falls rapidly. For

FIG. 5. Differential cross section (cm ) for the exact and PA
calculations as a function of the center-of-mass scattering angle
(deg) for the deexcitation process Li++N2(6, 6)~Li+
+N&(3, 12) at a relative translational energy of 1 eV.

I-eV relative translational energy and final vibrational
levels N2(u'=2 and 3), this fall occurs when the available
energy is almost totally depleted. This result is consistent
with the measurements of Loesch and Herschbach who,
in their work on crossed beams of Ar and CsI at collision
energies of 0.35 —1.1 eV, found peaks that "correspond to
an extremely inelastic 'ballistic' process in which most of
the initial relative translational energy goes into vibra-
tional or rotational excitation. " King, Loesch, and Her-
schbach reported similar observations from a crossed-
beam study of Ar and CsF at a relative kinetic energy of
0.66 ev. For N2(u'=0), the excitation cross section
drops off dramatically when about half of the available
translational energy goes into rotational energy. This is
because when momentum q is transferred to the mole-
cule, its rotational quantum number may be altered by up
to ~a, ~bq, where b is the internuclear distance of the dia-
tom, to conserve total angular momentum. Further, if
the molecule is initially moving slowly or is at rest in the
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FICz. 4. Difterential cross section (cm ) for the exact and PA
calculations vs energy loss (eV) for the c.m. scattering angle of
150' and for the collision process Li+ +N2(u =0,j =0)
~Li +N2(v', j'), at an initial relative translational energy of 1

eV. The peaking calculation ( o for u' = 1 and 5 for v' =3) gives
a larger cross section than the exact calculation (solid symbols).
Again, notice the larger rotational excitation than that for 30
scattering.

FIG. 6. Total cross section according to the exact calculation
as a function of energy loss for the collision of N2 with Li+, at a
relative translational energy of 1 eV. The molecule is initially in
the u =0 and j =0 states. Final vibrational states are denoted as
follows: o, u

' =0; 6, u
' =1;,u

' =2; and 0, u
' =3. Final rota-

tional states, j', increase sequentially from left to right, starting
with j'=0 in steps of 2. Notice that almost all the translational
energy may be converted into internal degrees of freedom.
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FIG. 7. Same as Fig. 5, but with E„i=10eV. Several final

vibrational states are shown, with symbols as defined in the
figure. A precipitous drop in the excitation cross sections is to
be noticed.

laboratory frame, it acquires [1/2(m, +mz)]q kinetic
energy to conserve the total linear momentum. The
physical picture that emerges is that if the momentum
transferred is comparable to the momentum of the center
of mass of the molecule, we observe the "ballistic"
phenomenon. On the other hand, when the momentum
transferred is much larger than the c.m. momentum and
the molecule is excited to very high rotational or vibra-
tional levels, not all the initial relative translational ener-
gy can be converted into internal energy. This feature
was evident in the experiment of Hershberger et al. ,
who observed that during the collisions of CO2 gas at
room temperature with energetic H, D„and Cl atoms, the
molecules excited to higher rotational levels are also the
ones moving at greater speeds.

VI. INTERNAL CONSISTENCY
OF THE CALCULATED CROSS SECTIONS

where p(i) and p(f ) are the densities of state in the initial
and final states; p and p' represent the incident Aux densi-
ties for the direct and reverse processes. It was shown

18earlier that the differential cross sections for the
rotational-vibrational excitation of N upon collision with.+ 2

Li do not satisfy SDB for small scattering angles. The
scattering amplitudes for the forward process using the

The previous sections have shown how to do an exact
calculation of the inelastic atom-diatom cross sections us-
ing the IA formalism. In this section, we check the re-
sults for internal consistency by testing them for semide-
tailed balancing (SDB).

The Hamiltonian is independent of time and quadratic
in momenta, and is, therefore, invariant under time rever-
sal (TR). This symmetry, together with space invariance

27requires that the exact scattering amplitudes obey the
SDB relation between the differential cross sections for
the forward and reverse processes, i.e.,

p [drr(E ~f)/d&]/p(f) =p'[dcJ(f ~I)!d&]/p(~ ),
(72)

post model of the two-body energy parameter and the re-
verse process using the prior model of the two-body ener-

gy parameter are the same (Appendix A), apart from an
overall sign factor and change in the sign of the magnetic
quantum numbers (m~ —m and m' —+ —m'). We have,
therefore, the general result that the differential cross sec-
tions for the forward and the reverse process are related
by the density-of-states factors. Thus, the failure of the
post model to satisfy SDB also implies the corresponding
failure of the prior model. That these two models are not
adequate for describing the collision process for all angles
is shown by the fact that the total scattering cross section
using these models for two-body energy is much less than
the geometric shadow. The "full" model' of the two-
body energy parameter zIA obeys SDB for all angles, but,
as has been noted earlier, ' suffers from other difficulties,
one being that the total calculated cross section is far in
excess of the geometric shadow.

For large scattering angles, the differential cross sec-
tion was shown' to be rather insensitive to the model
used for the two-body energy parameter z&A. This can be
understood as follows. The two-body scattering ampli-
tude from a hard-core potential for large scattering an-
gles, provided q, r, &)1, is constant, independent of col-
lision energy, as long as the ratio of the incident to the
final momentum stays the same (Fig. 8) (the two-body
scattering angle is denoted by P while the three-body
scattering angle is represented by (9). On the energy shell,
i.e., q, =q, , this value is r, /2. The equivalent classicalc2 ~ 28

process would be the energy-conserving on-the-energy-
shell process, one with ratio q, /q, '= 1. Using the relation

q,
'= —

(
—1)'q+q„and recalling that the z axis in this

calculation is taken along the momentum transfer vector

q, the on-the-energy-shell requirement becomes
—

(
—1)'2q„q+q =0, q„being the z component of q, .

The root q =0 corresponds to forward scattering with no
change of momentum, and in the classical picture it cor-
responds to no collision. The root q„=(—1)'—,'q, leading

to q,', =q„, corresponds to the situation in which the z
component of the incident momentum changes sign, and
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FIG. 8. Absolute value of the two-body scattering amplitude
divided by the range of the hard-core potential, as a function of
the two-body scattering angle P, for an incident momentum of

9 —110 cm . An asymptote of 0.5 is reached for the on-the-
energy-shell process.
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F(q)= fP*Pdq,

r * rexp —ia, qr r

=&fle
' '"ll), (77)

where f and i denote the molecular final and initial states.
This integral was evaluated earlier in Eqs. (28)—(35).
The integral in the second term of Eq. (76) is shown in
Appendix B to be q3, of Eq. (73) times form factor F(q).
The two-body t matrix now becomes

f p* t(q3)pdq3= t(0)+q3, r)t
(78)

0
F(q) .

0.25

This is analogous to the peaking result, Eqs. (28) or (30),
with tpA replaced by the expression in the large square
brackets. The remaining algebra for obtaining the
diff'erential cross section proceeds as in Eqs. (34)—(36).
This explains why the shapes of the PA and exact
differential cross sections are so similar.

A detailed comparison of the exact and analytical [Eq.
(78)] calculations (using the post model) is presented in

Fig. 11 for the collision of N2 with Li+. The analytical
method of approximating the differential cross section
has been found to agree with the exact calculation over a
wide range of parameters when the two-body t matrix can
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FIG. 11. Exact and analytical [based on Eq. (78)] difFerential
cross sections, as a function of the c.m. scattering angle, for the
collision of N2 with Li+ at a relative translational energy of 1

eV, for the transition (0,0—+1,6).

VIII. COMPARISON OF THE COMPUTED
AND EXPERIMENTAL RESULTS

be represented by the two-term expansion of Eq. (75).
For the deexcitation processes, the analytical approxima-
tion also shows good agreement with the exact calcula-
tion, if the prior, rather than the post, model of the two-
body t matrix is used. The post-prior discrepancy is like-
ly to disappear for sma11er angles as we11 upon the in-
clusion of the multiple-collision terms.
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We compare the results of our computations with the
30measurements of Bottner, Ross, and Toennies, who

crossed a Li+ ion beam with a N& or CO beam. Figures
12 and 13 compare the total differential cross section as a
function of the CM scattering angle at a relative transla-
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FIG. 10. (a) Real and (b) imaginary parts of the two-body
scattering amplitude as a function of q3„ the component of the
internal momentum along the momentum transfer vector q for
post, prior, and full models of the two-body energy parameter
2 IA
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FIG. 12. Measured (solid circles) and calculated (open cir-
cles) total differential cross sections for the collision of N2(0, 2)
with Li+, at a relative translational energy of 3.64 eV, as a func-
tion of the center-of-mass scattering angle. The experimental
results, since they are not given in absolute units, are normal-
ized to agree with the calculated ones at a scattering angle of
100. We note that a substantial amount of energy goes into
higher vibrational levels. Cross sections for the final vibrational
levels, summed over the final rotational levels, are v'=0(A),
u'=1( ), u'=2(0), u'=3(V), u'=4(+), u'=5l X), and
'=6(+).
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IX. CONCLUSIONS
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FIG. 13. Same as Fig. 12, except that the molecule is CO and
the experimental points are now given in absolute units, the nor-
malization being provided by the Nz result of Fig. 12. The
agreement of the calculation with the measurements is excel-
lent.
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tional energy of 3.64 eV for N2 and CO, respectively.
Measured cross sections are scaled to coincide with the
calculated ones for N2 at a scattering angle of 100'. As
can be readily seen from the figures, the calculated and
measured cross sections are in very good agreement for
large angles. We give the contribution of various final vi-
brational levels to the total diA'erential cross section. Fi-
nally, we plot (Fig. 14) differential cross sections for 49.2'
at a relative translational energy of 4.23 eV as a function
of the final rotational level (j') for the U'=0 and U'=1
levels of N2. The calculated results have a very narrow
distribution and are peaked at much higher rotational
levels than the experimental data. Similar results were
obtained for Li+ and CO collisions. These results are
largely a reAection of the hard-core two-body potential,
which gives large and narrow momentum transfer
( —1)'(q/2)=q„= —q,*, . A more realistic potential may
give more reasonable results.

A rather complete description of the exact formulation
of the IA and its validity is given. On the formal side, the
inclusion of the double and higher collision terms in the
calculation, to be considered next, may render the formu-
lation self-consistent for smaller scattering angles. It is
pertinent to point out here that the IA is not an approxi-
mation to fully quantum coupled states or classical trajec-
tory calculations. When the time duration of the col-
lision is much smaller than the period of the characteris-
tic motion of the diatom, the IA appears to be a more ap-
propriate theory. In fact, classical trajectory calculations
"so far have not been ab1e to explain the observed distri-
butions in rotationa1 transition probabilities, consistently
yielding distributions that are too narrow and peaked at
smaller values (j= 10) than observed in the experiments
(j=30)". ' This conclusion was also arrived at by Hersh-
berger et a/. More realistic two-body potentials are
currently being investigated in an attempt to use the IA
to understand experiments involving large vibrational-
rotational inelasticities.

The approach to vibration-rotation energy-transfer
processes discussed here was first outlined by Landau and
Teller, who performed a one-dimensional calculation to
obtain the vibration to translation rate coeScients. Sub-
sequent authors, most notably Schwartz, Slawsky, and
Herzfeld, have expanded on the Landau-Teller work,
however still keeping it a one-dimensional calculation.
We have examined the basic ideas of these authors in the
IA framework, elucidating the physics involved and for-
mulating it in three dimensions to demonstrate the im-
portant role that the rotational degrees of freedom play
in these processes. Our formulation treats the internal
momentum of the diatom due to vibrational and rotation-
al motion, q3, on an equal footing with the relative
translational momentum, p3. This makes it possible for
us to apply our calculation to collisions involving the in-
tramolecular transfer of vibrational energy into rotational
energy, and the transfer of rotational energy into vibra-
tional energy, as would be the case in a shock-tube experi-
ment. By doing an exact calculation on a simple poten-
tial, we have also been able to define the range of applica-
bility of our calculation and the steps needed to extend
this range.
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APPENDIX A

The post model of the two-body t matrix upon time re-
versal (Tlt ) changes to the prior model and vice versa.
This is seen by noting that incoming (outgoing) momenta
become outgoing (incoming) momenta with a minus sign.
Then,

FICs. 14. Measured and calculated differential cross sections
for the collision of N&(0, 2) with Li, with a relative translation-
al energy of 7.07 eV, at a center-of-mass scattering angle of 49.2
for final vibrational levels 0 and 1. The peak of the vibrationally
elastic (U'=0) measured cross section is normalized to agree
with the corresponding calculated cross section.

2

Tzt „,(q, ~q,')=TRt q, ~q,';E=E, =
2Pt.u

I=—tprior( qs ~ 'qs ) '
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Similarly,

Tii r pz&pp ( q, ~q,
'

) = &,o., ( —q,
' ~—q, ) (A2)

Combining Eqs. (A4) and (A5), we get

A„„,(u'j' —m', p' —+uj —m, p)

( —q3)=( —1) p, ) (q3), (A3)

The wave functions are transformed under time rever-
sal in the usual way. Note, however, that the momen-
tum transfer vector is invariant under Tz,
q:—p3

—p3= —
p3

—
(
—p3). Invoking the property of the

wave functions in momentum space,

=( —1)~ ' A„„„(ujm,p~u'j'm', p') .

(A6)

Taking the absolute square of both sides of Eq. (A6) and
summing over m and m' leads to the desired relation be-
tween the forward and reverse processes.

it is straightforward to see, by a simple change of vari-
ables in Eq. (22), that the scattering amplitude for the for-
ward process using the prior model of the two-body ener-
gy parameter is related to that of the reverse process us-
ing the post model,

A „„(ujm,p~u'j'm', p')

APPENDIX B

We prove the relationship

SC f ~3z i q3

;Jq3
(81)

=( —1) A „,(u'j' —m', —p' —+uj —m, —p) .

(A4)

Using the space inversion invariance (which changes
the sign of linear momenta), we have

A „,(u'j' —m', —p'~uj —m, —p)

=( —1)~ ~A „(u'j' —m', p' —+uj —m, p) .

(A5)

in this appendix. %e start by rewriting the numerator in
Eq. (Bl) as

f P* q3, $dq3= f dr/* (r)exp( —ia, q r)q3, $(r)

=(j'~e '
"q„~i& .

This is proved by using the defining relation for p;(q3),
the molecular wave function in the momentum space in
terms of f;(r), and the molecular wave function in the
coordinate space,

f'(q3)=(2ir) f q3, exp[i(q3, x +q3yy +q„z )]P, (r)dr

=(2') f dx dy exp[i(q3 x+q3yy)] f dz i ex—p(iq3, z) P;(r) . (83)

Integrating by parts, we get
1H= (q3 +q3~+Q3, )+ V(r, z),

2p&z
(86)

. aJz l exp i/3 z; r
az

= —f exp(iq„z) i g, (r) dz . —

Writing the defining relation for P&(q3), recalling that
q3 q3 +a, q, and then integrating over q3 we get Eq.
(82), with

where p, z is the reduced mass and r &z is the internuclear
distance of the diatom, we can rewrite Eq. (85) as

cx q
[exp( —i a, qz ),H] = —exp( —i a, qz ) (a, q + 2q&, ),

2p, z

g33' az

Then, the exponential acts as a translation operator,

exp( —i a, qz )f(qi, )exp(i a, qz ) =f(q3, —a, q), (85)

giving

P&z
exp( i a, qz )q3, = —— [exp( i a, qz ),H ]-

S

0!qg—exp( i a, qz )—
because the momentum operator q3, is conjugate to the
coordinate operator z. Recalling that the Hamiltonian
operator for the diatom is (setting A'=1)

The matrix elements of the right-hand side of Eq. (88) be-
tween the initial and final states give Eq. (Bl).
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~Philipp et al. (Ref. 12) have studied the collisions of Li+ with

N2(u), u ~ 3 and j =0, at a relative translational energy of 2
eV using the IA and conclude the following: "The important
result is that there is considerable energy transfer between
translational and vibro-rotational degrees of freedom, but no
transfer from vibration to rotation. " These authors define en-

ergy transfer as

(O'I'~vO)do

U, J

a quantity one would more reasonably call the auerage energy
transfer. It is clear from their Fig. 1 that for u )0 and Ac & 0,
i.e., when translational energy increases, rotational reso-
nances corresponding to V to R energy transfer are observed.
Further, as v increases, these resonances become broader, in-

dicating that a larger amount of energy is being transferred
from V to R. There is a great deal of cancellation between
the positive and negative components of hc, with the result
being that the average energy transfer is independent of u.

The conclusion then should have been as follows: Although a
great deal of energy may be transferred between vibration and
rotation in individual collisions, on the auerage, in hyper-
thermal collisions, no energy is transferred from vibration to
rotation. For thermal collisions involving a highly excited vi-

brationally and/or rotationally excited molecule, this con-
clusion may not hold because of the lack of energy transfer
from translational to internal degrees of freedom. That the
rotational energy can also be converted into vibrational ener-

gy may easily be seen from Fig. 5 of Philipp, Korsch, and
Eckelt (PKE). The top panel shows a plot of a differential
cross section at a scattering angle of 90' for a N~-Li+ collision
as a function of the final state of the molecule, the initial state
being j =34 and u =0. The threshold for exciting the u =2
level is seen to be lowered from 0.584 eV to about 0.35 eV,
showing that nearly 0.23 eV out of 0.30 eV of R energy is
converted into V energy.


