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Analytic results for wetting transitions in the presence of van der Waals tails
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We present a systematic study of the wetting behavior of a one-component fluid at a wall and of
interfacial wetting in binary liquid mixtures by taking into account all aspects of the long-range

character of the van der Waals interactions between the particles. The corresponding e6'ective in-

terface potential is expressed in terms of those free interfacial profiles that emerge as a consequence

of the wetting phenomena. This approach goes beyond previous ones, because we take into account

the van der Waals tails of these interfaces, and in the one-component case the structure of the

emerging wall-liquid interface. In addition, we discuss the distortion of the actual interface

profile —compared with the corresponding free one —caused by a finite thickness of the wetting

film. The analytic results allow us to draw conclusions about both the value of the wetting transi-

tion temperature for second-order wetting transitions and the size of the critical region for such a

transition as well as about the onset of critical adsorption. We also present the exact expressions for

the leading van der Waals tails of the liquid-gas, wall-liquid, and wall-gas interfaces in a one-

component system as well as for interfaces in binary liquid mixtures. We find that at a critical wet-

ting transition of the wall-gas interfaces, the wall-liquid interface profile undergoes a qualitative

structural change.

I. INTRODUCTION

Over a certain range of temperature T and chemical
potentials p; for various species I =1,2, . . . , a given
physical system can exhibit two distinct phases o. and y
of condensed matter that are in thermal equilibrium with
each other. Such values of p; and T allow one to impose
boundary conditions such that at z = —~ the o. phase is
present and at z =+ ~ the y phase is present. As a
consequence, an a-y interface is formed so that, as de-
scribed by interfacial profiles, the physical properties of
the system vary smoothly between their corresponding
bulk values in the a and y phases. By additional bound-
ary conditions in the parallel direction r~~, or by external
fields like, e.g. , gravity, we fix the mean position of the
n-y interface to be located at z=O, which we call the
center of the free a-y interface, i.e., all other possible in-
terfaces or boundaries are macroscopically far away from
the center at z=O.

Suppose now that for this configuration the chemical
potentials p; are changed at constant temperature in such
a way that for p; ~p; 0( T), a third phase p becomes ther-
modynamically stable at a triple line p, ;0(T) of three-
phase coexistence between a, /3, and y. It may be that
above a certain temperature T = T this change of chem-
ical potentials causes a phase transition within the inter-
facial structure such that a /3-like film of thickness
10(T,p,;) is formed at z=O, which diverges smoothly at
p;=p;o. As a consequence of this so-called complete
wetting transition at p; o, the n-y interface splits —by the
intrusion of a macroscopically thick layer of the P

phase —into the two free a-P and /3-y interfaces. Below
T, lo remains finite in the limit p,. —+p,. 0 and the o.-y in-
terface is not wetted by the P phase. Consequently, along
the triple line p;0(T) T is the locus of a wetting transi-
tion at three-phase coexistence such that
lp( T):lp( T p. p( T) ) & ~ for T & T„and infinite for
T & T . Accordingly above T and at three-phase coex-
istence p; =p;o the three possible surface tensions fulfill
Antonov's rule, i.e., o &=a &+o-&z, whereas for T & T
one has o r &o &+a&r. If at T lp(T) jumps to its
infinite value one has a first-order wetting transition; oth-
erwise one has a continuous wetting transition called crit-
ical wetting. There have been numerous efforts to detect
these interfacial phase transitions experimentally and to
understand them on the basis of statistical mechanics.
The present status of this rapidly growing and delicate
body of research has been reviewed recently. '

Here we focus on those two physical systems which,
for these wetting phenomena, are the most important
ones both from a conceptual and a practical point of
view. ?n the first case o. is an inert wall and y is the gas
phase of a one-component (i = 1) fiuid, which coexists
along the gas-liquid coexistence line pp( T) with the liquid
phase P; pp( T) ends at the critical point ( T„p, ). The
second system is a binary liquid mixture composed of two
species 3 and 8 corresponding to i = 1 and 2, respective-
ly. In this case a is the A-rich liquid, /3 the B-rich liquid,
and y is the vapor. They coexist along a triple line
( T Pi p( T) P2 p( T) ) which ends at a critical end Point
(TcEp p1, (T0cEp) p'2, 0(TcEp))
tween the a and P phases vanishes. In both systems all
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particles interact via long-range forces that decay
—~r

—r'~ for large separations between them. (We ig-
nore retardation effects. ) Here we focus on the infiuence
of this long range of the interactions on the aforemen-
tioned interfacial structures.

It has turned out that a particularly transparent
analysis of these wetting phenomena can be obtained
from the knowledge of the so-called effective interface po-
tential Q, (l). This function represents the a-y surface
tension under the restriction that at the interface position
a /3-like film of thickness l is present. The actual surface
tension and the actual thickness lo minimize A, (l):
o. =minify, (l)=II, (l =lo). Since A, (l = ~ )=o
+o.

& the characteristic features of critical and complete
wetting —for which lo diverges smoothly —are deter-
mined by the asymptotic behavior of Q, (l) for large l (see
Fig. 3.2 in Ref. 1).

Thus the central theoretical problem is to compute the
effective interface potential as a function of l, T, and p,
and as a functional of the atomic interaction potentials.
Until now only approximate solutions of this problem
were known. In the case of critical and complete wetting
the free a-/3 and /3-y interfaces emerge continuously out
of the cx-y interface structure. Thus it is natural to try to
parametrize the aforementioned restricted interface
profile, which at its center contains a P-like film of thick-
ness l, in terms of these two free interfaces forced to be a
distance l apart from each other. The surface free energy
of this configuration yields an approximate value for
Q, (l).

Thus far, even within this approximation scheme, no
exact solution was found. Instead, various further ap-
proximations were applied and the following five results
were obtained.

(i) The first approach was devoted to the study of criti-
cal wetting of a wall on the basis of a continuous
Landau-Ginzburg functional that corresponds to particu-
larly short-range forces. There the authors positioned
the analytically known free /3-y interface at z =l and
truncated it at the wall z=0. The a-/3 interface was treat-
ed simply as a step function —8(z). Due to resorting to
the Landau-Ginzburg theory the resulting Q, (l) no
longer contains the explicit information about the micro-
scopic interaction potentials.

(ii) Later on, the wetting of a wall with an exponential-
ly decaying substrate potential by a Quid with also ex-
ponentially decaying interatomic forces was studied by a
density functional. This approach allows one to follow
directly the dependences on the details of atomic forces.
Indeed, by applying the same additional approximations
as in (i) surprising subtleties have been discovered.

The derivation of these two analytic results (i) and (ii)
is based on the knowledge of the explicit analytic form of
the free /3-y interface profile. However, in the presence
of the experimentally relevant long-range van der Waals
interactions this is no longer available. Thus much more
severe approximations had to be made in order to still ob-
tain analytic results for this substantially more dificult
problem.

(iii) Significant progress could be made by applying the

so-called sharp-kink approximation ' to lattice-gas mod-
els for the wetting of a wall and to continuous density
functionals for both the wetting of a wall by a one-
component system as well as by a binary liquid mixture
and for interfacial wetting in binary liquid mixtures. In
this approach both the free a-P and the /3-y interface
profile are replaced by step functions -6(z —d ) and
—6(z —l ), respectively. To a certain extent this ap-
proach treats the a-/3 interface somewhat better than
those in (i) and (ii), because in an approximate way it
takes into account the fact that near the wall the hard-
core repulsion causes the Auid density to vanish at z =d
which is given by the sum of the radii of the substrate
and the Quid particles.

(iv) At first glance the sharp-kink approximation seems
to be very crude. Nonetheless, it yields surprisingly reli-
able predictions even near T, where the central width g
of the smooth variation of the P-y interface diverges.
This puzzle has been resolved by applying the improved
soft-kink approximation. In this approach the full
smooth variation of the free /3-y interface around its
center is taken into account within a fixed and finite
width g given by the bulk correlation length; outside this
width the free /3-y interface profile is again replaced by its
constant bulk values. It has turned out that the smooth-
ness of the free /3-y interface on this scale g is
insignificant for the order of the wetting transition and
for the transition temperature of critical wetting.

(v) The soft-kink approximation suppresses the smooth
variations of the /3-y interface outside its center, which in
the case of long-range forces are known as van der Waals
tails. Recently the present authors indicated for the wet-
ting of a wall that also this feature of the free /3-y inter-
face can be incorporated analytically into the effective in-
terface potential. ' Within this approach for z & d the
restricted interface profile is taken to be the full free /3-y
interface profile, including its tails, positioned at z = l; for
z ~ d, it vanishes abruptly.

In this paper we derive and present these latter results
(Sec. II) and we extend them to the case of interfacial
wetting in binary liquid mixtures (Sec. III). In addition,
we go even two steps further by taking into account also
the smooth variation of the a-/3 interface profile together
with its own van der Waals tail on the /3 side and by tak-
ing into account the fact that the restricted interface
profile is not simply given by the two free a-/3 and /3-y in-
terfaces a distance l apart from each other. As a by-
product we present the exact expressions for the leading
van der Waals tails of the gas-liquid, wall-liquid, and
wall-gas interfaces in a one-component system as well as
for the interfaces in binary liquid mixtures. In Sec. IV we
summarize and discuss the effects of these van der Waals
tails on the various wetting phenomena. Certain techni-
cal but nonetheless important points are explained in Ap-
pendixes A and B.

We pursue these goals by applying a density-functional
theory (see Secs. II and III). Although in principle this is
an exact formalism, " its actual implementation corre-
sponds to a mean-field approximation. Consequently, we
discard both those fluctuations, which cause bulk proper-
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ties to deviate from their classical behavior near critical
points, and capillary waves of the emerging iz-P and I3-y
interfaces. Whereas in the present context the former
Auctuations are only relevant in the case of a close vicini-
ty of T and T„ the capillary waves are excited even at
low temperatures. However, in the presence of long-
range forces —as they govern the Auid systems con-
sidered here —the capillary waves are known to be ir-
relevant for the thermal singularities of continuous wet-
ting transitions. ' Furthermore, in real systems gravity
suppresses the buildup of capillary waves with arbitrarily
long wavelengths which are not captured by a mean-field
description. Correspondingly, in the presence of gravity
any actual density profile is given by a convolution of the
so-called intrinsic density profile with a Gaussian distri-
bution of the mean interface position [see the discussion
of Eq. (2.39) in Ref. 9]. In this sense here and in the fol-
lowing we analyze the mean-field approximation of the
intrinsic density profile. Within mean-field theory and in
the presence of long-range forces the calculation of such
intrinsic interfacial profiles is restricted to numerical
solutions and therefore a transparent full scan of the
whole parameter space of the intermolecular interactions
is out of reach (see Refs. 1 and 2 and references therein).
In this paper, however, we strive for filling this gap and
for gaining a maximum of analytic insight into the wet-
ting behavior of Auid systems with long-range forces.
(We restrict our analysis to temperatures above the melt-
ing point of the wetting phases, i.e., we do not discuss the
formation of solid phases. ) Thus we conclude that above
the triple point T, and outside the narrow critical region
below T, of the Auid phases our density-functional ap-
proach yields reliable results. In addition, we keep full
access to the dependences on all details of the microscop-
ic interaction potentials, which are essential for the un-
derstanding of wetting phenomena. '

Moreover, we also analyze the implications of our re-
sults when they are extended into the aforementioned
critical region around T, . These particular findings must
be regarded as a lowest-order estimate for those which
would follow from a more complete theory incorporating
the bulk critical phenomena. However, up to now such a
complete theory for both bulk critical phenomena and
wetting phenomena, including microscopic details, does
not exist. It may be that the replacement of classical
values of critical exponents by the correct three-
dimensional ones improves our expressions within the
critical region. But this does not incorporate the bulk
critical phenomena systematically.

Thus at present this is the most adequate, manageable
approach for the problem under consideration. Only nu-
merical simulations thereof (see Sec. III D in Ref. 1 for a
list of relevant references) seem to require less approxi-
mations. However, all of them are restricted to the study
of systems with basically short-range forces. Even with
special purpose computers the finite size of the simulated
systems requires a cutoff of the interaction potentials at
2.5o., where o. is the hard-core diameter of the Auid parti-
cles. ' Consequently, such an approach necessarily
misses just those long-range features that are of crucial
importance for the wetting behavior in Auids. Moreover,

these simulations are again applicable only for a very
small subset of interaction parameters.

II. WETTING OF A WALL
BY A ONE-COMPONENT FLUID

According to the Introduction the interface between a
solid wall and the gas phase of a simple one-component
Auid may be wetted by the liquid phase via complete wet-
ting upon approaching the gas-liquid coexistence curve
po(T) from the gas side p(po(T) or via critical or first-
order wetting upon approaching T, along the gas side of
the gas-liquid coexistence curve. These kinds of interfa-
cial phase transitions at a wall are not only of great ex-
perimental and technical importance but they offer also a
particularly clear and transparent statement of the
theoretical problem because the position of the o.-y inter-
face is prescribed and fixed geometrically.

A. Density functional

As stated in Sec. I we start from the following density
functional for inhomogeneous Auid systems

0[ I p(r) };Tp; I w ( lr —r'l ) },I V(r) }]

p r T

+ ,' f d —rf d r'w( ~r
—r'~ )p(r)p(r')

+f d r [p„V(r)—p]p(r) . (2.1)

Q[Ip(r)};T,p, ] is the grand canonical potential for a
given number density p(r) of the fluid, which is confined
to the half-space V+ =Ir=(r~~, z)HR ~z ~0}. The fiuid
particles interact via spherically symmetric pair potential
w (r), which are attractive at large distances r where they
decay —r . Their divergent repulsive part at small dis-
tances is treated by the introduction of a reference system
of hard spheres with diameter ro. f&(p, T) is the bulk
Helmholtz free-energy density of a homogeneous refer-
ence system with number density p. According to the
Weeks-Chandler-Andersen theory' one has w(r ~ ro )

=w (r) where ro is the position of the minimum of w(r);
w(r &ro)=w(ro)=—w(ro). The optimum choice for the
hard-sphere diameter ro is determined by a certain corre-
lation function. It depends on Iw(r ~ro)}, the mean
density p, and temperature T. ' In our subsequent dis-
cussion of the effective interace potential Q, (l) for thick
wetting films neither the explicit form of w(r (ro) nor of
fh(p, T) will enter. Therefore we do not embark further
into these details and we only state that Eq. (2.1) is
uniquely determined by the interaction w (r) between the
fluid particles and the substrate potential p V(r). For
convenience in the latter one we introduce the mean
number density p of the wall. Since the corrugation
effects in the substrate potential decay exponentially'
and since we are interested in the power-law behavior of
Q, (1)—0, ( ~ ) for large l we ignore the dependence of V
on r~~ so that V(r)—:V(z). Consequently, the actual den-

sity profile po[z; T,p; I w(r)}, [ V(z) }],which minimizes
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A[[p(r)I;T,p] for a given boundary condition at
z =+~, depends on the spatial variables only through
the distance z from the wall. The wall occupies the half-
space V =[rER ~z~OI so that V(z)-z for large z.
z=O is given by the mean position of the nuclei of the top
substrate layer. Thus the Quid density vanishes for z ~ d„
where d is given by the sum of the radii of the Auid par-
ticles and of the substrate particles. ' ' The actual grand
canonical potential A[Tp, [w(r)I, [ V(z)I] is the
minimum value of Eq. (2.1) at p( r )

=p [z; T p; [w (r) I, [ V(z) I ].
Before we proceed let us briefly mention the limitations

of Eq. (2.1). First, as mentioned in the Introduction, it
yields classical critical exponents near T, . Second, Eq.
(2.1) does not allow for the formation of a solid phase. In
the derivation of Eq. (2.1) the two-particle density of the
reference system is replaced by its asymptotic form
p(r)p(r') for ~r —r'~ ~ ~ and the free energy of the inho-
mogeneous reference system is evaluated in the local-
density approximation by using the free-energy density
for a homogeneous reference Quid. As an approximate
analytic expression for fz(p, T) one may adopt the
Percus- Yevick formula' ' or the Carnahan-Starling' ' '

formula, which, however, are not capable of describing
the freezing transition of the hard-sphere reference sys-
tem. (Up to now no analytic expression for this freezing
transition is known. ) Here, however, we focus only on
Quid phases, i.e., T ) T, . Thus in our context the main
deficiency of Eq. (2.1) consists in the absence of density
oscillations near the wall caused by packing eff'ects (see
Sec. III 8 of Ref. 1 for a list of the relevant references).
Here we ignore them because we are interested in the
algebraic decay of A, (l) —A, ( ~ ) for large l and because
these density oscillations decay exponentially even in the
presence of long-range van der Waals interactions.
This is a reasonable approximation for the continuous
wetting transitions we are considering here. However, in
the case of first-order wetting transitions, for which the

I

behavior A, (l) at small values of 1 may be important, it is
indispensable to take these density oscillations into ac-
count. ' The application of the weighted density-
functional theory to inhomogeneous systems may prove
to be a promising way to solve such problems.

B. Structure of the wall-Auid interface

and

Ab[p; T p; [w (r)j]=fh(p, T)+ ,'wop' pp——(2.3)

W0 — dZ N Z (2.4)

with

w(z)= f d r~~w[(r~~+z )' ] . (2.5)

(Recall that w and the hard-core diameter ro entering fh
are determined by w. ) Equation (2.2) holds for all density
profiles which attain the constant value pz for z~+ ~
rapidly enough so that the integrals, which determine
A, [[p(z) I ], exist. Under this condition one obtains

According to our general approach described in the In-
troduction we want to understand the wall-gas interface,
which includes a thick liquidlike layer, in terms of the
emerging free wall-liquid and liquid-gas interfaces. Thus
in the following we describe brieAy the predictions of Eq.
(2.1) for the latter two interfacial structures.

Let us first separate Eq. (2.1) into the bulk contribution
—V+ and into the surface contribution —3, where 3 is

the surface area of the wall,

A[[p( )l T p. [w( )I [V(z)I]
= V+A„[p~; T, IJ, ; [w(r)I ]

+HA, [[p(z)I;T)p;[w(r)I, [V(z)I], (22)

where

A,'~'[[p(z)I;Tp; [w(r)I, [ V(z)I]= f dz[f (ph(z), T) f~(p, T)]+—,
' f—dz f dz'w(~z —z' )5p (z)5p (z')

0 0 0

+ f dz(p~wo —p)5p (z) —p f dz t (z)5pr(z) ,'pr f—d—z t (z)
0 0 0

+p dzVzpz
0

(2.6)

with 5p (z)=p(z) —
pr and

t(z)= f dz'w(z') . (2.7)
Z

Note that w0=2t(0) and that we consider only such
density profiles p(z) which vanish rapidly enough for
z~O so that the last integral in Eq. (2.6) exists. For
given values of p and T the actual bulk density
po(T, p;wo, ro) minimizes Eq. (2.3) and yields the bulk
grand potential. For p~ po(T) pz is the gas density pg
and for p po(T) it is the liquid density p&.

Thus for p~ po(T) and p =p& the wall-liquid surface
tension o.

I is the minimum of 0, :

~A oop=
&

(p i(z), T) + dz'w(~z —z'~)p I(z')
BP 0

+p V(z) . (2.9)

Similarly for p~ po(T) and with p =p Eq. (2.6) yields
the wall-gas surface tension o. and the actual wall-gas

~„,[T,~; [ w(r) ], [ V(z) I ]

=min~ ~, ~~
A,' '[[p(z)I;T p, ;[w(r)I, [ V(z)I] . (2.8)

Indeed 5A,'r'[[p(z)I]/5p(z)=0 leads to the known in-
tegral equation for the actual wall-liquid interface profile
p i [z T S [ w (&) ] [ V«) I ]:



43 ANALYTIC RESULTS FOR WETTING TRANSITIONS IN THE. . . 1865

p~, (z)-exp[ —p V(z)/(kii T)] . (2.10)

interface profile p g[z;T,p, ;Ito(r)I, t V(z)J]. Figure 1(a)
shows the qualitative behavior of p &(z) as the solution of
Eq. (2.9). For z~O V(z) diverges and p &(z) vanishes.
In this limit Eq. (2.9) yields

For a strong substrate potential p &(z) rises above p& and
finally approaches p& for z ~ ac from above. Thus p &(z)

can be represented as

q(z), z~g
(2.1 1)

Pwl 'p + y Q(l)z k z
k=3

p (z)
WP

g(Y) -33'

Here, without further specification, q (z) describes the
variation of p &(z) close to the wall. For z larger than g,
which is proportional to the bulk correlation length,

p &(z) approaches p& via van der Waals tails.
This latter behavior can be confirmed by analyzing Eq.

(2.9) along the lines of Ref. 24. As an exact result one
finds

Q3 —Pl (pw u 3 pl t3 )Kr( I) 2 ( I) (2.12)

0
0

I

Z

Here ~~ is the isothermal compressibility
VN (dN/Bp, ) = —V '(BV/Bp) of the liquid with

p& =p&(p, T) (p is the pressure and N is the mean number
of particles):

a'
iver =pi 2 (pi T)+too(I) —2

Bp
(2.13)

0 3 and t3 characterize the leading asymptotic behavior of
the substrate potential and the fluid-fluid interaction, re-
spectively:

pshk( j V(z) = —g u„z k, z»zo
k~3

(2.14)

-A("iz i
3

p
g

0

(g) -3

3

FICr. l. Qualitative behavior of the wall-fiuid interface profile
(a) p ~(z) and of the free liquid-gas interface profile (b) p«(z).
In (a) p„~(z) vanishes for z~O with an essential singularity,
reaches a maximum at z =zo, which may coincide with the
minimum of V(z), and decays —Q'3~'z towards the bulk value

p~ at z =+ ~ with y=l or g. The asymptotic behavior of
p (z) starts for z ~g. Q',~' can also be negative so that p (z)
approaches p~ from below (see Fig. 2). In (b) p«(z) reaches pI as
A3" ~z~ for z~ —oo and p~ as AI3g'z for z~+ oo. The
main variation of p&s(z) occurs in a slab of thickness 2g around
its center z* located at z=O. p'""(z)=pIe( —z)+pge(z) is the
sharp-kink approximation for p, (z). For T~ T, g diverges
both in (a) and (b), p~~p„and pi —pg~O. The coefficients
A 3

' are always positive. In (a) and for y =l the difference be-
tween the positively and the negatively marked area divided by
p& is a microscopic length d'&' which enters the coefficients of
the effective interface potential [cf. Eq. (2.36)]. In (b) the
difference between the positively and the negatively marked
area divided by pI —

pg is a microscopic length d&~" correspond-
ing to the free liquid-gas interface [cf. Eq. (2.37)]. The value of
d' I' is uniquely fixed, whereas dIg" depends on the choice of z*.

where zo is the position of the minimum of V(z) and

t(z)= —g t„z ", z»r, .
k~3

(2.15)

Note that Q3" is dimensionless and diverges, within
mean-field theory, —t ' for t =(T, —T)/T, ~O along
the coexistence line po(T). Nonetheless these van der
Waals tails become irrelevant close to T, since
Q'"z (Q'"g -t 't+ -t' ~0. This must be the
case because near T, the long-range van der Waals in-
teractions -r as well as all subdominant power-law
contributions are irrelevant compared with short-range
forces. In addition, for g~ ao also the power-law con-
tributions of V(z), i.e., all uk with k 3, become ir-
relevant, because close to T„ in the sense of the
renormalization-group theory, V(z) is equivalent to a lo-
calized surface field —5(z). At T, critical adsorption
occurs such that p &(z) —p, -z ' for z~ac within
mean-field theory. In general, one finds p &

—p, -z
where @=0.33 and v=0.63 are the standard bulk critical
exponents. This shows again that at T, the van der
Waals tails -z are irrelevant compared with the decay
-z ~~' of the critical density profile. (On the gas side
critical adsorption means that the equilibrium thickness
of the wetting layer is proportional to the diverging bulk
correlation length. )

At this stage it is interesting to compare Eq. (2.12),
which holds on the liquid side of the coexistence line
po(T), with the effective interface potential Q, (l) for the
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A, (l) =o t +o.
i +co(l), (2.16)

restricted wall-gas interface, which is valid on the gas
side of po( T). At coexistence one has' [cf. Eqs. (2.29) and
(2.30)]

teraction parameters (see above and Ref. 27) in the fol-
lowing we concentrate on the wetting phenomena. Thus
we take p & po( T) so that o t is nonsingular. In Fig. 2 we
summarize our findings for the asymptotic behavior of
the wa11-fluid interface profile. There we also include a
discussion of the wall-gas interface. The same arguments
as above show that

co(l)= g akl
k~2

for i )g. One finds with EP =pi —
p

a~= ,'Ap(p—„u3 ptt3) —.

(2.17)

(2.18)

o.„s(z~~ )=p +Q(3s'z +
with

(2.20)

We shall show later that Eq. (2.18) is an exact expression
for the leading term of the effective interface potential [cf.
Eq. (2.31)]. Thus the asymptotic behavior of the wall-
liquid interface profile can be expressed in terms of the
asymptotic behavior of the effective interface potential
for the restricted wall-gas surface tension:

p,{&)

p

)
&0

Q(l) 2( )
—1 2 (I) (2.19)

Note that Q3
' and a2 have the same sign and that the im-

portant factor p u3 —p&t3, which determines this sign,
can vary between its minimum value p u3 —p»t3 and its
maximum value p u 3

—p, t3 where p&, and p, are the
liquid densities at the triple point T, and at T„respec-
tively. Thus for u3/t3 (p, /p, a2 and Q3' are negative
for all temperatures T, & T & T, . (Since we are consider-
ing only van der Waals interactions t3 must be positive. )

In this case a2 &0, thus I = ~ is always a maximum of
6, ( l ) and wetting on the gas side can never occur. In-
stead, a drying transition on the liquid side of po(T) is
possible. This checks with the fact Q3" &0. In this case
p t(z) approaches pt from below, because the wall prefers
the gas phase. If u~/t3) p«/p, Q3" is positive for all
temperatures, which reflects the fact that a strong sub-
strate potential prefers the liquid phase. Since in this
case a2 )0 one can conclude that, if the wall-liquid densi-
ty profile approaches pI from above, the system is either
wet on the gas side of po( T) for all temperatures or it un-
dergoes a first-order wetting transition. ' If, however,
p, /p & u3/t3 &pI, /p~, a2 is negative at T, and positive
close to T, . Thus there exists a temperature T with
T, & T (T, such that a2(T =T„)=0. If, in addition,
a3(T ) )0, T is indeed the transition temperature for a
continuous wetting transition.

Equation (2.12) therefore states that for a continuous
wetting transition to occur the wall-liquid density profile
must approach p& from below at the triple point and from
above close to T, . Thus we obtain the surprising result
that critical wetting on the gas side of po(T) goes along
with a change of sign for the asymptotic behavior of the
wall-liquid density profile on the liquid side of po(T).
This change of sign occurs at the wetting transition tem-
perature T . Above T the wall prefers the liquid phase
and Q(3")0 whereas Q (3

' & 0 below T
Since drying and wetting transitions are

complementary —either one has o. =o.
I +o.

I or
o I

=o. +o. I but not both —and because they can be
mapped onto each other by suitable choices of the in-

w
p/p

ntj{T)

p

]~n, in

o ~p&p
0 gt w

p/p
Lt w

u lt
3 3

FIG. 2. Asymptotic behavior of the wall-Auid interface
profile, p (z~co)=p +Q'3~'z +, as a function of the
asymptotic strength u 3 of the substrate potential. pg ( T) varies
between pg, = pg( T = T, ) and p, =p~( T = T, ) = pI( T = T, ) and
pI(T) varies between p, and p«=p&(T=T, ). Here the asymp-
totic strength t3 of the Quid-Auid interaction is kept constant so
that p«, p„and p«are independent of u 3/t3. All densities are
measured in units of the mean number density p„of the wall,
which is taken to be independent of u 3. Here we take

p, /p»-—0.35 as obtained for Lennard-Jones systems (Ref. 23).
For reasons of visibility we choose p+/p, much larger than it is
in reality; T, /T, =0.5 (Ref. 23). On the left from the diagonal
Q31' is negative for both y =1 and y =g, i.e., p ~(zl approaches

p~ from below. On the right from the diagonal Q3~' is positive
so that p ~(z) approaches p~(z) from above. This is the case for
a strong substrate potential. In order to achieve this latter be-
havior the substrate potential has to be less strong for the wall-

gas interface than for the wall-liquid interface. For
11 3 /t3 )p« /p as well as for u, /t, &p, /p Q ',"does not change
sign as a function of temperature. Q3~' also does not change
sign if u3/tz )p, /p or u3/t, & p~, /p . In the window

p, /p„& u3/t, &p«/p„Q3" changes sign as a function of tem-
perature and so does Q'3~' for p, /p &u3/t3 &p, /p„. Within
these ranges Q3" becomes positive and Q'3g' negative upon an in-
crease of temperature. The temperature at which Qti" of the
wall-liquid interface changes sign coincides with the transition
temperature of critical wetting of the wall-gas interface. Q3s' of
the wall-gas interface changes sign at the critical drying transi-
tion of the wall-liquid interface. Q3" &0 implies that the wall-

gas interface is nonwet, whereas Q',")0 implies either that the
wall-gas interface is wet or that it may undergo a first-order
wetting transition at a temperature higher than that given by
the diagonal.
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Q3
' =Pg (P„u3 P—

g t3 )(rT (2.21)

where ~'T' is the isothermal compressibility of the gas
phase [see Eq. (2.13)]. Note that Eq. (2.20) holds quite
generally even in the presence of a wetting film with arbi-
trary but finite thickness l.

In Eq. (2.11) we omitted additional exponential contri-
butions to p ((z ) g) because later we shall use Eq. (2.11)
for computing the algebraic decay of co(l). In this respect
exponential tails are irrelevant. Finally we note that in
reality there are density oscillations around the van der
Waals tail of p r(z) whose envelope decays exponential-
ly. As already discussed Eq. (2.1) does not exhibit these

structures and we ignore them here. The leading asymp-
totic behavior of the effective interface potential and the
values of Q(3r' are independent of this fine structure at the
wall.

C. Structure of the liquid-gas interface

Let us now consider the free liquid-gas interface along
the gas-liquid coexistence curve p =p0( T). For this case
in Eq. (2.1) V(r)=—0, all integrals extend over the whole
space 1R, and we impose the boundary conditions
p(z = —~ ) =p& and p(z =+ ~ ) =p . Then one obtains

&,'"'[Ip(z) I; T; I w(r) I]=f dz [fi, (p(z), T)—f&(p'„'"(z),T)]+—' f dz f dz'w(~z —z'~)6p„(z)5p„(z')

+ f dz[w0p' "(z)—p0(T)]5p„(z)+bp f dz[sgn(z)]t(~z~)6p„(z)

—
—,'(bp)'f dz t(z), (2.22)

with hp =p(
—p, 5p„(z)=p(z) —p'""(z); p'""(z)

=e(z)ps+8( —
z)p& is the sharp-kink approximation for

the free interface. The actual liquid-gas interface profile
p&~[z;T; Iw(r))] minimizes Eq. (2.22) and renders the
liquid-gas surface tension o

& [T; [w (r) ) ]. Note that for
any z0 one has

0( '[ [p(z) I; T; I w (r) I ]=BI"'[ I (z +z0) I; T; I w (r) I ] .

Correspondingly the position of the free interface profile
is not fixed.

Figure 1(b) shows the qualitative behavior of the free
liquid-gas interface. p, (z) varies smoothly between p& at
z = —oo and p at z =+ oo, p'""(z) is a step function at
z=O taking on the value p& for z(0 and p for z) 0. The
main variation of p& (z) occurs within a slab of thickness
2g around its center. 2g may be taken to be the distance
between the two extrema of the second derivative of
p(s(z). g is proportional to the bulk correlation length
and diverges —t for t = ( T, —T) /T, —+0. b p vanishes
—t~; within mean-field theory P=v=0.5. We call that
point z* of the interface profile with coordinate z=O the
center of the interface. According to what we said above
any point of the interface can become its center upon a
constant shift of the z coordinate without changing the
form of pI . There are several natural choices for z*:

p,g(z =z*)=(pg+p, )/2,
d p( (z =z*)/dz =0,

or

f dz[p, (z) —p' "(z)]=0 .

For the latter choice z* is called the position of the
equimolar dividing surface. For t —+0 the central part
of the profile, i.e., for ~z~ & g, takes on a universal form
which within mean-field theory is given by
p&s(z) =

2 (ps+ p& )
—

—,'hptanh[z/(2g)]. Outside the cen-

g(l)~
~

—k (
k 0'3

p, (z)= +(z),

p, + g W(&'~z~-", zog.
k%3

(2.23)

Without further specification F(z) describes the variation
of p&g(z) around its center. Similarly as for p &(z) ex-

ponential contributions for z~ )g have been omitted
here. The coeKcients 2 3

' can be inferred directly from
the integral equation for p(s(z):

~fh
p, ( T) = (p,,(z), T )

Bp

+ Oz w z z p~g z (2.24)

One obtains

A(3r'=pr(p( —p )~T t3) 0,(y] (2.25)

where i(T is given by Eq. (2.13) for y=l and y=g, re-(x) .

spectively, at p=p0(T). Equation (2.25) is in accordance
with the results obtained in Ref. 24 and it follows by ap-
plying the same kind of arguments. Note that Eq. (2.25)
is generally valid and it does not depend on a particular
and explicit choice for the form of w as it has been used
in Ref. 24. The coe%cients 23~' are dimensionless and
upon approaching T, along p0(T) they diverge —t
compared with t ' for Q3~'. Nonetheless they are also
irrelevant close to T„because 2 (3i' ~z ~

I

tral part, i.e. , for ~z~ )g, p&g(z) attains its bulk values ac-
cording to inverse power laws (see Ref. 24 and Sec. IV A
in Ref. 1 for a complete list of references). These por-
tions of the interface profile are known as van der gals
tails, because they are induced by the presence of the van
der Waals interactions. This leads to the following form
of the liquid-gas interface profile:
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~ 2(3r'g —t~O. This is also true for all subdominant
power-law contributions. Finally one should note that all
coe%cients Ak~' with k ~4 depend on the choice of the
center of the interface (see Appendix A). (Unfortunately,
the expressions for A4 and B4 given in Ref. 24 are not ac-
companied by such a defining statement. )

D. Effective interface potential for wetting
of the wall-gas interface

In Secs. II 8 and II C we discussed the structures of the
wall-liquid and of the liquid-gas interface, which emerge
from the wall-gas interface if a wetting transition occurs.
In the spirit of the Introduction we now use the wall-
liquid density profile p &(z) and the liquid-gas density
profile p& (z) in order to construct the wall-gas surface
tension under the restriction that at the wall a liquidlike
layer of thickness l is present. We approximate this re-
stricted surface tension, called effective interface poten-
tial II, [l, T,p; I w(r)I, [ V(z)I ]=0,(l), by evaluating in
Eq. (2.6) Q(r' for the following density profile:

p, (z ), z ~ Ic( l ) —A, ( l )

p(z, I; T)= G(Ir(l) —z, l ), a(l) —X(l) z a(l)+A(l)
pi (z —I), z a(l)+X(l) .

(2.26)

The behavior of p(z, l;T) is described in Fig. 3. p(z, I)
consists of the free liquid-gas interface, whose center z' is
positioned at z =I, and the wall-liquid interface near the
wall. They match smoothly in a transition region of
width 2X(l), which is described by an unspecified func-
tion G(z, l). Since for large I the wall-liquid interface
must emerge, the position of the transition region has to
move to infinity, too. Therefore we choose a.(l ~ ~ ) -aol
with 0 (Ko ( 1. Since the difference between the van der
Waals tail of p I and the liquid van der Waals tails of p&z
vanishes for l ~ ~ we assume that also the width of the
transition region vanishes. We take A, ( l —+ ao )—l "+' with e )0. In Appendix A we discuss weak re-
strictions on the form of Ic(l) and k(l) which ensure that

n

I

I

I

I

x(&) - ~(~)

j I

I

I

I I
I I

x(t, ) x(l.)+ X(~)

rx. (t)

z

FIG. 3. Schematic drawing of the density profile p(z;l) from Eq. (2.26) for constructing the effective interface potential A, (l). The
wall-liquid interface profile p &(z) is followed by a transition region described by G(z) beyond which the liquid-gas interface profile
starts. The center z of the latter one is positioned at z =l. The position z =~(l) of the transition region grows with l because for
l~ ~ the wall-liquid interface profile must emerge. Thus we take ~(l~ ~ )-l. We further assume that A.(l) shrinks for large l, be-
cause the difference between the van der Waals tail of p &

and the liquid van der Waals tail of p«vanishes for large l; we take
k(l~ ~ ) —l "+' with e&0. e and G are without further specification. Slight restrictions on the form of A,(l) and sc(l) are discussed
in Appendix A. For the l dependence of G see Appendix B. Thus one may choose ~ such that p(z =&el;l) =pI but one is not obliged
to do so. In particular, it may be that p I approaches p& from below. As for any given density profile the value l of the thickness of
the wetting film depends on a particular definition; the surface tension for this profile is independent from this definition. Here, the
thickness l is fixed by the position of the center z of the free interface profile and thus it is tied to the definition of the center of the
latter one [see Fig. 1(b)]. If in Fig. 1(b) one chooses a point z'* with z coordinate Az (recall that the z coordinate of z* is 0) as a new
center, the corresponding new thickness of the same wetting film will be l'=l +Az. We shall show that the results for 0, are invari-
ant with respect to such choices because 0, can be expressed in terms of the unique coverage I = f dz [p(zl —p~] which is the
difference between the positively and the negatively marked area (see Appendix A). Note that for a given value of I we consider only
such values of p and T so that l is larger than the bulk correlation length g.
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for a given density profile p(z) the corresponding cover-
age I = dz[p(z) —p ] is independent from what we

0 g

define to be the thickness of the wetting film described by
p(z) (see below}. For the l dependence of G(z, l) see Ap-
pendix B.

One should note that the evaluation of 0,' ' for the trial
function in Eq. (2.26) yields Q, (l), which is supposed to
be a good approximation for the effective interface poten-
tial one would obtain by minimizing 0,' ' exactly under
the restriction that the density profiles p(z) have a certain
property at z =l, e.g. , p(z =l)=(p&+p )/2 or
p"(z =l)=0, etc. We approximate this exact restricted
minimization problem by evaluating 0,,'~' for such a trial
function that in Eq. (2.26) the center z* [see Fig. 1(b)] of
pt~(z) is chosen to be that point where the particular
property of p(z = I) one has decided to pick (see above) is
fulfilled. A further possible definition of 0, (I ) is
I =1=I /(pt —p ) so that 0,'~' is minimized under the re-
striction that p(z) exhibits a certain coverage I . These
various definitions are discussed and compared in Appen-
dix A.

Finally we note that, as indicated in Fig. 3, for a given
value of l we consider only such wetting films whose
thicknesses are large compared with the bulk correlation
length at coexistence:

(2.27)

Equation (2.26) holds only at coexistence: pts(z) is only
defined for p=po(T) and p t(z) is evaluated at the liquid
side po (T) of liquid-gas coexistence. In order to be able
to analyze complete wetting Eq. (2.26) must be general-
ized to the case p &po(T). There is no obvious way to do
this because both p t and pts do not exist for p & po( T).
In order to proceed we propose the simplest generaliza-
tion:

p(z, /; T,p) =p(z, I; T)+e(z —l)[pg( T,p)
—p, (T,po(T))] .

(2.28)

Equation (2.28) fulfills the necessary condition for z ~ ~:
p(z, l; T,p) approaches the correct asymptotic gas density

pg ( T, p, & po( T) ) &ps ( T,p =po( T) ). All other features of
the density profile are taken to be identical to those of
p(z) at coexistence. As a consequence in the formulas for
the effective interface potential given below only the gas
density, where it shows up explicitly, is taken at the actu-
al value of p, whereas the liquid density is taken at
p =p, o( T). All expressions, which contain the van der
Waals tails Azr' or Qk", are evaluated at p=po(T).
However, this is a crude approximation, which is valid
only for small undersaturations p —po(T), because ac-
cording to Eq. (2.28) this p(z, l; T, p, ) exhibits a discon-
tinuity —p (T,p, ) —p (T,po(T)) at z =I Another gen-.
eralization for small undersaturation would be to contin-
ue all bulk liquid quantities entering Eq. (2.26), like, e.g. ,

p& or K'z', to their metastable mean-field values at
p & po( T). But this raises the question of the reliability of
these results beyond mean-field theory. Thus we proceed

Q, (l) =o' i'+o i +co(l),

with

~(l) =(Vo t )[~S(—~+di',") t td."i']—
4

+ g akl "+O(l Inl) .
k=2

(2.29)

(2.30)

First, Eq. (2.29) shows that in the limit l~oo and at
coexistence we recover, by starting from 0,,'~', the sum of
the full expressions for o' t'=0,'"[[p(z)=p &(z) J;p=po+]
and crtg =0,'"'[[p(z)=p& (z)]]. Of course one must ob-
tain this result because for an infinite thickness of the
wetting film the wall-gas surface tension is the sum of the
wall-liquid and the liquid-gas surface tension. But here
this is a highly nontrivial check for our expanding and
resumming procedure. The first term in Eq. (2.30) de-
scribes the fact that on the gas side p & po the cost in free
energy for forming a liquidlike layer, whose correspond-
ing bulk phase is unstable, increases linearly as a function
of its thickness l. At coexistence co(l) vanishes for large l.

The explicit form of this first term in Eq. (2.30) is
correct up to first order in po

—p. We omitted the
lengthy terms which are nonlinear in po

—p and which
turn out to be linear in l, too. Consequently, in this first
term in Eq. (2.30) both b,p and di''' are taken at coex-
istence p=po. By construction p& and d'&' are evaluated
at p, =go. In deriving this first term in Eq. (2.30) we used
the fact that p&s(z), which enters the trial function in Eq.
(2.28), fulfills Eq. (2.24). Thus in the appropriate limit
this first term in Eq. (2.30} does not reduce to the sharp-
kink result, because p'""(z) does not fulfill Eq. (2.24).

The coe%cients ak are functions of T and p and func-
tionals of [w(r)] and [ V(z)[. Thus they determine the
nature of the wetting transition and —in the case of criti-
cal wetting —the transition temperature T in terms of
[w (r) J and [ V(z)]. The necessary conditions for a
second-order wetting transition at T = T„and p =po
are that a~(T=T, ) &0, a2(T=T, )=0+, and
a3(T=T ))0, where T is defined implicitly by the
equation a2(T=T )=0 (see Fig. 3.2 in Ref. 1). Within
our approach the explicit expressions of a2, a3, and a4
are the following:

by applying Eq. (2.28).
The procedure is to evaluate Q,' ' in Eq. (2.6) for

p(z)=p(z, l; T,p, ) by using Eqs. (2.28), (2.26), (2.23), and
(2.11). In order to obtain explicit results one has to ex-
pand 0,'s'[ [p(z) J, /; T,p] for large values of l by using Eq.
(2.27). This is an extremely tedious calculation and its
enormous length is prohibitive for any detailed presenta-
tion in a research paper. Thus we can only state that the
general line of attack is to insert the aforementioned
equations, which contain infinite series, into Eq. (2.6), to
expand the expressions in Eq. (2.6), then to integrate
them term by term, and finally to resum the infinite series
and to order them in inverse powers of l. To our surprise
we found that all the numerous contributions to a certain
inverse power of l finally combine into very compact and
transparent expressions. Let us now quote these results:
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and

a2= —,'bp(p u, p,—t, ),
a =a' ' —2a d"'

3 3 2 lg

a4=a4 —3a3d~~" +3a2[d&~ ' 2(d—~~'') ],

(2.31)

(2.32)

(2.33)

with

0 3 3 Ap[p~u4 p&(t4—+ 3t3d„'&')]

and

(2.34)

and

d'('=i f dz z' '[1—p„((z)/pi] (2.36)

d( )= f g 1[ ( ) hk( )]
5p

(2.37)

d'&' and d&' are functions of temperature and functionals
of [ w (r) ]. d'&' is, in addition, also a functional of j V(z) J

and depends, inter alia, on the behavior of the substrate
potential at all distances. A geometrical interpretation of
the lengths d' &' and d&'" is given in Fig. 1.

The dependence of the coefficients az, a3, and a4 on p
turns out to be rather simple. According to Eqs.
(2.31)—(2.35) all three coefficients possess bp=p& —p as
a common prefactor. In this prefactor p is taken at its
actual value p~po off coexistence. This is the only p
dependence in the coefficients ak. It turns out that all
other quantities, d&", d'&', and p&, have to be taken at
coexistence p=po. These rules hold for arbitrary values
of p and not only up to first order in po

—p.
Before we continue to discuss the above results let us

recall that the values of d&' depend on our choice of what
we call the thickness of the wetting film (see Figs. 1 and
3). In Appendix A we discuss this dependence of O, (l)
on the definition of l. There, in addition, we express co(l)
in terms of the coverage I (see Fig. 3). As it must be, this
latter expression does not depend on the choice of the
definition for co(l).

One can check that Eqs. (2.30)—(2.37) contain in the

a~ ' = ,'bp[p —u5 pi(r5—+4t4d''i'+6t3d'i')] . (2.35)

Thus the coefficients a& depend on those determining the
substrate potential u& and the Quid-Quid interaction tk
[see Eqs. (2.14) and (2.15)], the mean number density

p of the wall, the liquid density at coexistence
pi[T, p=po+', [w(r)J], the gas density p [T,p
(po(T); [w(r)] ], as well as on moments of the wall-
liquid and the free liquid-gas interface profile, respective-
ly, both at coexistence (i =1,2):

corresponding limits as special cases those results which
have been omitted previously within the sharp-kink and
soft-kink approximation, respectively. The sharp-kink
results follow by putting d&~'=0 and by replacing d'&' by
d and d' &' by (d ) . (In the soft-kink approximation the
same replacements apply. In addition, d&" is nonzero and
takes on its soft-kink approximation value. ) Although
this correspondence looks rather simple one should ap-
preciate the superiority of our present approach. The
sharp-kink approximation requires d and the soft-kink
approximation requires both d„and the thickness g of
the central part of the free liquid-gas interface profile as
input data which are both not uniquely specified by the
theory itself. However, in our present approach it turns
out that d and (d ) are replaced by uniquely specified
moments of the wall-liquid interface profile [see Eq.
(2.36)]. In addition, all explicit dependences on g [see
Fig. 1 and Eqs. (2.11), (2.23), and (2.26)] drop out. Thus
our expression for the effective interface potential is now
indeed independent from any, in principle arbitrary,
choice of input parameters of the trial function p(z, l) [see
Eq. (2.26)] and therefore it can be computed uniquely.
This also implies that the first few leading terms of the
effective interface potential are independent from the de-
tails of matching the wall-liquid and the liquid-gas inter-
face profiles in order to form a continuous trial function
in Eq. (2.26). We show in Appendix B that ai, a3, and a&

do not depend on G (z, l), a(l), and A, (l).
We stress this independence for the following reason.

At coexistence one has Q, (l = ~)=a &+o.&~. Thus by
construction the value of the effective interface potential
for the wall-gas interface at l = ~ is determined by the
wall-liquid and the liquid-gas interface profile [see Eqs.
(2.6), (2.8), and (2.22)). [Of course, in addition the
knowledge of w(r) and p V(z) as well as of the proper-
ties of the coexisting bulk phases are required. ] In the
case of continuous wetting transitions the leading correc-
tion terms co(1)=a 21 +a 31 + determine the
character of the wetting transition. As already stated be-
fore the necessary conditions for the occurrence of a con-
tinuous wetting transition at T=T are a2(T=T, )(0,
a2(T=T, )=0+, and a3(T=T ))0.' The transition
temperature for critical wetting is given implicitly by
az(T = T ) =0. In the latter case the equilibrium thick-
ness lo of the wetting film diverges according to

3 a3 a4
l (T~T,bp=0)= — 1+— ~a +

(2.38)

whereas for complete wetting one has

l (T0) T,hp~0)=
1/3

2Q2

Ap

a (&p)' '
(b p) '/ 1+ (b p)' +

(2 )4/3
(2.39)

where a2, a3, and Ap are taken at coexistence p =po.
Higher-order wetting transitions involve the higher

coefficients in the expansion of co(l). Therefore the ob-
served independence from the matching conditions shows

within this approach the following results: (i) Besides in-
teraction parameters and bulk densities only the wall-
liquid and the liquid-gas interface profiles determine the
order of the wetting transitions. (ii) In the case of con-
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tinuous wetting transitions at coexistence the same quan-
tities also determine the amplitude of the leading term in
the power-law behavior of the thickness of the wetting
film. These results are nontrivial because the actual den-
sity profile deviates from the superposition of the wall-
liquid and liquid-gas density profiles.

As discussed above the difference between the results
in Eqs. (2.31)—(2.36) and the analogous ones obtained
from the sharp-kink and soft-kink approximation '

reAects the importance of the van der Waals tails and of
the structure of the emerging wall-liquid interface. The
coefficient a2 is independent of both features [see Eq.
(2.31)] so that T is given by the sharp-kink result
pi(T=T )=p u3lt3, i.e. , the wetting transition is in-
duced only by the temperature dependence of the bulk
liquid density.

The higher-order coefficients a3 and a4 do depend on
both the van der Waals tails and the wall-liquid interface
structure. The latter enters via the zeroth (d "i') and the
first moment (d'&'). The van der Waals tails are con-
tained implicitly in d'&' and in dig' [see Eqs. (2.35) and
(2.36)]; dt'" and di' ' are the only terms through which the
smooth variation of the center of the emerging free
liquid-gas interface enters the effective interface potential.
As discussed above the separatrix between first- and
second-order wetting is given by a3(T=T„)=0 with
a2(T )=0 and the separatrix between first- and third-
order wetting is given by a4(T=T )=0 where
az(T=T )=a3(T=T )=0. Equations (2.31)—(2.35)
show that these separatrices are independent from the
liquid-gas interface profile, because the quantities dI"'
and dI' ' drop out at the corresponding transition temper-
atures [see also Eqs. (A2) and (A6)]. The separatrices de-
pend only on the structure of the wall-liquid interface via
d'&' [see Eqs. (2.34) and (2.35)]. This makes the previous
finding from the soft-kink approximation more specific.
These findings had been that the bulk correlation length,
which determines the width of the central part of the free
liquid-gas interface, is irrelevant for continuous wetting
transitions. Here we find that even the van der Waals
tails of the free liquid-gas interface do not affect the
separatrices; only the van der Waals tail of the wall-liquid
interface does so. However, T* of a first-order wetting
transition depends on all van der Waals tails because it is
determined by all ak, k )2, and because az( T = T*)%0.

The presence of the van der Waals tails leads to a novel
feature in the asymptotic behavior of the effective inter-
face potential. Both the sharp-kink and the soft-kink ap-
proximations predict that co(l) can be expanded into in-
verse powers of l. However, the van der Waals tails lead
to additional logarithmic terms -l lnl which have also
been missed by fitting numerical results for ai(l), and
which modify the predictions for higher-order wetting
transitions. The occurrence of these logarithmic terms
can be traced back to the fact that only the zeroth and
the first moment of the density profiles exist [see Eqs.
(2.36) and (2.37)], which enter into a 3 and a 4. The
coefficient a~ would contain d&~ 'and d„'&', which however,
do not exist. Instead a term —l lnl appears. Nonethe-
less its corresponding prefactor is well defined and so is

the expansion of to( I).
The analytic results in Eqs. (2.31)—(2.35) for the

effective interface potential allow us to draw conclusions
about the properties of wetting transitions close to the
critical point T, of the bulk system. We consider two im-
portant cases: critical wetting [Ap =0,r = ( T —T)!
T ~0] with a transition temperature T„close to T„ i.e.,
t =(T, —T )IT, « 1, and complete wetting
(b,p +O, T ) T—) close to T„ i.e., t =(T,—T)/T, «1.
With ak = g; oak;r' and az O=0 Eqs. (2.38) yields

lo(T) = l()r '(1+rlr, + . ) (2.40)

with lo=3a3 o~l2a2 ] I
and r, = la3, i ~a3, Q

+8a40a2, /(9a3o)~ '. Close to T, the bulk quantities
entering the coefficients a& vary as Ap=~]t and

p&=p, +~zt with positive amplitudes ~, and K'2=K']/2.
The coefficients a3 and a4 depend on d„'I', which both in
the sharp- and soft-kink approximation is a temperature-
independent, microscopic length for i = 1 and the square
of it for i =2. However, within our approach we find that
both quantities display in fact a singular temperature
dependence close to T, :

d", (T T, )=—
Pc

I (') t
—( —P) (2.41)

which follows from the divergence of the zeroth and first
moment of the coverage due to critical adsorption (see
Ref. 26 and Sec. IX B in Ref. 1): I 'I
=i f dzz' '[p„,(z) —p, ]=1 "t ' ~'+ . Since
we study wetting we have a&(T, = T) =0+. Thus with
Eq. (2.19) and Fig. 1(a) one has I '„'I)0. v=0.64 is the
critical exponent of the correlation length which behaves
as /=go t . Combining these results we finally obtain,
independent from the adopted definition for lo (see Ap-
pendix A),

(2.42)

(2.43)

From Eqs. (2.40), (2.42), and (2.43) we can draw the fol-
lowing conclusions: The strength l o of the ~ ' diver-
gence for critical wetting vanishes close to T, -t
Simultaneously the critical region ~(~, below T„,within
which the asymptotic behavior -~ ' of the thickness of
the wetting film dominates, shrinks -t due to the vicinity
of the critical point. The combination of these formulas
yields the restriction lo) lor, ' —t -g. Thus ioithout
an explicit assumption our results for the interface poten-
tial predict that the critical region for a continuous wet-
ting transition shrinks —(T, —T„) if T comes close to
T, . The width of that critical region is determined by the
condition lo) g(T= T ), which is a posteriori consistent
with our derivation of the effective interface potential [see
Eq. (2.27)]. Therefore we conclude that the presence of a
critical point impedes the identification of a continuous
wetting transition if it happens to occur close to T, . This
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prediction seems to check with recent experimental re-
sults for the wetting transition in the cyclohexane-
acetonitrile mixture for which ~=-9X 10 . Although
this experiment is concerned with interfacial wetting in a
binary liquid mixture and the above results are derived
for wetting of a wall by a one-component Quid, our con-
clusions are nonetheless valid also in this case, because
we shall show in Sec. III that the effective interface po-
tential for interfacial wetting exhibits the same features as
that for wetting a wall. The authors of the aforemen-
tioned experiment measured the contact angle 6I, which
vanishes in case of critical wetting of a wall according to
Ref. 1:

g (T ) g~ —3/2+P (2.45)

According to Eq. (2.43) the observation of critical wet-
ting is confined to ~~t which leads to the requirement
0 & 0 „with 0 „=Oot - t ~~0. Thus the range of
contact angles that can be used to determine the asymp-
totic thermal singularity of critical wetting shrinks
—(T, —T„)p for T close to T, .

Concerning complete wetting close to T, we obtain,
from Eq. (2.39),

(2.44)

with go=[ —,', ~a2 i ~ a3 Q(cTgi(T„)) ']' . From our above
results and with o.

I
—t We find for t « 1

lo(T, bp)=(u3p —t&p, )'i (bp)

X [1+(hp/bp)'~ + ], (2.46)

with bP, =27(t31 ''i') (u3p —t3p, ) t ~' —t
Alternatively, the condition lo )g( T, b p =0) leads to

the more restrictive requirement

Ap(hp, =(u3p —t3p, )(go ) t -t' (2.47)

Therefore upon approaching T, the (bp, )
'~3 law for

complete wetting becomes confined to a rapidly decreas-
ing region b.p(t' (see Fig. 4). Outside this region one
finds critical adsorption with l o

—g —( b,p )

=(by) . These considerations show explicitly how
the tails of the van der Waals interactions, which lead to
the (bp) '~ law, become irrelevant upon approaching
T, compared with the critical phenomena, which lead to
the more singular (b.p) law.

At the end of this subsection we want to compare the
above findings with our previous results in Ref. 10.
There we determined the effective interface potential by
using p(z, l; T)=e(z —d )pig(z —i) as a trial function
[see Eq. (2.23)]. p(z) does include the van der Waals tails
of the emerging liquid-gas interface but it differs from the
trial function p(z) in Eq. (2.26): the wall-liquid interface
structure is mimicked only by a step function e(z —d )

with d„as an input parameter; consequently, in p(z) the
van der Waals tail on the liquid side of pi (z) extends

(iquid

W c
~ 0 ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~O

complete
critical region for "g critical adsorption
critical wetting ~

P

gas

FICx. 4. Schematic drawing of the liquid-gas coexistence curve po( T) in the bulk phase diagram. For reasons of simplicity it is tak-
en to be a straight line between the triple point T, and the critical point T, . T is the transition temperature for a critical wetting
transition. Along path (I) at po the thickness l of the wetting film diverges. Within the critical region for critical wetting this diver-
gence is dominated by the leading power law l-(T —T) . The width of this critical region is proportional to T, —T . Indepen-
dent of the order of the wetting transition at T l diverges also along the path (II). Within the indicated wedgelike region l diverges
-(Ap) ' according to complete wetting; hp=po —p. Below that region and sufficiently close to T, 'l grows -(Ap) with
v/6=0. 402 according to critical adsorption. The crossover between these two power laws occurs at p, (T) =po —const X(T,—T)'
with 3v=1.92. For T~T, the (hp) ' law for complete wetting becomes confined to a rapidly decreasing region. This shows ex-
plicitly how near T, universality is restored. This means that the thermal singularities become dominated by bulk critical phenomena
which induce the phenomenon of critical adsorption and which lead to stronger singularities than those stemming from the van der
Waals interactions, which are irrelevant close to T, . Both the critical region for critical wetting and p, (T) are determined by the
condition 1 & g.
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down to the wall at z =d . This ansatz yields' an
eff'ective interface potential co(/) with the identical struc-
ture as in Eq. (2.30) but with coefficients aI, where

az=a2,
a3=a 3+ A3' f dz[pit(z) —

p V(z+d )],
a4=a ~+ I dz[p&t(z) —

p V(z+d )]
0

X [ A 4" +3(z +d ) A 3" ]

[see Eqs. (4) —(7) in Ref. 10, and Ref. 30]. The coefficients
a & are given by the expressions for a& [Eqs. (2.32) and
(2.33)] if in Eqs. (2.34), and (2.35) d'&' and d'&' are re-
placed by d and (d„), respectively. The appearance of
the extra contributions —A3" and —A4" in a3 and a4
can be traced back to the fact that in the corresponding
trial function p(z) the van der Waals tail on the liquid
side of pI&(z) is extending down to z =d, whereas in the
trial function p(z) [Eq. (2.26)] this tail reaches only up to
z =a(/)+A, (/)-vo/. This difference can be understood by
using the trial function p(z) for the hypothetical problem
of the wetting of a compound substrate, which consists of
the original substrate particles with density p for
—~ ~z —aol and of the Quid particles with density p&

for Kol (z 0. The substrate potential of this com-
pound is given by p V(z) =p„V(z +Iro/)+p&[t (z)

t (z +i~o/)—]. If one now applies the formula for the ex-
tra contribution to a3 [which belongs to the term -/
in co(/) ] for this compound substrate potential, one
obtains A3" f 0"dz [pit(z+i~o/) —

p V(z+~o/+d )],
which is proportional to (i~o/) for /~ oo. Similarly, the
extra contribution to a4 becomes —(~o/) '. Therefore in
this hypothetical problem these extra terms —A3" and
—A4'" do not contribute to the e6'ective interface poten-
tial up to and including the order / as considered by
us. This result checks with the fact that upon using the
trial function p(z) in Eq. (2.26) these extra van der Waals
contributions do not show up in the corresponding
coefficients a„[Eqs. (2.31)—(2.33)], because the applica-
tion of p(z) to this hypothetical problem mimics the ap-
plication of p(z) to the problem of the wetting of the orig-
inal uniform substrate.

Concerning the properties of wetting transitions close
to the critical point T, the predictions of co(/) are' that
in the case of critical wetting t ~0 so that the size of the
critical region for the asymptotic power law for continu-
ous wetting shrinks —(T, —T ). This agrees with our
present findings based on co(/) [see Eqs. (2.40) and (2.43)
and Ref. 31]. However, co predicts that the strength of
the power law, i.e. , /o diverges -r ' (see Ref. 10),
whereas we find now that /o vanishes -t ' " [Eqs. (2.40)
and (2.42)]. Also in the case of complete wetting there
are differences between the predictions of co(/) and co(/).
For the crossover line /i, ,(T) (see Fig. 4) co(/) predicts'
hp, —t, whereas here we find b,p, —r = t ' [Eq.
(2.47)]. These differences are due to the absence of the
contributions —A ~3

' and A ~3
' (which diverge —t '~ for

T~ T, ) in the expressions for a3 and a4 [see Eqs. (2.32)
and (2.33) and the discussion above].

The trial function p(z) in Eq. (2.26) is more sophisticat-
ed and closer to the exact solution for the density profile
than the trial function p(z). For this reason the predic-
tions stemming from the effective interface potential co(/)
seem to be superior to those stemming from co(/). In any
case this comparison shows how sensitively various wet-
ting properties depend on the precise extension of the van
der Waals tails and on the structure of the emerging
wall-liquid interface.

E. Deviation of the wall-gas interface profile
from superposition

Based on general arguments the actual wall-gas inter-
face profile p g(z;/), including a wetting film of thickness
l, exhibits inter alia the following limiting properties.

(i) For /~ ~ and z fixed p (z;/) reduces to the wall-
liquid interface profile: lim& p ~(z;/) =p I(z).

(ii) For / ~ oo and z ~ ao p (z;/) reduces to
the emerging free liquid-gas interface profile:
limI „p (z =/+y;/) =pi (y)

(iii) For / fixed and z~~ p (z;/) behaves like the
wall-gas interface without a wetting film:
lim, [z (p (z;/) —

p )]=Q~3~', independent of /.

The properties (i) and (ii) follow from Antonov's rule
and (iii) has been proven in Eqs. (2.20) and (2.21). By us-
ing Eqs. (2.11) and (2.23) one can check directly, that the
trial function p(z, /;T) in Eq. (2.26) does fulfill the re-
quirements (i) and (ii). [Recall that for large / one always
has ir(/)+A. (/) (/+y for any fixed value of y, because
a.(/~oo)-iro/ with iro(1.] However, p(z, /;T) does not
satisfy the requirement (iii). Instead, one has
lim, [z (p(z;/;T) —p~)]=A'3~', which is independent
of the substrate potential [see Eq. (2.25)], whereas Q~&g'

does depend on it [see Eq. (2.21)]. Therefore, for any
finite value of I the actual wall-gas density profile cannot
be represented only as an appropriate superposition of
the wall-liquid and the liquid-gas density profile as is the
case for the trial function p(z, /; T) in Eq. (2.26). In or-
der to cure this defect we consider an improved trial
function p*(z):

p*(z, /; T) =p(z, /; T)+8(z —[ir(/) —k(/)]) g Dkz
k~3

(2.48)

with

D =Q' ' —A' '=p (p„u p, t )K'g'—(2.49)

p*(z~co, /;T)=p +Q~3~'z +Q~g'z ~+ . (2.SO)

in accordance with (iii) and with Q ~~~'

=D4+ A4 '+3/A3 '. [Note that due to Eq. (A9) one has
A4~'+3/A3 ' = A 4g'+3l A 3

' so that Q4
' is indeed in-

dependent of the choice of the definition for /. ] The

and p(z, /; T) given by Eq. (2.26); the coefficients Dk are
taken to be independent from I. It is straightforward to
check that p*(z, /) fulfills the requirements (i) and (ii), as
p(z, /) does, and that, in addition,
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coefficient Qi3~' in Eq. (2.50) is known [see Eq. (2.21)] and
it is independent of l. This dictates our choice for D3 in
Eq. (2.49). The coefficients Qz~', k ~4, which character-
ize in the limit z~ ~ the (nonequilibrium) wall-gas den-
sity profile under the restriction of the presence of a wet-
ting film of thickness l, are unknown; one has to expect
that they do depend on this thickness l of a wetting film
which is forced to cover the wall. If these coefficients
were known they would in turn determine the coefFicients
D& (e.g. , see the above formula for g4s'). In order to be
concrete and in the absence of further information we
choose Dk=p (p uk p&tk)ir—'z', k 4. However, as it
will turn out [cf. Eqs. (2.51)—(2.53)] our final results do
not depend on this choice. Thus we restrict our analysis
to the case that the coefficients Dk do not depend on in-
creasing powers of l, which in the general case, however,
cannot be ruled out.

With a technique which is similar to but even more
complicated than the one we used in Sec. IID we were
able to obtain analytically the asymptotic behavior
co*(l~ ~ ) of the effective interface potential correspond-
ing to the trial function p*(z, l) in Eq. (2.48). It has the
same structure as co(l), which belongs to the trial func-
tion p(z, i), but with expansion coefficients ak* [compare
Eqs. (2.30)—(2.35)]:

a2 =a2 (2.51)

a3 =a3

a4 =a4 (2.53)

where a2, a3, and a4 are given by Eqs. (2.31)—(2.35).
The striking aspect of these results is that the extra

terms -Dk in Eq. (2.48) leave all three expansion
coefficients a2, a3, and a4 unchanged compared with
those following from the trial function p(z, i). However,
we want to emphasize that the reasons leading to Eq.
(2.51) and Eqs. (2.52) and (2.53), respectively, differ
significantly. Whereas the extra terms -Dk do not gen-
erate any contribution —l in the effective interface po-
tential, they do generate an infinite number of terms
—l and —l which, however, after a lengthy resum-
mation procedure turn out to cancel each other so that
a 3 =a3 and a 4

=a4. Furthermore, our calculations
show that Eqs. (2.51)—(2.53) remain valid for any choice
of the coefficients D&, in particular for k ~4, as long as
they are not increasing functions of l.

Thus we can conclude that these findings enhance con-
siderably our confidence in those results we derived previ-
ously [see Eqs. (2.31)—(2.35)]. One may even speculate
whether the expressions for the asymptotic behavior of
the effective interface potential as given in Eqs.
(2.31)—(2.35) are exact. In particular, our discussion of
the wetting behavior close to T, [see Eqs. (2.38)—(2.47)]
remains unchanged.

III. INTERFACIAL WETTING
IN BINARY LIQUID MIXTURES

For conceptual reasons, in order to study wetting phe-
nomena, it is natural to focus first on the wetting of a wall

by a Quid because in this case the boundary, which breaks
the translational invariance, is fixed externally and leads
to a prescribed substrate potential. However, this con-
ceptual advantage is accompanied by several difFiculties
both in theory and experiment which are caused by the
presence of this wall. None of these difficulties quoted
below is addressed by the model in Sec. II. But even the
application of more sophisticated density functionals has
been hardly successful in solving properly even some of
these difficulties. First, as already mentioned in Sec. II,
the presence of a hard wall leads to density oscillations in
the Quid close to it. The local pressure close to the wall
together with the corrugation of the substrate may lead
to the formation of one or even more solidlike layers of
the adsorbate on the substrate, which in turn are subject
to strain effects. Second, the substrate potential itself is a
function of temperature and pressure as any solid phase.
Third, the adsorption process modifies the substrate po-
tential due to a compression stemming from the adsor-
bate and due to structural changes of the first few wall
layers caused by the adsorbed particles. Fourth, to a cer-
tain extent the wall particles may dissolve in the Quid and
by interdiffusion quid particles may penetrate into the
solid which altogether leads to a contamination of the
system just at the interface of interest. Fifth, defects in
the solid wall (which must be there even in thermal equi-
librium) as well as surface roughness introduce random-
ness in the substrate potential.

All these difficulties arise because in reality the wall is
not inert but tends towards thermal equilibrium with the
adsorbed Quid. In this situation one has basically two op-
tions. Either one carefully chooses a wall material, which
minimizes these disturbing effects and remains in a re-
stricted thermal equilibrium during the relevant observa-
tion time, or one fully includes the wall into the calcula-
tion of the thermal equilibrium of the whole coupled
wall-Quid system. In the case of a solid as a confining
material of the Quid at present this second option is out
of reach. If, however, the confining material is a Quid it-
self, this program can be fully implemented by consider-
ing the interface between, say, the 3-rich liquid phase
and the vapor phase of a binary liquid mixture consisting
of 3 and 8 particles. In this case one can study the wet-
ting of the intrinsic 3-rich-liquid —vapor interface by the
8-rich liquid phase. (The experimental and theoretical
status of these interfacial wetting phenomena together
with the corresponding literature is discussed in Secs.
V D and IV C, respectively, in Ref. 1; see also Ref. 14 and
the references therein. )

In the analysis of the interfacial wetting phenomena at
the liquid-vapor interface of binary liquid mixtures all the
aforementioned difficulties are no longer present. In-
stead, new ones arise. First the parameter space is in-
creased. Now there are three interaction potentials, w~z,
w», and w~~, replacing the substrate potential and the
quid-Quid interaction in the case of a one-component
Quid at a wall. Second, the translational invariance is no
longer broken explicitly by a wall but more indirectly by
imposing boundary conditions: for z~ —~ there is the
2-rich liquid phase, denoted as the cx phase, and for
z —+ ~ there is the vapor phase, denoted as the y phase.
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The wetting phase is the B-rich liquid denoted by I3.
Third, now there are six relevant bulk number densities
(pz, p„&, pz r, pz, pz &, and pz r) and two relevant
density profiles pz(z) and pz(z). In Sec. II we had only

p&, ps, and p(z). Fourth, in order to observe interfacial
wetting the system must be kept close to three-phase
coexistence along the triple line (see Fig. 5). This requires
fixing two of the three relevant thermodynamic variables
T, p z, and pz compared with one out of T and p in Sec.
II. Thus the y phase is not, e.g. , air but the equilibrium
vapor phase of the binary liquid mixture. Fifth, the wet-
ting of the o.-y interface leads to the formation of two
fiuid interfaces, o.-P and P-y, which both exhibit capillary
fluctuations, whereas in the case of the wetting of a wall
there is only one fluctuating interface. However, as in the
latter case, it turns out that these interface fluctuations
are irrelevant for thermal singularities of the continuous
wetting transition because binary liquid mixtures are
governed by long-range van der Waals forces (see Refs.
12 and Sec. IV C in Ref. 1). Therefore we can again ap-
ply a mean-field-type density-functional theory, cf. Eq.
(3.1), which generalizes Eq. (2.1) to the case of a two-
component system. One should note that due to the ab-
sence of the aforementioned density oscillations at the
emerging a-P and P-y interfaces Eq. (3.1) is even more
appropriate for studying the wetting phenomena under
consideration than Eq. (2.1) for the case of the wetting of
a wall. Sixth, as discussed above the analysis of the wet-
ting of a wall is impeded by the approach of the wall to-
wards thermal equilibrium. For interfacial wetting phe-
nomena one faces the opposite problem. Since the
theoretical predictions apply for complete thermal equi-
librium, a comparison with experimental data requires a
careful equilibration of the experimental system. If the
starting configuration in the experiment involves macros-
copically thick wetting films it is known that thinning to-
wards their equilibrium thickness may take a very long
time. However, this difficulty can be overcome by
avoiding in the experimental starting configuration thick
wetting films and by studying thin wetting films; their
growth towards their thickness in thermal equilibrium is
sufficiently fast compared with the experimental observa-
tion time (see Sec. XII in Ref. 1). Therefore the theoreti-
cal predictions for thermal equilibrium do not evade pos-
sible experimental checks.

Thus we can conclude that with respect to a number of
aspects the study of interfacial wetting overs several ad-
vantages compared with the wetting of a wall. The
binary liquid mixtures are more complex than a one-
component fluid. However, as discussed above this addi-
tional complexity can be brought under control both in

I

FIG. 5. Bulk phase diagram of a simple binary liquid mixture
(type II, see Ref. 14) in the space of temperature T and the
chemical potentials p& and pz of the A and B particles, respec-
tively. The sheet S& is the locus of first-order phase transitions
separating the liquid phases from the vapor, whereas S2
separates the A-rich liquid phase from the B-rich liquid phase.
S~ and S& are bounded by lines L, and L2 of critical points.
The critical end point T«p is the intersection between L2 and
S, . The sheets S& and S2 meet at the triple line TL, which ends
at TCEp. We are considering interfacial wetting phenomena
along the paths p& and p~, respectively, which for reasons of
clarity are taken slightly off the triple line, but both lying on S&.
Along p l at T the B-rich liquid phase wets the A-rich-
liquid —vapor interface, whereas along p2 the A-rich liquid wets
the B-rich-liquid —vapor interface. Interfacial wetting occurs ei-
ther along p& or p&. If TL between T and TcFp is approached
on S& complete wetting occurs. In the case of a first-order wet-
ting transition a prewetting line is attached to T, which lies on
S& and joins TL tangentially. For reasons of clarity we omitted
it.

theory and experiment. For these reasons in the follow-
ing subsections we carry through an analytic analysis of
interfacial wetting in analogy to what we have done in
Sec. II for the wetting of a wall. Our results will improve
previous analytic studies of such systems with long-range
forces, which were based on the sharp-kink and soft-kink
approximation (see Refs. 8 and 9, respectively).

A. Density functional

As stated above we start from the following density
functional for inhomogeneous binary liquid mixtures:

fI[Ip, (r)I;Tp, ; Iw~(~r —r'~)]]= f d r fh(p;(r), T)+ —,
' g f dr f d r'w, (~r —r'~)p, (r)p (r')"

—gp; fd rp;(r), i=A, B . (3.1)

&[Ip~(r),p~(r)I;T, p~, p, ii] is the grand canonical po-
tential for a given pair of number density profiles p~(r)
and pii(r) for the 3 and B particles, respectively. The
fluid particles interact via spherically symmetric pair po-

tentials w„z(r), w~~(r), and w„ii(r), which are attractive
at large distances r where they decay -r . In Ref. 14
(where the same notation is used as here) the reader can
find the derivation of Eq. (3.1) as well as a detailed discus-
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+b fh(PA IPB& T)
p X O, IJPIPJ XVI'PI (3.2)

where

sion of it. It includes the definition of f& and the connec-
tion between the potentials I w;i ] and the functions [ w; I

entering Eq. (3.1), which differ only at small distances.
In thermal equilibrium the actual number density

profiles p, o(r; T,p; ) minimize Eq. (3.1) in accordance with
the imposed boundary conditions at z =+~. For a
homogeneous bulk system of volume V one has fL= VQb
with

three numbers: wo ~z /wo zz, wo J3&/wo ~~, and
r =o z /o. z. ' All the various bulk phase diagrams pre-
dicted by Eq. (3.2) allow for the formation of (at least)
three phases: a vapor phase (y) and two liquid phases,
one rich in A particles and the other rich in B particles. '"
Figure 5 shows one representative of such bulk phase di-
grams (a so-called type-II phase diagram). Our following
analysis is confined to the vicinity of the triple line, where
all three Quid phases coexist and along which interfacial
wetting occurs. However, we want to underscore that
the formulas in Secs. III B and III C are generally valid
and applicable to all types of bulk phase diagrams pre-
dicted by Eq. (3.2).

with

oji= dz wij z (3.3)

B. Structure of the quid-Auid interfaces

(3.4)

In analogy with Eq. (2.7) we define

t, (z) = f . dz'w;. (z')
z

= —g t; kz ", z))max(o „,oB)
k~3

(3.5)

so that wo; =2t; (0). o; is the hard-core diameter of
type-i particles.

If one chooses, e.g. , wo ~z as a scale for the tempera-
ture T and for the chemical potentials pz and pz of the

and B particles, respectively, the type of the bulk
phase diagram predicted by Eq. (3.2) depends only on

I

Let us consider such values of T, p z, and pz for which
in the bulk the binary liquid mixture is at two-phase
coexistence between two Quid phases ~ and v, i.e., the sys-
tem is located on one of the two coexistence sheets shown
in Fig. 5: (x, v)=(a, P), (P, y), or (a, y). This allows us
to impose the boundary conditions p, (z ~ —oo ) =p, , and
p;(z~+ ao)=p;, i = A, B, so that a a.-v interface is
formed whose position we denote by z=O. (Concerning
the choice for the position of this free interface the same
arguments apply as in Sec. II C and in Appendix A for
the liquid-gas interface in a one-component fluid. ) For
this configuration Eq. (3.1) splits into a bulk and into a
surface contribution: 0= V(Qb, + IIb )/2+ A AI
For 0, one obtains with p;(r) =p;(z)

II',"[Ip;(z)I;Tp;; [w&(r)j]= f dz[f&(p;(z), T) fk(p';".," (z), T)]-
+ —,

' g f dz f dz'w, "( ~z
—z'~ )5p, ,(z)5p . . (z')

I,J

+ g f dz g wo;~pi". ",(z) —po", ' 5p;. (z)
J

+ g (p, —p, ) g f dz[sgn(z)]t;. (ized)5p . ,(z)
J

—
—,
' g (p;, p; )(p—i, PJ )f—dz t;J(z),

l,J
(3.6)

with 5p, , (z) =p, (z) —p',.".",(z); p';.„(z)=e(z)p,
+e( —z)p, , is the sharp-kink approximation for the
number density profile of the particles of type i for the
free ~-v interface. po[,' ' denotes those values of the
chemical potentials for which at a given temperature T
the two bulk phases ~ and v coexist. At these values of T
and p, pz, p~, p~, and pz are the corresponding
bulk number densities in thermal equilibrium. (Here we
dropped the additional index 0 denoting equilibrium
values. ) Equation (3.6) is valid for any pair of trial func-
tions p;(z), which for z~+Ix approach their limiting
values p; and p;, respectively, rapidly enough so that
the integrals in Eq. (3.6) do exist. If the A and B parti-
cles are identical Eq. (3.6) reduces to Eq. (2.22). The ac-
tual pair of v-v interface profiles p, . [z;T,po,' ", Iw; I]
minimizes Eq. (3.6) and renders the x-v surface tension

o.„[T,po',' '; Iw (r) I ]. As in the one-component case one
has, for any zo, fl," '[Ip;(z)I]=Q,'" '[Ip;(z+zo)]] so
that the position of the free ~-v interface is not fixed.
Qualitatively p;. (z) looks similar to p& (z) in Fig. 1(b),
i.e., there is a main transition region around its center,
taken to be at z=O, with width 2g,. and van der Waals
tails on the w and v side, i.e., for z~ —~ and z~+ ~,
respectively. The form of these density profiles is not
known analytically. Therefore we write in analogy with
Eq. (2.23) (i = A, B):

p, .—g A,I'„'''~z~ ", z (
k~3

(3.7)

k~3



43 ANALYTIC RESULTS FOR WETTING TRANSITIONS IN THE. . . 1877

Thus any ~-v interface is described by two correlation
lengths g, , two smooth functions I', (z) around the center
of the interface, and four van der Waals tails. p;.„(z)
minimize Eq. (3.6) and they are solutions of the following
system of integral equations (i,j= A, B):

(3.9) has not yet been derived previously. As in the one-
component case the higher-order coefficients
k ~ 4, depend on the choice for the position of the free in-
terface.

C. E6'ective interface potential for interfacial
wetting

+ g I dz'w; (~z —z'i)p, ,(z') .
J

(3.8)

t.j 3X g (pj, » pj, v)
j +c,. c,.

tc.j,3

(A, )
+MB

(3.9)

with i,j = A, B; A. =~,v; C~ =B and CB = A; and
p&=p~ &+pB &. Denoting N; as the number of particles
of type i within the volume V the partial isothermal
compressibilities are defined as

V
Klj

p

'ax,

T, V

~p;

T, V

0, Ij
Pi Pj

(3.10)

~'," ' is obtained by evaluating the last equation of Eq.
(3.10) at p, =p, ~ and p ——p~. Note that A,I~3" ) are di-
mensionless quantities. To the best of our knowledge Eq.

I

Equation (3.8) can be analyzed along the same lines as
Eq. (2.23) yielding the four coefficients 3,.'3' ' ' and
A '

3
' which determine the leading asymptotic behavior

of p;., (z) for ~z~~ ~ [see Eq. (3.7)]. After a lengthy cal-
culation one obtains

2

A (A, ;~,v) px

det(1/~I ')

If a system, like a binary liquid mixture, exhibits the
possibility of three-phase coexistence involving the dis-
tinct phases a, 13, and y, the three different interfaces a-P,
a-y, and P-y can be formed. The application of
Antonov*s rule to these three interfaces shows that, if one
of them undergoes an interfacial wetting transition, none
of the other two can be wet, too. Therefore without loss
of generality we can focus on the case that the a-y inter-
face may be wetted by the P phase and that neither the
a-P interface is wetted by the y phase nor the P-y inter-
face is wetted by the o.'phase. One can associate the y
phase with the vapor phase, the a phase with A-rich
liquid phase, and the P phase with the B-rich liquid
phase. With this identification one is studying the wet-
ting transition at the liquid-vapor interface. However, as
already pointed out, the following considerations are in-
dependent of such an identification.

Following the spirit of Sec. II D we want to determine
the asymptotic behavior of the e6'ective interface poten-
tial OI 'i'(l) for the formation of a 13-like layer of thick-
ness I at the a-y interface. In the process of a continuous
wetting transition the free a-P and f3 @interfaces-emerge
smoothly out of the a-y interface. In analogy to Sec.
II D we calculate I},,' r'(l) =o&+o..&r+co r(l) by
evaluating Eq. (3.6) for a pair of trial functions p, (z, l; T),
which are suitable superpositions of the density profiles at
the (necessarily nonwet) a-P and P-y interfaces. o & and
o.

& are the minimum values of 0,,' '~' and A,'~'~', respec-
tively, and o =min&A, ' 'i'(l) is the minimum value of

i' in Eq. (3.6). As a generalization of Eq. (2.26) we
make the following choice for these trial functions
(i = A, B):

p, . ft(z), z ~ ~( l ) —A, ( I )

p, (z, l;T)= G, (a(l) —z, l), v(l) —A(l) z ~v(l)+A(l)

p;.py(z —l), z~~(l)+A, (l) .

(3.11)

Thus the trial function consists of the density profiles of the free a-P interface [Eq. (3.7)] centered around z=0 and of
those of the free P-y interface [Eq. (3.37)] centered around z =l. The pair of functions G; describes the smooth cross-
over between them in the transition region around z =w(l ). p; (z, l; T) exhibits a similar structure as p(z, l) in Fig. 3 pro-
vided that there p &(z) is replaced by p;. &(z), which extends to z = —~. For the functions G, (z, l), v(l), and A(l) we
impose the same restrictions as for the analogous ones appearing in Eq. (2.26). Note that we use the same thickness l
for both density profiles p~ (z) and pii(z).

In Eq. (3.11)p, (z, 1;T) is defined only along the triple line p, ( T). In order to be able to study also complete interfacial
wetting Eq. (3.11) must be generalized to the case that the system is still at a-y coexistence, i.e., p,. =pz, ' ' but off the
triple line. As the simplest generalization we choose

p;(z, l;Tp', 'i')=p, (z, l;T)+e(z —l)[p; (Tp', 'i') —p; (TP, (T))]+0(—z)[p, (Tp';r') p, (TP, , (T))] . —(3.12)

After a slight generalization the discussion following Eq. (2.28) applies also to Eq. (3.12). In particular, Eq. (3.12) means
that even off the triple line p; f3, which enters Eq. (3.12) via Eqs. (3.7) and (3.11), is taken to be the value of the bulk den-
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sity p; of the P phase at the triple line.
With a technique similar to the one we used in Sec. II D we have been able to determine the asymptotic behavior of

the effective interface potential for l~ ~ which follows after inserting Eqs. (3.7) (3.11) and (3.12) into Eq. (3.6) for
(i~, v) =(a, y). We would like to note that, although already the corresponding calculations for a one-component fiuid
wetting a wall have been extremely tedious, the analytic analysis in the case of interfacial wetting in binary liquid mix-
tures becomes substantially more difFicult: inter alia, here we must deal with eight different van der Waals tails com-
pared with three in the one-component case. Therefore we only quote our final results for the effective interface poten-
tial co (l)=A', '~'(l) c—r p

o—p.
4

co z(l) = g (P; —Po,.'~')
I [P; p

—
—,'(P; +P; r)](l +d,'p' —d,"~p)+ —,'(P,- —

P, )(d,'"p+d, 'p' )I + g akl "+O(l lnl),
l k=2

(3.13)

with (i,j = A, B)

a =a(o)
2 2 (3.14)

(3.15)

a4=a4 + g [—', T, 3(d,' p+d'p' 2d;"~&d—'p' )+T, 4(d,'~'~& —d'p . )], (3.16)

where

(o)—
ak k X T'J, k+1

l, J

(3.17)

are the expressions for these coefficients as obtained
within the sharp-kink approximation. In order to
present these results in the compact form of Eqs.
(3.14)—(3.17) we have introduced the following abbrevia-
tions:

P;,P)(P,;P P, , r) „k

and [compare Eqs. (2.36) and (2.37)]

(3.18)

I dz z" '6p, , (z),
Pl, K Pl, V

(3.19)

where n = 1,2; i = A, B; and ( v, v) = ( a, /3), (/3, y ).
As in Eq. (2.30) the explicit form of the first term in

Eq. (3.13), which describes complete wetting, is correct
up to first order in p, ,

—
po ~'. We omitted again the

lengthy terms which are nonlinear in p, —po,'~' and
which are also linear in I. Therefore in this first term in
Eq. (3.13) p;, p; ~, d,'"p, and d,'p' are taken at coex-
istence p, =p;. By construction p, & is always evaluated
at p, =p, . In deriving this first term in Eq. (3.13) we used
the fact that on the triple line both p, p(z) and p; p (z),
which enter the trial function in Eq. (3.12), fulfill Eq.
(3.8).

The dependence of the coefficients ak on p; turns out
to be analogous to that in the one-component case. In
their common prefactor (p; p; p)(pj p p, r) bo—th p;—
and p, z are taken at their actual value at a-y coexistence
but off the triple line, whereas p, &

is taken at the triple
line by construction. It turns out that all the other quan-
tities d "' have to be taken at the triple line p, . These

rules hold for arbitrary values of p, and not only up to
first order in p; —po

Before we start to discuss these results we want to
make two remarks. First, in the appropriate limit Eqs.
(3.14)—(3.16) reduce to the results obtained previously
within the soft-kink approximation [see Eqs. (3.9)—(3.12)
in Ref. 9, and Ref. 35]. Note that in that version of the
soft-kink approximation, which has been applied in Ref.
9 for the case of binary liquid mixtures, the density
profiles have been taken to vary linearly around their
centers. For such profiles d;"&=O=d'. &' so that in this
case a3=ag' in accordance with Eq. (3.10) in Ref. 9.
However, as Eq. (3.15) shows one has a3&a3 ' and the
difference is determined by the symmetric part of the free
interface profiles around their center. In addition, our
present approach predicts terms —l lnl [see Eq. (3.13)]
which are missed both by the sharp- and soft-kink ap-
proximation (see Refs. 8 and 9). Second, also in the ap-
propriate limit Eqs. (3.13)—(3.19) reduce to the results for
wetting of a wall by a one-component fiuid [see Eqs.
(2.30)—(2.37)]. In order to achieve this reduction one has
to make the following identifications; u denotes wall,
/3 denotes liquid, y denotes gas, p z =p
P„p Pz yPB ~ 0—, Pp .p

—
P&,

—Pa r Pg, —t~„(z)=0,—
t~ii(z)= V(z), trip(z)=t(z), and Gz(z)—=0. In addition,
the expressions for p, . (z) must be identified properly.
Note that —as it must be in the grand canonical
ensemble —Eq. (3.13) displays explicitly the obvious sym-
metry co (l) =co (l). Furthermore. , by exploiting the
Clausius-Clapeyron equation for binary liquid mixtures at
the a-y coexistence line for constant T (see Fig. 5) one
finds that the coefficient multiplying l in Eq. (3.13) van-
ishes —( TcEP T) for T TcEP.

As discussed in detail in Appendix A the values of d,'"'
depend on the definition of what we call the thickness l of
the wetting film. Accordingly one obtains different
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O)V 4)/M +~z x (3.20)

l =l„—Az p+Azp (3.21)

(1),v (1),p
/) Kk l) KA. KA. (3.22)

effective interface potentials; however, such quantities
like the value of T and the locus of the separatrix be-
tween first- and second-order interfacial wetting transi-
tions must be independent of these different possible
definitions of I. In the case of wetting of a wall by a one-
component Quid the thickness l is fixed by selecting a cer-
tain point z* of the wall-gas interface profile, e.g., by re-
quiring p (z =z*)=(pi+p )/2. Then we have z*=l,
which also fixes the value of d&"' according to our con-
struction scheme of the effective interface potential. d&~"

is the only quantity which reAects and proliferates a
specific choice of definition for l. Once d&~" has been fixed
this way, di' ' is uniquely determined [see Eq. (2.37)]. The
presence of the wall fixes the coordinate z=0 so that l
can be naturally defined by selecting a single point z*
based on a certain requirement for a single density profile.
Ho~ever, in the case of interfacial wetting in binary
liquid mixtures the definition of l requires the selection of
two points, z*p and zp, where each of them is a charac-
teristic point of the emerging a-P and P-y interface, re-
spectively, which are both described by pairs of density
profiles, p„(z) and p~(z). As an example, if
pA'a &( ap) (pA, a pA, p)/2 and pB;a,p(z =zai3)
=(pii ~+p~ /3)/2, one can define z'& as
z*/3 =(z &+z &)/2. The analogous procedure on the
side of the emerging P-y interface of the wetting film
leads to a point z&r' =(z&~+z& )/2 so that according to
this definition l, =z~' —z'&'. Other possibilities consist
in choosing z p

=
~p a d py

—z py, so that
l =z *'"—z *'" or z*""=z and z*""=z leading toII Py aP & aP aP Py Py
l III ~ One can also choose mixed definitions like, e.g. ,
l» =zp'" —z*p'". There is an arbitrarily large number of
possible definitions. It is helpful to keep in mind that
p„. r(z) and pb. r(z) represent a pair of solutions to the
system of coupled integral equations in Eq. (3.8), so that
the relative positions of the 3-density profiles and B-
density profiles are always fixed. Thus each definition
v=I, II, . . . for 1 depends on a pair of definitions (v„v2)
for selecting z*p and zp, respectively. According to our
construction scheme for the effective interface potential
[see Eq. (3.11)] these definitions fix the values of dz"~,
de '/3, dA j3r and dj3&r and (therewith also those of d
and d, '&'r ). According to our above remark about the rel-
ative positions of the density profiles only two of the

(1) v& (1) vpabove quantities are independent: (d A 'i3', d A t3&' ),
(1),v, (1),v) (1),v2

(dj3 '13', did/3' '), (dA 'p', dpi p '), or (did 'p', dA /3r')
parametrizes one and the same definition (vi, vz); in each
case the other two corresponding quantities are fixed.
Within our approach for calculating the effective inter-
face potential the change from a definition p to a
definition v has the following implications
[i = A, B;(~,A, ) =(a, /3), (P, y)]:

(2), v (2) p (1) p
d, ~

' =d, ,q
' —2b,z,i d, „i ' + ( b,z,j„) (3.23)

where a=1 for ()i,k)=(a,P) and a=2 for ()~, A, )=(P,y).
Since the surface free energy of a given density
configuration p, . r(z) does not depend on how the thick-
ness of its wetting layer is defined, one must have
co (1 )=co (1„)or cg (l)=co„(/+Az ji

—b,zjir). By using
Eqs. (3.20) —(3.23) it is straightforward to check that Eqs.
(3.13)—(3.19) fulfill this requirement. This represents a
highly nontrivial check for the validity of our formulas.

In analogy to Eqs. (Al) and (A2) we are able to cast
co (1) in such a form that its dependence on v becomes ex-
plicit, leaving one with a definition-independent potential

(1),v2 (1),v&co(/). With l„=l +dA &
' —dA '&' one has at the triple

line co (/) =co(/ =1 ), with co(/) independent of v, where
4

9(1)= g ai, 1 +0 (/ ln/),
k=2

(3.24)

with a2 2

(3.25)

a3=a4 '+ —', g TJ 3f j + Q Tj 4A J (3.26)

The advantage of representing co(/) in terms of co(/) is
that Eqs. (3.24) —(3.26) show explicitly how the effective
interface potentials depends on invariant (i.e., indepen-
dent of v) lengths b, ;. and products of lengths f',", which
are inherent properties of the free a-/3 and /1-y interface
profiles. We find

and

0 —6p

6aP, 1 6', 1 6Py, 1

(3.27)

6',2+ 6Py, 2 6aP, 2+ 6Py, 3

6 P 3+6P 2 6 P 3+6P 3
—26 P,6P

(3.28)

where ()~, A, ) = ( a,P), (/3, y )

(1) (1)
d&, KX (3.29)

(3.30)

and

5,i. 3
=dii,'i + ( d A'"~i ) 2d A"~)„djj'„')„. —(3.31)

By using Eqs. (3.22) and (3.23) one can easily check that
6 & 1, 6 & 2, and 6 & 3 are indeed independent from v.
Thus the asymptotic behavior of the effective interface
potential for large 1 is controlled by the matrices Tk [see
Eqs. (3.5) and (3.18)], b, and f'. The matrix elements of b,
and f' are determined by invariant, i.e., intrinsic zeroth
and first, respectively, moments of the free a-P and /3-y
interface profiles [see Eqs. (3.19) and (3.29)—(3.31)].

According to our remark before Eq. (3.20) there are
basically four possibilities for parametrizing the effec-
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tive interface potential. For example, with
(1),V2 (1),VIl =1+dies&'

' —
dpi ~' one obtains co (l)=a~(l =l ) where

co(l) =a&i +a3l +a4l +O(l lnl) with a~ =a~,
a3 =a

3 + g; T;& 3', ; J, e'tc. ,

&p, , i
—&.p, i

—&.p, i

~or, ~
0

With Eqs. (3.27) and (3.32) one finds a3=a3 —2b, iiza2.
This shows explicitly that although oi(l)&co(l) both func-
tions render the same predictions concerning the physical
properties of the system: a2(T=T )=O=a2(T=T ),
a3( T ) =a3( T ); similarly, a&( T„)=a&( T ) if a3( T„)
happens to vanish for certain interaction parameters.
Thus, as it must be, the value of T, which is the wetting
transition temperature in case of critical wetting, the
separatrix between first and second-order wetting, which
is defined by a3(T ) =0, as well as the separatrix between
second- and third-order wetting, which is defined by
a 3 ( T ) = a 4 ( T )

=0, are determined uniquely.
Finally we want to discuss briefIy the complete wetting

term in our expression Eq. (3.13) for the effective inter-
face potential. This term can be written as

(3.32)

X (& &o, ' )[(p,p p, ,)l.+(p , p, , )d;',.j '] .

Whereas the l-dependent piece of this expression is ex-
plicjtly invariant, there is a constant term —with respect
to / —which vanishes -p, —

po
~' upon approaching the

triple line but which depends on our choice for defining
the effective interface potential. In the one-component
case this feature does not show up in the corresponding
term linear in bp because d„'i' is a fixed quantity [see Eq.
(2.30)]. However, let us mention that those complete wet-
ting terms, which are nonlinear in Ap and which have
been omitted in Eq. (2.30), exhibit a similar feature as the
aforementioned terin in Eq. (3.13) concerning the depen-
dence on the choice v. Thus in the case of interfacial
wetting this feature is more acute than in the one-
component case. However, it is without consequences as
far as the equilibrium thickness of the wetting film is con-
cerned because these problematic terms drop out upon
minimizing ro(l). For that reason we do not pursue this
point further. We blame our poor choice of the trial
functions off coexistence for this unwanted feature be-
cause they exhibit discontinuities [see Eqs. (2.28) and
(3.12)] which become larger further away from coex-
istence. We expect this —in principle unwanted
feature —to disappear for a more sophisticated choice of
trial functions as far as complete wetting is concerned.

At the end of this subsection we want to discuss the
physical implications of the results presented above. Our
first observation is that the leading coefficient a2 turns
out to be the same as the one obtained within the sharp-
kink approximation. This means that the transition tem-
perature T„ for critical wetting, a2(T=T )=0, can be
determined from the temperature dependence along the
triple line of those six bulk densities, which characterize
the three coexisting phases, and from the leading term of
each interaction potential. In order to underscore this
statement further, one could study in addition the

inhuence of the extra tails as in Sec. II E. In face of the
complexity of such calculations we refrained to do so in
the case of binary liquid mixtures. However, since the
one-component case must be included in the binary case
[see the second paragraph after Eq. (3.19)] and since in
the former case the incorporation of these extra tails did
not change the coefficients a2, a3, and a4 at all [see Eqs.
(2.51)—g.53)], we have no reason to suspect that in the
binary case these extra tails would change the expressions
in Eqs. (3.14)—(3.16). Thus, as in the one-component case
we regard Eqs. (3.14)—(3.16) to be valid exactly. This
lends additional reliability to the work performed in Ref.
l4 whose analysis is based on the expression for a2 as
given in Eqs. (3.14) and (3.17).

In the one-component case T marks not only the wet-
ting transition temperature for the wall-gas interface but
also that temperature at which the wall-liquid interface
structure undergoes a qualitative change [see Eq. (2.19)].
Thus the question arises whether the condition
az(T )=0 leads to a similar statement for the interface
profiles in binary liquid systems. Indeed, the condition

T; 3
=0 leads to certain restrictions on weighted

sums over i for the van der Waals amplitudes A, 3' ' '.
However, in contrast to the one-component case, the
complicated formulas in Eq. (3.9) did not allow us to ex-
tract a simple interpretation of these restrictions.

As already stated above the value at T =T of the
coefficient a3(T) for the next-to-leading order term in the
effective interface potential determines the order of the
wetting transition. If a3( T„))0, critical wetting occurs,
whereas there is first-order wetting if a~(T„)&0. ' In or-
der to discuss our predictions for the order of interfacial
wetting it is useful to compare them with the correspond-
ing ones for the wetting of a wall in the particular case
that all particles interact according to Lennard-Jones po-
tentials and that the wall is a homogeneous medium.
This means that t4 =u4 =0 and t, 4=0. In this case one
obtains in the one-component system a3(T„)= —p, hpt3d'&'. By neglecting that contribution to d' I',
which stems from z )zo [see Fig. 1(a)], Kroll and Meis-
ter' assumed that d„'I' is temperature independent and
basically given by the sum of the atomic radii of the sub-
strate and Quid atoms, respectively, and therefore it is a
positive quantity. This would imply that a3(T ) &0 and
the wetting of a wall in Lennard-Jones systems would be
always first order due to this excluded volume e+ect near
the wall. However, as can be seen in Fig. 1(a), even for
pure Lennard-Jones systems it is by no means obvious
that d„'&' is always a positive quantity, so that even in this
case critical wetting is conceivable. Furthermore, as em-
phasized in Ref. 8, for real substrates there are many
correction terms to the leading behavior of the substrate
potential (e.g., induced by the layered structure of the
substrate) so that in general u4&0. Thus for a Lennard-
Jones fiuid a3(T )=bp( —,'p u4 p&t3d'&') Con—sequent-.
ly, the order of the wetting transition depends delicately
on the external parameter u4 introduced by the presence
of the wall.

In Ref. 17 Kroll and Meister, without an explicit calcu-
lation, speculated also about the order of interfacial wet-
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ting in binary liquid mixtures. They presented arguments
that in a fluid system the effective pair interactions decay-r +O(r ) for large separations r T. his implies
t, 4=0. Therefore one can argue that, in contrast to the
case of wetting of a wall, where u4&0, the corresponding
quantities t, 4 in the binary liquid mixture are zero by
reasons of symmetry and due to the fast rotations of the
molecules. ' Kroll and Meister continued their line of
arguments by stating correctly that the absence of a hard
wall in the case of interfacial wetting leads to the absence
of the packing effects close to the wall —which are the ul-

timate reason for the nonzero excluded volume O'I'—
because in this case all interfacial profiles are smooth and
monotonic. Thus Kroll and Meister drew the reasonable
conclusion that for interfacial wetting there is no exclud-
ed volume effect. Because they regarded this excluded
volume as an obstacle for the occurrence of critical wet-
ting [which is, however, according to our results not
necessarily the case (see our remarks above)] their final
conclusion was that critical wetting is more likely to
occur in a binary liquid mixture than for the wetting of a
wall.

We are now in the position to check this expectation
against our explicit analytic results. For pure I.ennard-
Jones systems we have a3 '=0 so that in this case

3 /31 BA, 3 883 f3y I A8, 3 883

(3.33)

Note that all quantities on the right-hand side of Eq.
(3.33) depend on temperature; here they are evaluated at
T T wlllcll Is deflIled IIIlpllcltly by g ' j T~j 3 0
Therefore we arrive at the surprising result that the
lengths 5» and 5&z, have the same meaning for interfa-
cial wetting as the length d'&' for wetting of a wall.

Based on the definitions for these lengths in Eqs. (3.29)
we can therefore state the following conclusion: The
differences between the zeroth moments of the A-density
profile and the B-density profile of the free a-/3 and P-y
interface, respectively, play the same role as the excluded
volume effect for wetting of a wall. This astonishing re-
sult contradicts the expectations of Kroll and Meister'
and demonstrates the importance of describing interfacial
wetting by two density profiles. In a one-density theory
these lengths 6 & &

and 5&, would be zero and one would
expect a multicritical wetting transition.

Of course one would now be interested in obtaining
quantitative results for ak(T ) for specific systems in or-
der to predict their corresponding order of the wetting
transition. However, the lengths 5 &, and 5&& ] are not
accessible to analytic calculations. Therefore we post-
pone this necessarily numerical work to a future study.
In any case our analysis shows the remarkable feature
that both the transition temperature for critical interfacial
wetting and the separatrix between first- and second-
order wetting are determined completely by the bulk den-
sities along the triple line, by the leading term of each in-
teraction potential, and by certain zeroth moments of the
emerging free interfaces.

Finally, as already stated in Sec. IID, close to T, the

effective interface potential for binary liquid mixtures ex-
hibits the same features as the one for wetting of a wall;
this becomes transparent by switching to the new vari-
ables M (z) =p z (z) —

pB (z) and Q (z) =p z (z) +pB (z) (see
Ref. 14). Therefore our discussion in Sec. II D, which is
concerned with the effect of the vicinity of a critical point
on wetting transitions, carries over to the present case if
the interfacial wetting transition T happens to occur
close to the critical end point TCEp. This is relevant for
analyzing the experimental findings reported in Ref. 29;
the corresponding discussion is presented in Sec. II D.

IV. SUMMARY

We have analytically studied wetting transitions of the
wall-gas interface in a one-component fluid as well as in-
terfacial wetting in binary liquid mixtures. We have paid
particular attention to the consequences of the power-law
decay of the intermolecular interactions and the resulting
presence of van der Waals tails in the density profiles.
Inter alia we have obtained the following results.

(1) We have reanalyzed the asymptotic behavior of the
wall-liquid, liquid-gas, and wall-gas interface profiles in
the one-component fiuid (see Secs. II B and II C as well as
Fig. 1). We have discussed their behavior and demon-
strated the irrelevance of van der Waals tails close to cri-
ticality (end of Sec. II D). In addition, we have presented
the corresponding formulas for the three possible fluid in-
terface structures in binary liquid mixtures (Sec. III B).

(2) At a continuous wetting transition of a wall-gas in-
terface, which takes place on the gas side of the coex-
istence curve, i.e., po, also the wall-liquid interface on
the liquid side po of the coexistence curve undergoes a
qualitative change: below T the wall-liquid interface
profile approaches its bulk value pI from below and above
T from above (Sec. II B and Fig. 2).

(3) The asymptotic behavior of the effective interface
potential for large thicknesses l of the wetting film has
been determined analytically by taking into account all
aspects of the spatial variations of the density profiles
[Secs. II D, II E, and III C, in particular Eqs.
(2.29)—(2.35) and Eqs. (3.13)—(3.17)].

(4) We have explored the variety of possible definitions
of effective interface potentials. We have shown that all
of them lead to identical predictions for the intrinsic
physical properties of the system under consideration
(Appendix A and Sec. III C).

(5) The first three expansion coefficients of the effective
interface potential can be expressed completely in terms
of the leading behavior of the interaction potentials, the
bulk densities, and certain moments of the emerging free
interfaces. Consequently these data also determine the
transition temperature for critical wetting and the separa-
trices between first-, second-, and third-order wetting
transitions (Secs. II D, II E, and III C).

(6) The fourth term in the effective interface potential
involves the logarithm of the thickness of the wetting film

[Eqs. (2.30) and (3.13)].
(7) The distortion of the actual interface profiles con-

taining a wetting film of finite thickness l compared with
those following from a suitable superposition of the em-
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erging free interfaces does not affect the first three terms
of the effective interface potential (Sec. II E).

(8) In the one-component case the presence of the wall
leads to an excluded volume effect, which —together with
the first correction term to the leading behavior of the
substrate potential —determines the order of the wetting
transition. The excluded volume effect is determined by
the zeroth moment of the wall-liquid interface profile and
exhibits a pronounced temperature dependence, in partic-
ular close to T„due to the effect of critical adsorption.
Its sign depends in integrated form on all details of the
microscopic interaction potentials (Sec. II D).

(9) In the case of interfacial wetting in binary liquid
mixtures the differences between the zeroth moments of
an 3-particle density profile and the B-particle density
profile of the two emerging free interfaces, respectively,
play the same role as the excluded volume effect for wet-
ting a wall. Due to the absence of the first correction
terms -r in the microscopic interactions in binary
liquid mixtures, here this quasiexcluded volume effect has
even stronger repercussions on the order of the wetting
transition than in the case of wetting a wall (Sec. III C).

(10) Intrinsic moments of the free interface profiles
enter into the expressions for all the terms in the effective
interface potential [Eqs. (2.30) and (3.13)] with the excep-
tion of the Hamaker constant.

(11) The asymptotic power-law singularity for continu-
ous wetting is confined to a critical temperature interval
which is proportional to T, —T . Therefore, if the wet-
ting transition happens to occur close to T„ the detection
of its corresponding asymptotic thermal singularities be-
comes increasingly difficult. This prediction seems to
check with recent experimental findings (Sec. IID and
Fig. 4).

(12) Close to T, the effects of critical adsorption and
complete wetting compete. For T~T, the power-law
behavior l —(bp) '~ for complete wetting is confined to
a rapidly decreasing wedge Ap(bp, —(T, —T)', out-
side of which critical adsorption behavior with
I-(bp) prevails. This shows explicitly how the
van der Waals interactions, which lead to the (bp)
law, become irrelevant upon approaching T, compared
with the critical phenomena, which lead to the more
singular (by) ' law (Sec. II D and Fig. 4).

depend on the definition of what we denote as the thick-
ness l of the wetting layer for a given density profile p(z).
Let us now consider two arbitrary definitions I and II
with the corresponding values lI, l,I, dl'I, and dl'». As
explained in Fig. 3 one has l» =I, +Az. Corresponding-
ly, dt"t is evaluated with pt i(z) [see Eq. (2.37)] and d&s'tt

with p&s»(z)=p& t(z+bz); p'„" (z) is the same for both.
A shift of the integration variable leads to the following
relations:

and

dig, II dig, I
(i) — (i) (A3)

d"' =O.
lg, e (A5)

In this case we get (b,p =po —p, e stands for equimolar)

a (0)

co, (l, )=bp(Apl, ptd't')+ —+
l, l,

a4 '+3a2d' '

l,"
(A6)

At this point we want to emphasize that for k ~ 4 the
coefficients A&r' in Eq. (2.23) depend on the definition of
the center of the free interface profile. In accordance
with our above notation one has A 3 II A 3

~,(&,), = a,(&,)+3~ (,&,
) az,

t
(A7)

dig, it dt's i 2bzd—tg'i+(bz) (A4)

Thus l» =I»+dig, it =(lt+Az)+(dig, t bz) =l, so that I
is a thickness, which is independent of our definitions and
thus a well-defined property of a given density profile
p(z). Due to Eqs. (A3) and (A4) the same is true for
dJ ' —(d&") . Consequently, also a4 in Eq. (A2) is well
specified and thus co(l ) is independent from our choice of
defining l.

One possible definition of (large) l is that it gives the
distance between the wall and that point of the emerging
liquid-gas interface within p(z), which corresponds in the
limit l —+ ~ to the position of the equimolar interface of
the free liquid-gas interface. For that definition of l one
has

APPENDIX A: VARIOUS DEFINITIONS
OF THE EFFECTIVE INTERFACE POTENTIAL

and

A ',r,', = A ',i", +42 4''b, z +62 '3i't'(b, z)
) 7

(A8)

The results in Eqs. (2.30)—(2.37) can be rewritten in the
following way:

4
co(l)=co(l)=(po —p)(Apl —ptd", ')+ g akl

k=2 2 '~'= 3'~'+33'~)d"'
4 4 — 3 lg (A9)

where the upper sign is valid for y =l and the lower sign
for y =g. Thus we obtain as invariant coefficients
g (y) —g(y)

3 7

+0(/ inl ),
with l =l +dig", a2 =a2, a3 =a

3 ', and

(A 1) and

A 't'= A't'+42'r'd"'+62't'(d'")' .5 5 — 4 lg 3 lg (A 10)

a =a' '+3a [d"'—(d,'")'] (A2)

a2, a3 ', a4 ' are uniquely specified, because d'1', i=1,2,
are defined unambiguously. However, according to our
way of calculating co(l) [see Eq. (2.26)], the values of dJ' r=(l+d, ',")Sp p, d.",~+r, +r, +r, — (A 1 1)

In the next step we determine the coverage I for the
density profiles described by Eqs. (2.26) and (2.28). One
obtains
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with

I, = —J dz [p I(z) —
pI ],

x.(1)—A, (1)
A,(1)Iz= I dz[G(z) —pi],—A, ( I)

(A12)

(A13)
4

I—: =l+yp+ g yI l +
Ap

with

(A15)

With @1)=Kp~[l+Kil '+Kzl +O(1 )] one finally
obtains from Eqs. (Al 1)—(A14)

—1+~(1)+k(1)I, = dz[pi (z) —pi] . (A14)

Equations (A12) —(A14) show that the coverage I is in-
variant in the above sense [i.e., it is the same for p, (z, l)
and p„(z, I +b,z), which are identical profiles] if and only
if K(I)=@1 ) and I(,(l)=R(l), i.e., if these functions are
taken to depend only on the invariant thickness
l l +d/g and on invariant combinations of d1g" . If in
our trial function we take I(,(i~Do )-I "+', e) 0, as
mentioned in the main text, one has I2 =0 ( I ').

I

and

P1 (])
Ml

p

2' [Q',"K —~ ',"(1—K,)-'],

3'
—3W ',"K,K, (1—K,} '],

(A16)

(A17)

(A18)

[Q g Ko 4Q 3 IC2KQ +6Q3 KilCQ 4Q4 KIICQ 3 g ( 1 Ko) 4A 3 ICQKp( 1 Ko)
p

—6A 3' KQK, (1 —Ko) —4A 4 Kplci(1 Ico) ] ~ (A19)

4
co(l)=co(l)=bIi4bPl+ g a„l "+

k=2

with

(A20)

and

a2 =a2 —Aphpy2,

a3=a3+2yoaz I5pbp(y3+2yoy2)

(A21)

(A22)

a4 a4+3yQa3+3ypa2 ~p~p(y4+3y3yQ+3j '2j Q)

(A23)

Equations (A15)—(A23) show explicitly that cp(l ) is in-
variant, i.e., it is independent of any definition of l from
which we started to obtain cp(l ). It is interesting to com-
pare cp(1) and cp(l ). The corresponding former expansion
coefficients ai„k=2,3,4 [see Eq. (A2)], are determined
uniquely by the characteristics of the wall-liquid and the
liquid-gas interface profiles alone. At coexistence
(b,IM =0) the same is true for the expansion coefficients ak.
However, off coexistence these coefficients depend, in ad-
dition, on the matching position for the wall-liquid and
liquid-gas interface profiles in order to form a smooth tri-
al function. (y2, y3, and y4 depend on Kp ICi, and Ki and
so do az, a3, and a4 for DIM)0. ) These dependences
should not be confused with the problem of having vari-
ous options for defining I. This reAects the fact that the
coverage I does depend on this matching position [see
Eq. (A15)]. However, even off coexistence the detail of
matching, i.e., the function G (z) [see Eq. (2.26)], does not
inAuence the first four leading terms of the effective inter-
face potential (see Appendix B).

By using Eqs. (Al), (A2), and (A15)—(A19) we are finally
able to express the effective interface potential in terms of
the coverage I =le:

In order to make our reasoning transparent let us sum-
marize the results of Appendix A. Generally speaking,
the effective interface potential co(l)+o.„i+oi is the
minimum of 0[{p(z)I ] under the restriction that p(z) ex-
hibits a wetting film with a prescribed thickness l. For l
there are several possible definitions, which we denote by
p. One can, e.g. , require that 0[{p(z) I ] is minimized un-
der the restriction that p(z = l ) = (pI +p ) /2 or that
p"(z =l)=0, etc. This leads to various cp„(l), which
differ from each other. If they have been determined ex-
actly, all those properties which follow from the unre-
stricted minimum of Q[{p(z)I ] (like T, the location of
separatrices, the minimum value itself, etc. ) must be
reproduced by any cp„(l), i.e. , independent of IM.

We calculate cp„(t) approximately according to Eq.
(2.26), which means that for any of the aforementioned
possible definitions of l we have to find the corresponding
point z„on the free liquid-gas interface and with that we
then enter into Eq. (2.26). If we have two definitions of 1,

tu, and v, which for a given profile differ by b,z(l),
l =l —b,z(l), one must have quite generally
cp (l)=co (I —b,z(l)}, because a given density profile
renders a well-defined value of A[{p(z)I] irrespective of
what thickness l we assign to it. Because b,z(l) is not
known in advance, the various effective interface poten-
tials cannot easily be translated into each other. [In gen-
eral, the distance between those points where p"(z)=0
and p(z)=(p +pI )/2, respectively, depends on l. ] Ac-
cording to our special way of calculating co(l) we obtain
various z„* =z * —Az and with them d1"„' =d&~" +Az.

Here, Az does not depend on l. Combining this with the
general result above we arrive at co (I ) =c|I„(1

ermore, due to Eq. (Al) we find that ctI (l)=co(i +dig" )

where the function co is independent of v. Thus our expli-
cit results do satisfy the equation in the last but one sen-
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tence, which must hold on general grounds. In face of
the enormous length of the analytic calculations and the
complexity of the expressions involved this represents a
highly nontrivial consistency check.

Thus we find within our approximate expressions for
the various definitions of the effective interface potential
ra„(l)=ca(l+d&"" ) that they are all parametrized by a
single length d&g„. Since they differ only by a shift of l
one can easily translate them into each other. Further-
more, this implies that all the properties of the minima of
ca„(I) are the same for all p. Thus all intrinsic properties
of the system (T, separatrices, etc. ) are also independent
of p. This can also be checked directly on the basis of
Eqs. (2.30)—(2.35). Since the coverage I is independent
from any definition of I we expect that if we derive the
effective interface potential as a function of I from our
expression for ca„(l) the dependence on p must drop out.
According to Eqs. (A20) —(A23) this is indeed the case.
ai(l) is equally suited as an effective interface potential as

!

APPENDIX 8: RELEVANCE OF THE MATCHING
CONDITIONS

According to Eq. (2.26) the trial function p(z, /;T)
matches smoothly the wall-liquid interface profile and the
liquid-gas interface profile. The transition region
tr(l) —

A, (l) ~z +tc(l)+A.(l) induces a contribution 5' to
the effective interface potential. With tr( l ~ oo )

=Kol + it has the form

5co(l) =5,+5,l +5,l '+54l +
where

(81)

ca„(l); in ca one has an integral restriction on p(z),
whereas in ca one has various local ones at z =l. ca(l)

p
clearly differs from ca„(l) but again as it must be they pre-
dict the same intrinsic properties of the system. This can
be checked on the basis of Eqs. (A20) —A(23).

5i= f dz[fi, (G(z, t), T) fi, (p&, T—)]—(p —iuopi) f dz[G(z, h) —
p&]

+ —,
' dz dz'm z —z' 6 z, h

—p, 6 z', l —p,

52=0,
53= f dz [G (z, l) p, ][(pit3——

p u~ )lro +bpt3(1 ao) '+Iro—Q3"t (A, —z) —(1—Iro) '3 ',"t (A, +z)],
(83)

(84)

and 54 s(z)= —3(l —Iro) A3" f dz't(z') .
A, +Z

(813)

8

5 = f dz[G(z, l) —p, ] g 5, (z)
t =1

with

The continuity of p(z, l) and the presence of the van der
Waals tail in p &(z) and of that on the liquid side of pcs(z)
(see Fig. 3) require the following asymptotic I dependence
of G (z, 1) for large I and for any fixed value A, =k:

5~ i(z) =pro [pt t4 —p u 4+ 3(pi t3 —
p u 3 )z],

5~ ~(z) = ( 1 pro) b p(t4 —3t,—z),

54, 3(z) 3~o pid~i t3

54 4(z) = —3(1 Iro) pi hpd, ~ "t, , —

(86)

(87)

(89)

max
~

z(~G(z, l) —p&~)-l

Therefore one finds for large I

f dz [G (z, I) —pi] —A(l)I—A.(1)

(814)

54 5(z) =Iro (Q4" +3AQ~3" )t (A, —z),

54 6(z) = —(1 —ao) ( Aq" +3XA ~q" )t (A, +z),
5 (z)=3a QI" f dz't(z'),

A,
—Z

(810)

(811)

(812)

Along the same line of arguments it is straightforward
to check that if A, (l ~ ~ ) —i "+'I one has
5'(l~ ac ) —l '. Thus for any e) 0, a2, a3, and a4 do
not depend on the details of matching the wall-liquid and
the liquid-gas interface profile.
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