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Collective transport in a molecular liquid with quadrupole interaction
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With three different pair potentials we study the thermal collective transport coefficients of the
N2 model liquid by molecular-dynamics calculations. The first two of the considered pair potentials
are Lennard-Jones (LJ) one-center and two-center potential functions, while the third represents a
two-center LJ function plus a point-quadrupole interaction term. All three potential functions lead
to acceptable transport coefficients compared with experiment. However, there appear to be
significant differences in the coefficients for certain thermodynamic states. While the quadrupole in-
teraction has only a slight effect on the time correlation functions, the two-center LJ potential
inAuences the time correlation functions appreciably in comparison with the spherically symmetric
LJ potential. The latter findings agree well with our previous results obtained for LJ liquids with
four or more center potentials. On the whole, the thermal conductivity coefficient is less sensitive to
the employed pair potential function than the bulk or the shear viscosity coefficient. Unfortunately
there are no experimental data for the bulk viscosity.

I. INTRODUCTION

Collective transport processes in molecular liquids
have only recently been studied theoretically. ' The
reason for this is twofold: (i) kinetic theory is not
developed for systems of structured particles, and (ii)
computer calculations are extremely expensive. Recent
computations for rigid molecules have shown that reli-
able results for thermal transport coefficients can be ob-
tained with present supercomputers, however, with
smaller accuracy than achievable for atomic liquids.

The present molecular-dynamics (MD) investigation of
liquid model N2 was undertaken to complement our
knowledge of dynamic processes in molecular liquids
along three different lines:

(i) which accuracy of thermal transport coefficients can
be reached with common supercomputer power for a
very simple molecular liquid in comparison with atomic
liquids;

(ii) are the molecular transport processes largely
affected by the quadrupole interaction of the molecules;
and

(iii) how valuable are different potential functions for
the computation of transport coefficients in comparison
with experimental results and previous MD calculations
for static properties.

We have chosen to study liquid N2, as bond length and
the quadrupole moment of this molecule are not large.
This allows us to approximate N2 by a spherical particle.
It permits us furthermore to approximate the quadrupole
moment by a point-quadrupole moment. Moreover,
there exist a lot of experimental transport coefticients, al-
though not satisfactory for an exhaustive comparison.
We consider nine thermodynamic states of liquid and
ffuid nitrogen and report also bulk viscosity coe%cients,

for which no experimental data are available in the litera-
ture.

II. PAIR POTENTIALS
AND THERMODYNAMIC STATES

Three different pair potentials were considered for the
MD computations. A spherically symmetric (one-center)
Lennard-Jones (LJ) potential function of the usual form,

u"'(r) =46
12 6

where o. and e are the volume and strength parameters,
respectively. r denotes the separation of a pair of atoms.

Second, a two-center LJ potential, which may be writ-
ten as follows:

12 6

where o. and e are now the LJ parameters for the atom-
atom (site-site, center-center) interaction, and r, ~ denotes
the separation between two interaction sites of two
different molecules. The molecules are identified by ct, P
and the interacting centers by i,j. The number of sites
per molecule is 2. Note that the separation between sites
of the same molecule, the bond length d, is fixed. So the
molecules are treated as rigid molecules.

Finally, a two-center LJ potential plus point-
quadrupole interaction, which may be written in the fol-
lowing form:
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3 A
'LJ'(r, ~,"R,l, l&)=u'LJ'(r~~)+ I l —5I(l R) /R +(l&.R) /R +3(1 R) (1& R) /R ]

+2I(l lp) —5(1 R) (lt3.R)] ), (3)

where Q denotes the quadrupole moment of the molecule,
R the center-of-mass (c.m. ) difference position vector of
two molecules n and P. 1 is a normalized vector indicat-
ing the orientation of the molecule a.

The LJ potential parametes for the three potential
functions were adopted from our previous work on static
properties of liquid Nz. For the quadrupole moment we
used the best experimental value. Potential parameters
and quadrupole moment are given in Table I.

We studied eight of the thermodynamic states previ-
ously considered in Ref. 3 in order to compare trends of
static and dynamic quantities. Additionally the triple
point state was investigated. These state points are sum-
marized in Table II.

III. THE MOLECULAR-DYNAMICS CALCULATIONS

The MD calculations for the two-center models were
performed by solving the equations of motion for transla-
tion and rotation, as described in detail elsewhere, (see
also the Appendix). This method of treating linear rigid
models is suitable when point-quadrupole or -dipole in-
teractions are taken into account additionally. Though
the quadrupole potential function given in Eq. (3) leads to
awkwardly lengthy expressions for the required pair
forces, the computation speed is only slightly reduced
due to the fact that the necessary orientational vectors I
are automatically generated by the algorithm.

The equ. ations of motion were numerically integrated
by the Stoermer-Verlet algorithm, and neighbor lists were
used to reduce the computation time for the evaluation of
the pair forces. Some useful technical details of the MD
computations are presented in Table III.

The Green-Kubo integrands for the thermal transport
coe%cients of a system composed of molecules can be for-
mulated in molecule coordinates. This description is
particularly useful in the present case, because we per-
form the MD calculations in molecule coordinates
(translation, rotation). Consequently, the dynamic vari-
ables, as, for example, the stress tensor, are likewise eval-
uated in molecule coordinates. For the heat current, we
need the atomic velocities of the molecule centers rather
than the c.m. velocities. However, the former can easily
be obtained by the angular and c.m. velocities.

We give a useful comparison of computation speeds,
which arise through the use of different MD computation
methods, in the Appendix.

A further point of interest should perhaps be men-
tioned. The calculations based on the two-center LJ po-
tential including quadrupole moment require at least sys-
tems of 108 molecules to guarantee a sufficiently long
cutoff radius for the potential.

IV. RESULTS
A. Time correlation functions

1. States far o+the experimenta! triple point of N~

TABLE II. Thermodynamic states of liquid and fluid N, con-
sidered for the computations.

State
point

P
(g cm ')

T
(K) Cornrnent

For two states outside the neighborhood of the triple
point of N2 we illustrate the computed time correlation
functions of the nondiagonal part of the stress tensor and
the heat current in Figs. 1—4. The figures contain results
for the one- and the two-center potentials as well as for
the two-center potential with quadrupole interaction.
Evidently, the Green-Kubo integrands calculated with
the one-center LJ potential differ essentially from those
obtained with the other potentials. However, the quadru-
pole interaction changes the correlation functions (CF's)
only slightly.

The remarkably different time behavior of the CF's in
atomic and molecular liquids has been observed previous-
ly in MD studies of globular rnolecules. For liquid N2,
these differences are particularly interesting, as the in-
tegrals over the CF's give equal transport coefficients
within the statistical uncertainties.

From our knowledge of the slight infIuence of the
quadrupole interaction on static properties of liquid mod-
el Nz (Refs. 3 and 6), we expected no large effect of the
quadrupole moment on the collective dynamic processes.
The small differences in the time CF's at low-pressure
states can be explained by the predominant occurrence of
T-shaped molecule configurations, when quadrupole in-

Type

(l)0 LJ
(&)
LJ
(3)0 LJ

0
0

(A)

3.6360
3.2932
3.3140

101.6
36.5
35.3

(A)

1.094
1.101

ip26 g
(esu)

1.52

TABLE I. Pair potential parameters used for the description
of the pair interaction in the liquid N, .

0.7003
0.7003
0.7003
0.7003
0.8678
0.8684
0.8684
0.8684
0.8686

100
150
250
400

63
70

100
150
250

triple point
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Nu olo ecules N
mic centersNumber of atom'
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108 (32)
216 (64)
NVEp

V volume, E tot 1a energy,

p total momentum
Stoermer-Verlet

0.5X10-" s
liquidlike
1000 steps
10' steps

Inttegration algorithm
me stepIntegration time

Starting configuration
Equilibration runs
Production runs
Computation times

for 1000 steps
with 108 moolecules (Cyber 205)

6 0 s (uLJ )

27.8 s (uLJ')
373 s (ufLJ)

2.55oCuutoff radius for the Le J potentials
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ACF-q s N2

0.6 tate 9

0.4

0.2

0.0 ~~k J w ~a
1

4. 00.0 0.5
TIME (ps)

FIG. 3. Same as in Fig. 1, but for state point 9.

coefficients for comparison. Bulk viscosity does not seem
to have been measured for Nz.

We shall discuss the results separately for the transport
coefficients in the fo11owing sections.

1. Shear viscosity g,

For the low-pressure states, 1, 5, and 6, the one-center
LJ potential generates significantly higher shear viscosi-
ties than the molecular potentials. The latter give better
agreement with the experimental values, although for the
triple point state the predicted g, values are too small.
For the triple point we expect, however, a molecule num-
ber dependence of g, leading to a slightly higher value for
larger systems. Quadrupole interaction enlarges slightly
the shear viscosity and gives better agreement with exper-
iment.

For the high-pressure states, 2—4 and 7—9, particularly
at higher density, the spherically symmetric potential

AC F — A. N2

0. 4

0. 2

+~ ~ &K 0 I4 4t H g g g g g g
I

0. 0
I

0.0
I

0. 2
TIME (ps)

0. 4

FICs. 4. Same as in Fig. 1, but for A, and state point 9.

generates too high g, values compared with experiment.
This indicates deficiencies of the simplified potential
model. Both molecular potential functions give good
agreement with experiment, although the quadrupole in-
teraction does not improve agreement in these instances.

2. Thermal conductivity A.

For the thermal conductivity A, , all the three-potential
functions generate comparable values at low- and high-
pressure states. The agreement with experiment is good
for states, where we know accurate experimental num-
bers. In order to compare our computed A, values with
experimental values also for high-pressure states we have
extrapolated existing k values measured at low pressure
to the range of high pressures. On the whole a small ten-
dency of the computed A, values to lie below the experi-
mental ones is noticeable.

On the other hand, the thermal conductivity seems to
be rather insensitive to potential variations in MD calcu-
lations, since the three employed potentials cause no sys-
tematic changes of this quantity.

3. Bulk viscosity g„

The bulk viscosity coefficient depends more strongly on
the choice of the potential than the other transport
coefficients. While the one-center LJ potential generates
the lowest values, the two-center LJ plus quadrupole in-
teraction gives the highest values. As we have no experi-
mental data to compare with, it is difficult to assess which
potential predicts the most realistic g, values. We be-
lieve that the rather large differences presented in Table
IV are partly due to molecule number effects. The
Green-Kubo integrand for g, involves the PV term,
where P denotes the pressure and V the volume of the mi-
crocanonical ensemble considered (see, for example, Ref.
7). An accurate determination of this I'V term requires
larger molecule numbers for the MD computations than
we have used here. So for g, our results contain a sys-
tematic uncertainty not indicated in the table. We shall,
however, compute g, more accurately in a separate pa-
per, where the molecule number dependence of this trans-
port coefficient is considered.

V. DISCUSSION AND CONCLUSIONS

Before we summarize our results, a few essential com-
ments on the accuracy of the computed transport
coefficients are in order.

On inspecting the graphs of the autocorrelation func-
tions (ACF's) in Figs. 5 and 6 one realizes that these func-
tions have not completely disappeared within the
displayed time range. So one might think that the omit-
ted part of these functions could substantially contribute
to the time integral and thus to the transport coefficient.
We have examined this point carefully. First, the
presented ACF's were obtained from a single run each,
while at least three runs were used to determine the
transport coefficient. Secondly, the plotted time range is
indeed sufficient for the integration to give all the trans-
port coefficients except the bulk viscosity with the given
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accuracy. We have ensured this by test integrations of
the various ACF's up to several picoseconds.

For states above the triple point the ACF's decay very
quickly and integration is no problem. We found that in-
tegration of the g„q„and A, Green-Kubo integrands un-

til 1.2 ps always gives reliable results.
For states near the triple point, the integration has to

be extended to a few picosecods to guarantee a reliable
result for the transport coeKcient. An exception is the
bulk viscosity, for which longer runs and larger molecule
numbers are necessary.

To illustrate the dependence of the transport
coe%cients g, and g, on the integration time of the
relevant Green-Kubo integrands near the triple point
state, we have performed complementary runs with 256

molecules and 10 time steps with use of the two-center
LJ potential. The results are summarized in Table V.
They confirm our above statements. The correlation
functions obtained by these runs are hardly distinguish-
able from those plotted in Figs. 5 and 6. However, the
bulk viscosity value displayed in Table V has a smaller er-
ror bar than the value presented in Table IV due to the
larger system used for the runs.

The question of the system size dependence of the re-
sults is only relevant for states near the triple point. For
the triple point, all our computations based on the molec-
ular potentials showed insignificant molecule number
dependence of both the ACF's and the transport
coeScients, apart from g, . An exhaustive study will be
published later.

TABLE IV. Thermal transport coe%cients of liquid N2 obtained from MD computations and experiment. The rows given per
state have the order: erst, from the one-center LJ potential; second, from the two-center LJ potential; third, from the two-center LJ
potential plus quadrupole interaction; fourth, from experiment (Ref. 9). Values obtained by computations with 32 molecules are
given in brackets.

State
10 g,
(Pa s)

0.825+0.04
0.725+0.03
0.757+0.03
0.76+0.05

10 g„
(Pa s)

0.538+0.03
0.805+0.06
0.900+0.06

10 A,

(mWrn ' K ')

86.5+4
81.0+4
85.3+4

100+10

Comment

(q, :0.762; g, :0.931; k=78.2)

0.844+0.04
0.759+0.04
0.746+0.04
0.72+0.5

0.856+0.05
0.844+0.05

0.67+0.05

0.865+0.05
0.874+0.06

0.60+0.05

3.22+0.3
2.02+0.2
2.27+0.2
2.90+0.1

2.S9+0.1
1.91+0.1
2. 15+0.1
2.20+0.1

2. 12+0.1

l. 59+0.1

1.74+0.1

1.SO+0.2

l.93+0.1

1.73+0.1

1.74+0.1

1.15+0.2

1 ~ 69+0.1

1.50+0.1

1 ~ 70+0.1

0.90+0.2

0.411+0.03
0.635+0.05
0.758+0.06

0.319+0.02
0.626+0.06

0.373+0.02
0.738+0.08

l.29+0.1

1.40+0.2
1.79+0.2

0.85+0.05
0.90+0.2
1.84+0.3

0.621+0.05
0.778+0.08

1.34+0.2

0.563+0.05
0.802+0.08

1.33+0.2

0.476+0.05
0.932+0.08

1.06+0.1

95.1+4
95.1+4
95.1+4

100.0+20

101.9+5
103.8+5

117.9+5
118.4+5

141.0+5

140.5+ 10
156.0+5

144.1+7
142.8+7
142.3+7
149.5+5

146.1+7
157.5+7
164.0+8
180.0+20

168.0+8
161.5+8
167.8+8

175.2+8
179.1+8
191.0+10

high-pressure states

triple point state

high-pressure states
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TABLE V. Shear bulk viscosity coefficients (in units of 10 Pa s) de end
~ ~

of the Green-Kubo integrands
as, epen ent on the integration time

Integration
time
(ps)

3.0
3.5
4.0
4.5
5.0

2.15
2.14
2.09
2.07
2.01

Run 1

1.10
1.06
1.08
1.09
1.13

1.86
1.91
1.96
1.98
2.00

Run 2

1.10
1.13
1.12
1.11
1.20

2.12
2.17
2.20
2.24
2.26

Run 3

1.22
1.23
1.24
1.27
1.28

Our calculations with the one-center LJ potential are
subjected to particle number effects. The latter effects are
discussed at length in Ref. 7. The error bars given for the
latter results account, however, for these systematic un-
certainties.

Our computations show that the collective transport
coefficients of liquid and Quid N2 can be determined in
rather good agreement with experiment using the pro-
posed three potential functions u ' " u ' ' and u ' ' ThLJ LJ an 0 LJ e
overall agreement is better when the molecular t t 1

u' ' and
uarpo en ias

u LJ and u LJ are employed. However, the spherically
symmetric potential also gives useful values. The quadru-
pole interaction has only a slight effect on the correlation
functions and the transport coefficients. In most cases,
the quadrupole interactions lead, however, to an im-
provement of the transport coefficients compared with
experiment.

Very sensitive to the form of the potential is the bulk
viscosity coefficient, while the thermal conductivity
coefficient is practically independent of which of the
three potentials is employed.

According to previous findings, the molecule number
dependence of the results is sma11, even in the region near
the triple point. An exception is the bulk viscosity, for
which calculations with larger molecule number are re-
quired, when Lennard-Jones type potentials are applied.
This problem is well known from computations for atom-

ic liquids' and will be treated in forthcoming publica-
tions.

Our results for the thermal transport coefficients sup-
port the tendencies discovered in a previous work on stat-
ic properties of N2. For the dynamic processes, the in-
clusion of the quadrupole interaction is, however, more
important than for thermodynamic quantities.

ACKNOWLEDGMENTS

The Rechenzentrum der Ruhr-Universitat Bochum
generously allocated computation time on the Cyber 205
vector machine, and the Deutsche Forschungsgemein-
schaft gave financial support (Grant No. Ho 626/13-1).

APPENDIX

The ~determination of thermal transport coefFicients via
t e reen-Kubo method requires the correlation function
o t e desired dynamic variable. For a system of atoms
as well as molecules, the evaluation of the thermal con-
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WCr — rI
V
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0. 4
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0. 2
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0. 0

0. 0
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I
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0. 0
I

1.0
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I

'3 0 3. 0
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FIG. 5.. 5. Same as in Fig. 1, but for the triple point (state 5).
FIG. 6. Sarne as in Fig. 1, but for g, and the triple point

(state 5).
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TABLE VI. Comparison of computation times using the
present and the constraints MD method for the computation of
the stress tensor elements and the microscopic heat current with
potential u L'z'.

MJk= gR R
0.=1

—u (r Jtt) i

MD method

Present

Computation time
on the Cyber 205

for 1000 time steps

7.4
27.8

Number of
mole cules

32
108

Constraints 7.6
35.9

32
108

J o J t dt,
3Vk, T'

where J (t) denotes the heat Aux, V the volume, T the
temperature, and k~ the Boltzmann constant. The
brackets indicate the thermal average over the chosen en-
semble, here the microcanonical one. J (t) is decompos-
able into a kinetic and a potential contribution:

J (t)=J&(t)+J (t),

where

ductivity A, involves by far the most expansive computa-
tions. So we consider this case here for a system of linear
rigid molecules. The Green-Kubo integral then reads

We have thereby used the following notation: M is the
mass of the molecule, R the position vector of the c.m. of
the molecule 0;, and R & the difference vector between the
c.m. positions of pairs of molecules a,P. u(r J&) is the
atomic pair potential function depending on the separa-
tion between interaction centers of different molecules
ct, P. r is the position vector of the interaction center a,
and r'~& the difference between position vectors of centers
i,j of different molecules a,P. X is the molecule number
and i the unit tensor indicating that the whole expression
in large parentheses is to be evaluated as a tensor. Time
dependence of the relevant coordinates have been left out
in the above notation, for shortness.

Using the present MD method with separate c.m. and
rotational coordinates the evaluation of J& and Jz is
straightforward, as the necessary quantities are directly
computed in the integration algorithm.

However, application of the constraints method" for
the MD requires additional calculation of the molecule
coordinates R or R&. In particular, the projection of the
forces on the molecular separation vector occurring in
the tensor expression requires additional computation
effort. As a result, the computation times of the con-
straints method exceed those of the present method, par-
ticularly for larger molecule numbers.

We compare computation times of both MD methods
for the evaluation of the stress-tensor elements and the
heat Aux with potential u LJ' in Table VI.
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