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We report results of a detailed study by light scattering and a model simulation of spinodal
decomposition in a binary liquid mixture under constant uniform shear flow. The effects of flow are
found to be important when the growth rate of the phase-separating domains is smaller than the
shear rate. The growth of these domains is strongly modified by the shear flow only in certain direc-
tions. In the direction perpendicular both to the flow and shear, the flow has little effect on the
growth. Some essential features observed in the experiments are reproduced in a computer simula-
tion that incorporates only the deformation produced by the flow. The effect of surface tension
must be considered to account for the other observed effects. A new growth mechanism can be in-
duced by the interaction of capillary forces with the shear flow.

I. INTRODUCTION

It is well known that dynamics of the growth of phase-
separating domains are influenced by the hydrodynamics
of the system.! One might expect that the dynamics of
growth would be altered when the hydrodynamic interac-
tions between the phase-separating domains are modified,
for example, by an externally imposed flow. In fact, it
has been observed in fluid systems that flows driven by
gravity®® accelerate and modify the phase-separating
process and thus novel growth mechanisms might be
present. In this article we present experimental and
simulation studies of the dynamics of growth for a criti-
cal binary liquid mixture undergoing spinodal decompo-
sition (SD) in the presence of a uniform shear flow.

When a binary liquid mixture close to the critical point
is subject to a shear flow of shear rate S, there are at least
two associated relevant time scales: the characteristic
time 7 of the critical fluctuations* and the time scale S !
of the shear flow. Depending on the value of the product
ST, two regimes can be defined, namely S7>1 and
S7<1. For the case of S7>1 or “strong-shear” regime,
the critical fluctuations are strongly modified by the flow
while for the case ST<1 or ‘“weak-shear” regime, the
critical fluctuations are slightly affected.> Figure 1 shows
schematically these two regions in the phase diagram
(concentration ¢, temperature 7).

For the strong-shear case in the one-phase regime,
there have been a number of theoretical and experimental
studies.’ In general, the agreement between theory and
experiment is satisfactory. The main results are that the
critical fluctuations are strongly anisotropic, the critical
exponents assume mean-field values, and the critical tem-
perature is shifted downward by the shear.

In contrast, not much attention has been paid to the
case S7< 1, because critical phenomena are not affected
by the flow. Note that the regime of S7<1 exists both
above and below T, (respectively I and II in Fig. 1). Even
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though these two regions I and II are both in the regime
of St<1, they are fundamentally very different. In re-
gime I, there is no thermodynamic instability for a homo-
geneous fluid. Nevertheless, above T, the slight anisot-
ropy of critical fluctuations leads to a very large birefri-
gence and dichroism.® However, a homogeneous fluid in
regime II will be unstable and a phase separation will
occur. Intuitively, since the critical properties of the sys-
tem are slightly affected by the flow in this regime, phase
separation should proceed as if there were no shear flow
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FIG. 1. Phase diagram of a binary mixture under a uniform
shear slow (shear rate S). The hatched region on both sides of
the coexistence curve corresponds to the strong shear regime.
Region I (above the coexistence curve) and region II (under the
coexistence curve) correspond to the weak-shear regime (see
text). A typical thermal quench performed in the experiment is
represented: the system is quenched from the temperature 7; in
the region I to the temperature T, in region II. Typically,
T;,—T,~2to5mKand T,—T,~0.5to 5 mK.
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and sharp interfaces will be formed. But, once these
domains begin to grow, another time scale enters the
problem; namely, the growth rate of the domains. If this
later time scale is smaller than that of the flow, we expect
that growth will be modified by the flow and a new
growth mechanism can be induced.

In order to study the interaction between flow and
domain growth in the regime S7< 1, we have performed
light-scattering experiments on spinodal decomposition
of a binary mixture under a constant uniform shear flow
and preliminary results have been reported previously.” ~®
We found that growth of the phase-separating domains is
strongly modified by the shear flow only in certain direc-
tions. In the direction perpendicular to the flow and the
shear, shear seems to have little effect on the growth.
Since few theoretical calculations on SD under shear!®°~12
have been performed to date and since we have only one
for comparison,'? a simple simulation has been carried
out to explain our data. In this simulation, only the de-
formation effect of the shear flow on an interconnected
SD-like structure has been considered and surface tension
is neglected. In this model we have also assumed that the
shear rate is much larger than the growth rate of the
domains and that there is no growth mechanism. Even in
such a simple model we find that some of the essential
features of the experiments are reproduced. However,
surface tension must be included to explain some of our
observations, which indicate that a new growth mecha-
nism is induced by interaction of surface tension with the
flow.

In Sec. IT we describe the apparatus and the experimet-
nal method. The main difficulties of the design and cali-
bration procedure are discussed. The results of the ex-
periment are then presented in Sec. III. In Sec. IV, the
simulation and its results are presented. Here we show
that the deformation effect of the flow is important. The
discussions of our results and their interpretation and
given in Sec. V and concluding remarks are given in Sec.
VI.

II. LIGHT-SCATTERING EXPERIMENT

Our experiment is similar to other light-scattering ex-
periments on binary mixtures in that the sample is
brought suddenly (quenched) from a temperature T;
above the critical temperature T, to a temperature 7,
below T, (see Fig. 1), while the small angle scattered in-
tensity is recorded. The difference here is that there is a
shear flow inside our sample. Since we are studying an
anisotropic phenomenon, two light beams are used at or-
thogonal directions. This aspect of our experiment is
very different from traditional experiments where only a
single beam is used. One of the difficulties of a well-
controlled flow experiment with binary liquid mixture is
the design and fabrication of the sample cell. We will
give details of such a cell. As we will show below, con-
tamination is inevitable in such a cell. Special care has
been taken to measure the critical temperature and the
method will be discussed.

A. The Couette device

In order to generate a reasonably uniform and per-
manent shear flow, a Couette device is used in the experi-
ment. Since the light-scattering experiment concerns a
binary mixture, it is necessary that the cell must be trans-
parent and sealed. Figure 2 shows the details of the
essential parts of the apparatus. The Couette device con-
sists of three pieces of glass; an outer cylinder (G,), a
movable cylinder (G, ), and a piece (G;) which holds the
rotation support (RG) and seals the Couette with the
outer cylinder. The RG is made of stainless steel and has
two internal ball bearings without lubricant. The mov-
able cylinder is fixed to G; through a stainless-steel bar
(SB) that runs through RG and has the movable cylinder
(G,) and a magnet (M) attached to each of its ends by
stainless-steel nuts. The different parts of the cell are
held together by a stainless-steel housing also shown in
Fig. 2. The cell is sealed by using indium o-rings between
the glass surfaces (G; and G;) and stainless-steel sur-
faces. These are two small holes in RG and the housing
to allow filling of the sample. The holes in the housing
are sealed by using a screw and indium ring after the
sample has been filled.

With this design, we in fact have two Couette flows in
one cell, namely, the gap between the inner wall and the
moving cylinder and that of the outer wall and the mov-
ing cylinder. The two Couette flows correspond to a
moving inner cylinder device and a moving outer cylinder
device, respectively. It is well known that there is a hy-
drodynamic instability (Taylor-Couette) in moving inner
cylinder devices when the rotational speed exceeds a crit-
ical value.!> However, in the experiments reported
below, the rotation speed is so low that we are always far
from this hydrodynamic instability in the outer cell.
With the radii of the inside surfaces of the walls of G:22
and 26.5 mm and those of the moving cylinder: 23.5 and
25 mm, the shear rates produced in the inner and outer
cells are 1.64w sec™! and 1.75w sec™!, respectively,

stainless-steel

FIG. 2. The Couette device showing the glass parts
(G, G,, G3) and the stainless-steel parts (RG, SB). (See text
for the letter symbols.)
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where o is the angular velocity of the rotating cylinder in
revolutions per minute (rpm).

B. Sample preparation and calibration

Before the Couette device is assembled, all the glass
parts were cleaned with sulfochromic acid while the
stainless-steel parts and the ball bearings were cleaned
with acetone and alcohol. After assemblage, the cell is
filled with a critical mixture of water and isobutyric acid
prepared after weighing. The weight percentage of the
mixture used is 61% of water that is taken from reported
values.!* After the cell has been placed under water in
the bath to be described below, criticality of the mixture
is checked by measuring the turbidity in the homogene-
ous phase. The critical temperature T, of our sample im-
mediately after filling is 26.7 °C, which is slightly higher
than the reported value of 26.2°C."* However, it is well
known that the critical temperature of a binary mixture
is sensitive to impurities while its critical properties are
only little affected.'®

During the course of the experiment, there is a down-
ward drift of 7,. This was about 5 mK per day with no
rotation in the Couette device. However, when it was ro-
tating rapidly, a 1-mK shift in 7, has been measured in
less than an hour, which is the order of magnitude of the
duration of an experiment. The drift of 7, depends on
how often the cell is turned. Our explanation for these
observations is that there is a slow chemical reaction of
the stainless steel, indium ring, and especially the bear-
ings with the mixture and therefore contaminants are
produced which enter into the bulk during rotation. In
fact, at the end of the lifetime of our sample, which is
about five to six weeks, the color of the sample has
changed from clear to yellowish brown. Three different
samples (fillings) have been used in these experiments.

Because of the drift of T, a special method is devised
to measure 7, during the experiment. For each quench
experiment with shear, two quench experiments without
shear but the same quench depth are also performed, one
before and one after the shear quench. We then use these
two no-shear experiments to determine their 7, by com-
paring them to previously calibrated quench experiments.
The criterion is that if the T, determined from these no-
shear experiments agree with each other, we can safely
assume that the 7', for the shear experiments is the same.
Otherwise, the shear experiment is rejected since 7, can-
not be assigned.

C. Setup

After the sample has been filled and sealed, it is mount-
ed on a waterproof support which provides a rotation
mechanism to drive the movable cylinder inside the cell
by magnetic coupling. An electric motor and a gear box
are also mounted on the same support to provide rotation
at different speeds from 0.01 to 1 rpm. This support,
with the cell mounted, is fixed on the top of a water bath
(Fig. 3), so that the cell is well under water. A He-Ne
laser is also on the top of the bath with the beam directed

FIG. 3. Setup of the experiment showing only the laser beam
of direction A. H, pinhole; L, lens; P, prism, C, Couette device,
CS, Couette support; M, mirror, MGB, motor and gear box;
WB,, WB,, temperature regulated water baths; P,, P,, pumps,
HE, heat exchanger; FT, water filter; TR, thermal regulation;
TM, temperature measurement.

through the gap of the sample by a prism. Before the
beam strikes the prism, it is cleaned by a pin hole with a
diameter of 1 mm and slightly focused by a lens of 50 cm
focal length. Since the laser beam is Gaussian, this corre-
sponds to a collimation. The lens is mounted on an x-y
translation stage so that the position of the beam in the
sample can be tuned. The beam can be directed to go
through either the inner or the outer cell. There is a mir-
ror mounted inside the water bath to reflect the laser
beam horizontally (Fig. 4). Another laser beam is direct-
ed through the sample in a direction perpendicular to the
first one by this mirror and a small mirror glued to the
cell (Fig. 4). Thus there are two beams traversing the
sample at right angle to each other. We will call the
beam which is parallel to the walls of the cell beam A4 and
the direction defined by it as direction 4. Similarly beam
B and direction B refer to the other beam. Notice that
direction A is perpendicular to the flow and the shear
while direction B is also perpendicular to the flow but it
is parallel to the shear. Figure 4(a) shows the geometry
of the scattering.

The temperature of the bath is controlled by a digital
temperature controller'® to within 0.2 mK over a few
days. The quench of the sample is carried out by cooling
the bath quickly by means of a heat exchanger working
for a calibrated time period. However, there is a time lag
between the temperature of the bath and the temperature
inside the sample. The calibration of a quench is carried
out by monitoring the transmittance of the laser beam
which is sensitive to the temperature of the sample when
the sample is just above the critical point.!” Typically,
for a 5-mK quench, the quench takes about 20 sec.

We are interested in how the scattered intensities de-
pend on the strength of the shear and the depth of the
quench. To detect the scattered intensity, a screen made
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FIG. 4. Light paths of the two directions 4 and B. L, L,,
He-Ne lasers; m, M, mirrors, S, screen; BM, binary mixture; o,
angular velocity of the rotating cylinder. In (a), the two direc-
tions 4 and B are drawn with respect to the axes x (flow direc-
tion), y (shear direction) and z (rotation axis).

of tracing paper is placed 50 cm away from the bath with
its plane perpendicular to the two beams (A4 and B) com-
ing out of the bath after traversing the sample (Fig. 4).
The light-scattering pattern falling on this screen is
detected by a video camera and stored in a video recorder
for later analysis. During a typical experiment, the sam-
ple is first kept in a steady state at a temperature T;
above T, with the shear applied and then the temperature
is quenched to T, below T, while scattered intensities fal-
ling on the screen are recorded.

As is clear from Fig. 4 the optical paths in the sample
in direction 4 and B are different. The effect of multiple
scattering is more important in direction 4. Further-
more, because of the cylindrical surface of the cell in
direction B, the scattering patterns are slightly distorted
in the k, direction and a correction factor is needed.
This correction factor is obtained by examining quenches
without shear where the scattering pattern should be a
ring. Finally, in direction B, there are actually two
Couette cells in the path with a 6% difference in shear
rate and the directions of shear in these two cells are anti-
parallel. As will be seen below, the scattering pattern in
this direction is symmetric about the k, and k, axes and
therefore the different directions of shear in these two
cells do not create any difficulty.

III. RESULTS OF EXPERIMENTS

In this section we only report the results of our experi-
ment. The discussion and interpretation will be deferred
to Sec. V after presentation of the simulation results.

First, we recall some useful quantities for the water
and isobutyric acid mixture:'*  correlation length
E-=ET/2=1.8le|7¥ (A) with & (£7) for the correla-
tion length in the two-phase region (one-phase region),

v=0.63 and € the reduced temperature e=(7,—71)/T,,
viscosity 17=0.025 (cgs wunits) and surface tension
o: o0=04€" with u=2v and 0,=12 dyncm 2. The typ-
ical lifetime of critical fluctuations is given by
77 =6mn(£ )} /kyT,, where ky is the Boltzmann con-
stant.

Although we could perform our experiment in the two
directions simultaneously, we usually performed our ex-
periment in one direction at a time to avoid stray light
and overlapping of scattering patterns. Furthermore, the
effects of multiple scattering in these two directions are
also different. Therefore we will present our quantitative
results in the two directions separately. However, in or-
der to compare the behavior in the two directions at the
same time, scattering experiments with directions 4 and
B simultaneously are also reported. Note that in all the
experiments, the system is always in the regime of weak
shear, i.e., S7<1 and we always use the outer cell in
direction 4. Since we are using a video camera to collect
data, we do not have very good intensity resolution (two
decades); however, the spatial resolution is adequate. In
the following we will discuss only the spatial information.

A. The phenomenon

Figure 5 shows the scattering pattern at different times
after the quench for direction A [Fig. 5(b)] and direction
B [Fig. 5(c)] during the phase separation together with
the definition of the scattering axes. The case without
shear [Fig. 5(a)] is also shown here for comparison. In
these figures, the quench depth is AT=T,—T7,~=1.5
mK. The shear rate is O for Fig. 5(a) and 0.035 sec ™! for
both Fig. 5(b) and Fig. 5(c). It can be seen that the maxi-
ma of the scattered intensities in both directions [Figs.
5(b) and 5(c)] are deformed by the flow from the form of a
ring into the form of an ellipse. In both directions, we
are interested in the size and shape of these ellipses,
which provide information about the size and the shape
of the phase-separating domains. There are three param-
eters for an ellipse: the length of its major axis, the
length of the minor axis, and the angle 0 (Fig. 5). Our re-
sults relate to the time dependence of these quantities for
different shear rates and quench depths. Table I summa-
rizes all the runs performed in direction A and Table II
all the runs in direction B. Note that the shear rates in
Table II are reported for the outer cell. There is an un-
certainty of 6% for these shear rates as mentioned in Sec.
IIC.

TABLE I. Summary of runs in direction 4.

Run AT (mK) S (sec™!) ST

A 0.8 0 0

B 0.8 0.035 0.080
C 0.8 0.087 0.198
D 0.8 0.35 0.797
E 1.8 0 0

F 1.8 0.035 0.017
G 1.8 0.087 0.043
H 1.8 0.35 0.172
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TABLE II. Summary of runs in direction B. mK, respectively. In both Fig. 6(a) and Fig. 6(b), it can
be seen that there are not data points for k;" after a cer-

-1
Run AT MK) S (sec ) St tain time. This is due to the fact that the scattered inten-
I 3.5 0 0 sities in this direction (end of the ellipse) disappear some-
J 3.5 0.035 0.005 time after the quench and it is impossible to determine
K 3.5 0.087 0.012 ky'. This phenomenon is shown in Fig. 5(b). Here we
L 3.5 0.175 0.024  summarize the results of Figs. 6(a) and 6(b): (1) k;" disap-
M 3.5 0.35 0.049 pears after a certain time; (2) k", at a fixed time, is small-
N 22 0 0 er with higher shear rate and is not sensitive to the
o 22 0.035 0.012 quench depth within experimental error [see Fig. 6(b)];
P 22 0.087 0.029 and (3) k)" follows a power law with a slope close to —1
Q 2.2 0 0 )
R 22 0.175 0059  atlatetimes. .
S 29 0.35 0.117 We also looked at the time dependence of the angle 6.
T 29 0.875 0.294 Figure 7 represents the time dependence of tan(8) for two
U 2.2 0 0 different quenches and for different rates. The main re-

sults are (1) at very low shear, the angle 6 starts at around
45° and with time decreases toward zero; (2) tan(6) fol-
lows a power law with a slope close to —1 at late times;
and (3) there is no systematic dependence of the angle 6

B. Direction A on the quench depth within the experimental uncertain-

In this direction, there is a velocity gradient in a plane  U€S-
perpendicular to the laser beam [Fig. 4(a)]. The lengths C. Direction B
of the major axis and minor axis are called k)" and k[,
respectively. Figures 6(a) and 6(b) show the time depen- In this direction, there is no velocity gradient in the

dence of k, and k, for the quench of AT=0.8 and 1.8 plane perpendicular to the laser beam. However, planes

(a)

(b)

t=30sec t=45sec t=75sec

FIG. 5. Scattering pattern and definition of scattering parameters for spinodal decomposition under shear after a thermal quench
of AT=1.5 mK in the directions 4 and B at different times. (a) S=0 in direction B; (b) S=0.035 sec”! in direction A4 and (c)
S§=0.035 sec ! in direction B.
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FIG. 6. Time dependence of k" and k;" in direction A for different shear rates for a thermal quench of (a) AT=0.8 mK and (b)

AT=1.8 mK. Small letters correspond to k" and capital letters to k,".

The solid line corresponds to S=0 (runs A and E). See

Table I for the meanings of the letters. In (b), the points C and D (AT =0.8 mK) are plotted for comparison.

perpendicular to the laser beam are moving with different
velocities. Figure 5(c) shows the scattering pattern in this
direction for a typical quench of 1.5 mK with
S§=0.035 sec”!. It is clear that there is a significant
difference between the scattering patterns from direction
A and direction B. In direction B, the angle 6 is always
zero and the intensities at the end of the ellipse never
disappear. We will denote the length of the major axis
and minor axis k,;"and k)", respectively. Figures 8(a) and
8(b) show their time dependences for different shears and
quenches. Our findings in this direction are summarized
as follows: (1) tan(60)=0; (2) to within experimental error,
k)" behaves like in the case of a thermal quench without
shear; and (3) to within experimental error, k,;” behaves
like k).

1 E B IF B T FI Bl 1T |] E
- ¢ BF .
0.5 T c } Brg ]
c+e F
L G B p_|
c G B F
G
= 02K c ¢ B
-1 c i
o u® -1
2 o1 D\ % ¢, 9
o HY y cc 7
C D ]
0.05 B 4
002 1 1 1 1 1 IEI I!1
10 20 50 100 200
time (sec)
FIG. 7. Time dependence of the angle 6 for different

quenches and different shear rates in direction 4. See Table I
for the meanings of the letters.

D. Direction A + B and multiple scattering

As mentioned above, k' and k)" are measured in
different runs. It is difficult to determine whether they
are always equal because of different experimental situa-
tions. In order to compare the behaviors of k)" and k" in
greater detail, observation in both directions must be
done at the same time. Figure 9 shows a typical result of
the observations at these two directions at the same time
for a 2.5-mK quench and S=0.087 sec”!. Since the
thickness of the sample along these two directions is not
the same, the effect of multiple scattering is more impor-
tant in direction 4 and a detailed comparison of the be-
haviors of k)" and k" becomes difficult. Despite this, by
measuring k. an k" for shallow quenches where multiple
scattering is less important, we find that k" and k)" are
always roughly equal even for different shear rates.

One might think that the effect of multiple scattering
can be calibrated by looking at quenches without shear,
where the scattering in the two directions should be the
same. Unfortunately, the scattering conditions change
significantly when there is a shear flow and thus a proper
calibration is not possible. However, we find that we
have a better contrast when there is a shear flow (see Fig.
9).

IV. SIMULATION

In order to understand the meaning and possible inter-
pretations of the above experimental observations, a nu-
merical simulation was performed to generate scattering
patterns of a simplified model of spinodal decomposition
under shear flow. In this model, the growth process is as-
sumed to have two stages which are shear dependent. In
the early stage, the effect of shear is negligible and inter-
connected domains are formed, while at the late stage
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FIG. 8. Time dependence of k)" and k" in direction B for different shear rates for a thermal quench of (a) AT=2.2 mK and (b)
AT=3.5 mK. Small letters correspond to k.;" and capital letters to k). The solid line corresponds to S=0 (runs I, N, Q, U). See
Table II for the meanings of the letters.

t=20sec t=50sec t=80sec

FIG. 9. Time evolution of the scattering patterns for the two experiments A and B, simultaneously with a quench of AT=2.5 mK
and with (a) S=0 and (b) S =0.087 sec”!. The distance between the screen and the scattering volume in experiment B must be multi-

plied by 1.15 to be compared to those of experiment A.
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only the effect of the flow is important. The justification
of this simplification can be seen by comparing the
different time scales of the problem. Thus in the simula-
tion there is no growth mechanism; only the deformation
effect of the shear flow is accounted for. The effect of
surface tension is also neglected.

A. Theory

Consider the growth rate of the domains in a SD
without shear. We are interested in how the growth rate
changes with time. The growth rate I'(R ) of an object of
typical size R(¢) at time # can be defined as

1 d
—R((t) . 1)
R(t) dt (
As time increases (after the Cahn linear regime!® that is
not experimentally attainable in binary fluids), effects of
nonlinearities occur. This leads to an increase of the
characteristic length with time:

R(t)~1t“ (2)

'(R)=

where a varies from O (linear regime at very early times)
to 1 (capillary growth at late times)."!° In reduced units
(§™ for the length and 7~ for the time), all the experimen-
tal data for different quench depths lie on a universal
curve which depends on two constants. The growth rate
is thus given by
P(R)=<, (3)
so the growth rate decreases with time. With time, the
distortion produced by the shear flow becomes greater
than the growth of domains when I'(R)<S or
equivalently St > a.® Therefore there is a crossover in the
region St ~1. The corresponding size R, depends both
on the shear rate and on the quench depth. When
St << 1, the effect of shear is negligible, and only the effect
of growth is predominant. In the opposite case St >>1,
the effect of deformation by shear is the most important.
Figure 10 shows the different regimes of this
classification. In regime (1), the effect of shear is negligi-
ble; growth should not be affected. In regime (3), growth
is controlled by the flow and should be strongly affected.

! i

R < Ry ! R~Rp . R>Rq

S<T(R) ' S~T(R) , S>T(R)
) |

T | X time
| I
| |
(1) | (2) : (3)

| 1
1 |

FIG. 10. Different regimes of growth and effect of shear (see
test for notation).
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However, in the crossover regime (2), the picture is less
clear. We are mainly interested in regime (3), where most
of our experimental observations were made. The simu-
lation to be described below is also for this regime only.
In this simulation, spinodal decomposition is not affected
by shear up to a certain time and size ky(=27/R,) and
then the effect of shear sets in suddenly, the crossover be-
ing assumed to be very sharp. We then only look at the
deformation of the interconnected structures by shear
flow and neglect the effects of surface tension.

B. Model and method

A spinodal structure is first generated on a 64 X 64 X 64
array by using a method similar to that already used by
Cahn.'® This method essentially considers that the com-
position fluctuation c(r) at a space point r is the superpo-
sition of random waves with different amplitudes and
phases traveling in random directions but with the same
modulus k, of wave number k as

> Acoslkr+¢,)+Bsin(k-r+¢,) 4)
ki=k,

c(r)=

where A4 and B are random amplitudes and ¢, and ¢, are
random phases. The composition fluctuations thus gen-
erated will assume continuous values between —1 and
+1. However, in SD, there are only two equilibrium
compositions separated by sharp interfaces. To simulate
this bimodal distribution, we assign — 1 to all fluctuations
with values less than zero and +1 to all those greater
than zero. Figure 11 shows the geometry of the simula-
tions and Fig. 12(a) shows the bimodal composition fluc-
tuations on the x-y plane.

The effect of shear is simulated by moving the concen-
tration fluctuations with a shear motion and periodic
boundary conditions: i.e., planes parallel to the plane
x —z are moved with different velocities depending on
their distance from the y axis. Note that the direction of
shear is in the y axis and motion of the composition fluc-
tuations is in the x direction, as in the experiment. (The

' 64
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™~V

i

z h 64
y', 7 \\
64
X

FIG. 11. Geometry of the sample (64 X 64 X 64 lattice) and of
the shear flow in the simulation (one step).



1834 C. K. CHAN, F. PERROT, AND D. BEYSENS 43

20 40
(b)

FIG. 12. 3D simulation of a spinodal decomposition pattern: section on a plane parallel to the x-y plane (a) before and (b) after a
shear motion. Note that the velocity increases along the y axis toward the negative x.

periodic boundary conditions make a point which goes
out of the sample come back from the other end.) In this
simulation, the concentration fluctuations in a plane are
moved relative to its neighboring planes one lattice point
in one step, which is the unit of the discrete time. Since
our sample is fixed to a 64X 64X 64 lattice, the magni-
tude of the shear rate is changed by changing the step
size. Thus we see that the step plays the role of both time
and shear rate. Figure 12(a) shows the pattern of SD
structure on an x-y plane generated by (4) before shear is

applied and Fig. 12(b) gives the pattern after the shear
motion. In these figures, the characteristic length
(2 /k) of the SD structure gives ten points of the lat-
tice.

We are interested in how the light-scattering pattern
from the structures generated by (4) is changed by shear.
Since the scattered intensity (structure factor) is propor-
tional to the square modulus of the Fourier transform of
the composition fluctuations (when multiple scattering
can be neglected,? scattering pattern from the sample is

FIG. 13. Structure factor S(k) obtained by Fourier transform from the simulation: (a) in the plane k, =0 (direction A) and (b) in
the plane k, =0 (direction B) at different steps of the shearing motion.
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calculated by first performing a three-dimensional (3D)
fast Fourier transform (FFT) on the sample and then ob-
taining the power spectrum from this FFT. The power
spectrum thus obtained is a 3D object. In order to com-
pare it with our light-scattering experiments at small an-
gles, we have to look at the cross section of the power
spectrum on different orthogonal planes at the origin cor-
responding to k, =0 (direction C), k, =0 (direction B), or
k,=0 (direction A). This direction C would correspond
to the situation where the laser beam is directed parallel
to the flow; this experiment has not yet been carried out.

C. Results

Figure 13 shows the simulated scattering patterns at
different steps for directions 4 and B for the first three
steps. These are intensity plots with the darkest points
corresponding to the highest intensities. Step O is for the
structure generated by Eq. (4) and step 1 is for the struc-
ture obtained from step O after the shear motion de-
scribed above has been applied once. Note that we have
a mirror in direction A in our experiment and hence the
experimental images are inverted. Comparing Figs. 13(a)
and 13(b) with Figs. 5(b) and 5(c), it is clear that the simu-
lation reproduces some remarkable features of the experi-
ment. For example, there is a tilted ellipse in direction 4
and a vertical ellipse in direction B. If we take the step of
simulation as being the time (at constant shear), we can
compare the time dependence of k)" and k;" in direction
A and k" and k" in direction B for both the simulation
and the experiment.

Figure 14 shows the behavior of k)" and k;" in direc-
tion A. We will not give a graph for k" and k,” here be-
cause in the simulation k;” and k. are always equal and
k" is a constant equal to k,. The angle tan(8) from the
simulation is plotted in Fig. 15. It is clear that the behav-
ior of k' (k") and tan(@) from the simulation is very
similar to that of the experiment, following a power law

of about ¢ ! at late times. However, there are remark-
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FIG. 14. Step dependence of k;" and k;" from simulation in
direction 4.
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FIG. 15. Step dependence of tan(8) from simulation in direc-
tion A.

able features in each of the directions of 4 and B that the
simulation fails to reproduce. They are described in the
following paragraphs.

(1) In direction A4: In the simulation the intensities of
the major axis never disappear and the corresponding
wave vector (k") keeps on increasing. In the experi-
ments, the intensities at the ends of the ellipse disappear
after a certain time and k;" is no longer well defined after-
wards.

(2) In direction B: In the simulation, the vertical size
of the ellipse k" is not affected by shear and remains con-
stant. In the experiments, although k)" seems not to be
affected by shear, it is not constant.

These differences are probably due to the lack of
growth mechanism in the simulation. This reinforces our
assumption that hydrodynamics plays a very important
role in this process. Although we have no experimental
data to compare with in direction C, it is interesting to
note that, in the simulation, the pattern remains a ring of
radius k; shear has no effect at all in this direction.

V. DISCUSSIONS

It is clear that this simple simulation captures some
essential features of our experimental observations. In
order to compare our experimental results with that of
the simulation quantitatively, we have to understand
what one simulation step means in an actual experiment.
As mentioned above, the step of the simulation plays the
role of both time and shear rate. A similar parameter can
be defined for the experimental results by expressing time
in units of S ~!. We define a reduced dimensionless time
h as h =St. In this reduced time unit, the effect of shear
should be small when A4 <<1 and becomes important
when h >>1, as shown in Sec. IV A. However, this di-
mensionless time 4 is not necessarily identical to a simu-
lation step. They can differ by a multiplicative factor.
This factor depends on the value of 4 at which the effect
of shear becomes important in the actual experiment. In
the simulation, it is clear that the effect of shear is impor-
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tant even in one single step (Figs. 12 and 13). We will
therefore determine this multiplicative factor by compar-
ing the behavior of tan(8) from the simulation with that
of the experiments. We have chosen tan(8) because
tan(0) is a ratio of two lengths and is obviously indepen-
dent of what length scale we are using. This is not the
case when comparing quantities like k" or k;".

A. Behavior of tan(6)

Figure 16(a) shows the step dependence of tan(6) from
simulation. On the same log-log graph we have also plot-
ted the experimental results for a quench of 0.8 mK and
for s =0.035, 0.0875, and 0.35 sec ! (Fig. 7) in reduced
unit 4. Note that the scale shown is that of the simula-
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FIG. 16. Comparison of the step dependence of tan(0) (simu-
lation curve) and of the A(=St) dependence of tan(6) (experi-
mental data). (a) AT=0.8 mK; (b) AT=1.8 mK. The letters
correspond to Fig. 7 and Table I.
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tion step. Moreover we have marked the point at 4 =10
for the experimental data. When determining the
marked position by horizontal translation of experimen-
tal data, we have assumed that the experiment and the
simulation should give the same result at late times as we
have argued above in Sec. IV A (there is a systematic de-
viation of experimental data from the simulation curve at
early times). Nevertheless, it is remarkable that our sim-
ple model can reduce the data at different shear rates on
one single curve. This multiplicative factor A, between h
and one simulation step is determined by the value of A
which corresponds to the first simulation step. This value
is hy=~1 in Fig. 16(a). We have also looked for the tem-
perature dependence of h, by applying the same pro-
cedure to data from a different quench depth 1.8 mK.
The 1.8-mK data are more scattered. However, they are
compatible with the same value h,=~=1 [Fig. 16(b)].

B. Behavior of k" and k)

To facilitate the comparison of our experimental obser-
vations with the simulation results, one remark about the
experimental observations has to be made first: k)" and
k" are equal within experimental precision for different
shear rates. This observation should not come as a
surprise as it is seen in the simulation that k" and k" are
always equal. In the following, we will therefore only dis-
cuss the behavior of k..

In the simulation, the size of k)" (or k") is governed by
the initial size k, of Eq. (4), which is arbitrary and which
will serve as length unit. Thus when comparing results
from observations with that from the simulation, we can
move the simulation curve vertically to fit our experimen-
tal data and determine k, from the fit. Figure 17 shows
the time dependence of k)", the same as in Fig. 6(a) but
plotted in reduced time unit /4 together with the result of
the simulation. Here we have used the same multiplica-
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: \ -
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05 1 2 5 10 h

FIG. 17. Comparison of the 4 dependence of the wave vector
k" obtained with simulation and with experiment for a quench
of AT=0.8 mK and different shear rates. (See Table I for the
meanings of the letters.)
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(b)

FIG. 18. (a) 2D spinodal composition parameter under shear and (b) its corresponding structure factor S(k).

tive factor (h,) between A and a step as obtained in Fig.

16. With the same assumption that the simulation and '

experimental results should agree at late times, in Fig. 17,
three different simulation curves have been used
(differential vertical movements) for a quench depth of
0.8 mK and for the three different shear rates.

An interesting feature of Fig. 17 is that the curve with
the greater shear rate lies always higher than the curves
with smaller shear rates. From these simulation curves,
we have determined k, for S§=0.035, 0.0875, and 0.35
sec” ! as ky,=6900, 9500 and 12000 cm™ 1, respectively.
This dependence of k, on shear rate can be explained by
the fact that at higher shear rates, smaller scales are be-
ing affected and thus the structures that the shear de-
forms have a higher k, as predicted in Sec. IV A.

Similar results are also obtained for k;” with another

quench of 1.8 mK. The corresponding values are nearly
the same as those obtained for a quench of 0.8 mK.

C. Behavior of k;*

Contrary to the success, to some degree, of our simple
model, the simulation fails to reproduce the observed be-
havior of k]", especially the disappearance of the intensity
at the tip of the ellipse. This failure suggests that there
are other important processes which occur in addition to
the one that we have simulated. In the simulation, the
wave vector k;" is increasing, so the corresponding length
(27 /k[") decreases. But the ultimate length scale is given
by the thickness of the interfaces which is of order of
some £ .

In order to demonstrate this possible effect, we have

(b)

FIG. 19. (a) Same as Fig. 18(a) but with most of thin structures eliminated and (b) its corresponding structure factor S(k).
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FIG. 20. Structure factor S(k) of a blurred image of Fig.
18(a) produced by defocusing the video camers.

used a simple intuitive method on the SD structure in
2D. The reason for this choice is that it is difficult to
simulate the effect of surface tension numerically in such
a system and it will be seen that it is also difficult to apply
our method in 3D. In this simple simulation, we have
taken a SD pattern in 2D and performed a shear motion
[Fig. 18(a)]. The 2D pattern of Fig. 18(a) will give an el-
lipse in the power spectrum as is shown in Fig. 18(b).
This is accomplished by using an image processing sys-
tem with input from a video camera. The effect of thick-
ness of interfaces is simulated by eliminating thin struc-
tures “by hands” as shown in Fig. 19(a). Figure 19(b)
shows the corresponding power spectrum of this modified
pattern. It is clear that the intensity at the end of the el-
lipse has been lowered by this procedure. As a check, we
have also deliberately defocused the video camera when
processing the image of Fig. 18(a). In this process, the
image is blurred and we lose all the thin structures. Fig-
ure 20 shows the structure scattering pattern obtained
this way. We can see that this process of eliminating thin
structures in a 2D SD pattern reproduces the essential
features of our experiment in direction A.

D. Behavior of k)"

As for k', our simple simulation fails to reproduce the
observed behavior of k;". This is probably due to the fact
that there is no growth in the simulation. The only ob-
servation in common in the simulation and the experi-
ment is that k" is found to be insensitive to the action of
shear. Hence, the experimental time dependence of k." is
not affected by the deformation produced by the shear as
in the case of k)", k" and k;". However, although the
surface tension is small, it is nonzero; consequently, it is
surprising that there is no coupling between shear and
flow in the z direction.

E. Comparison with theory: summary

To our knowledge, there are only two theories dealing
with SD under shear. The first is due to Imaeda
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et al.'®" and is devoted to a thermal quench from above

T, to below T, (Fig. 1) corresponding to the high shear
condition (S7.>>1). Rather surprisingly, the growth
that was expected after such a quench corresponds to a
2D growth in layers perpendicular to the flow. This is
different with our situation (weak shear) where one ob-
serves a growth in planes nearly perpendicular to the
shear.

The second theory is more closely related to our exper-
iment. It is due to Onuki'? and corresponds to a quench
into the weak-shear regime (region II of Fig. 1, S7,<<1).
Here the interest was in the steady state that ultimately
occurs when growth is balanced by shear effects. Gravity
was not accounted for. In this steady state it is assumed
that the phase-separating fluid under shear is composed
of isolated elongated droplets. These droplets have to
break up into smaller droplets which are weakly aniso-
tropic with respect to the flow direction (sizes R, and
R ), respectively parallel and perpendicular to the flow).
These lengths are always much larger than the interface
thickness, which in 3D is of order of the correlation
length. The typical size of these small droplets results
from the balance between the growth velocity (~o /7)
and a deformation velocity (~RS). The steady state cor-
responds to

o
R”23Rl~;§. (5)

Our case differs from that of Onuki in the sense that in
our experiment, we have not yet reached a steady state.
(The attainment of such a steady state is in practice ham-
pered by weak remaining gravity flows that becomes im-
portant at late times.) What we are looking at is rather
how the growth process is modified by a weak-shear flow.
And as in Onuki’s theory, the shear is so weak that it is
not expected to act at the level of the interface (case
S7¢<<1). Our main findings are summarized as follows.

1. No action of shear is seen until the growth rate is
smaller than the deformation rate (St<1), i.e., the
domains are isotropic and grow as [see Eq. (2)]

R~w%ﬂ’whha:03—1.

2. In the regime St > 1, the growth is seen or proceed
apparently independently according to the three axes.

(i) Along the flow direction (x), the growth is governed
by flow and corresponds to the size R of Onuki’s theory.
The dependence with shear with the typical length that
results does not correspond to Eq. (5), but rather to

R, ~S%,

with x of order of unity.

(ii) Along the shear direction (y), the correlation be-
tween the interfaces of domains is suppressed up to the
interface thickness, of order of the correlation length £ :

Ry ,~& .

(iii) In the direction perpendicular to the shear and to
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the flow (z), growth proceeds as if there were no shear
flow:

VI. CONCLUDING REMARKS

The independence of growth in the directions x and z
can be related to the near-zero value of the surface ten-
sion in the interconnected pattern. This is supported by
the close correspondence between the experiment and the
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numerical simulation (where there are no surface tension
effects) along these two directions. In the shear direction
(y), where experiment and simulation are different, corre-
lations between interfaces are lost, up to the scale of the
correlation length. The image of growth that emerges is
therefore that of an anisotropic interconnected pattern
that grows in layers nearly perpendicular to the shear.
We interpret all these results as if the growth through the
action of shear had acquired a two-dimensional charac-
ter. A scattering experiment with the laser beam in the
direction of flow is actually being set up to definitely
check this point.

*Present address: Institute of Physics, Academia Sinica, Nan-
kan, Taipei, Taiwan 11529.
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