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Unstable periodic orbits and prediction
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A hierarchical approximation of a generic chaotic attractor can be formulated in terms of unsta-
ble periodic orbits. We demonstrate the possibility of extracting the most dominant unstable
periodic orbits from a measurement of a time-continuous Aow. Since unstable periodic orbits not
only represent the static properties of the system but also dominate the dynamics, they can be used
to fit models of the Aow and to predict the orbit. We show that predictions for the Roessler system
using unstable periodic orbits extracted from a time series of moderate length are significantly better
than those from other approaches.

I. INTRODUCTION

The past decade has seen substantial progress in the
characterization of chaotic dynamical systems.
Lyapunov exponents, dimensions, and entropies can now
be extracted from experimental data and provide a useful
quantitative description. ' Systems on the borderline to
chaos can now be understood by application of powerful
techniques such as renormalization. However, for sys-
tems far beyond the borderline to chaos, tools for qualita-
tive understanding still are lacking. Recently the unsta-
ble periodic orbits (UPO's) of a chaotic dynamical system
have attained increased attention. As is well known,
the closure of the set of unstable periodic orbits defines a
strange attractor. Generic strange attractors can be ap-
proximated hierarchically by unstable periodic orbits of a
given length. The number of unstable periodic orbits
grows exponentially with this length, the exponent being
the topological entropy Ko.

In Refs. 3 and 4 methods have been developed to ex-
tract unstable periodic orbits and to use them to deter-
mine the topological entropy and dimensions. However
for limited data from a time-continuous system this
method cannot be applied directly. For time-continuous
Aows there are periods t for which no unstable orbits ex-
ist. For example, the Roessler system has essentially
only return times that are multiples of ~0=—2~. In this
article it will be shown that the most probable return
times can be obtained by considering spheres around all
points on the strange attractor, that have, e.g. , been con-
structed from a scalar time series and computing the ra-
dius e (t) of spheres into which there are p returns within
a time t. We will demonstrate that this method yields the
leading periodic orbits for the Roessler system, for the
Mackey-Glass equation, and for an experimental system,
using some 10 points for each example. Finally we will
present a new method for predicting chaotic time series
and show that using unstable periodic orbits for predic-
tion is superior to using the time sequence of points on
the attractor directly.

II. EXTRACTING UNSTABLE PERIODIC ORBITS
FROM TIME-CONTINUOUS SYSTEMS

The invariant density p. which represents the long-time
behavior of a chaotic system f, usually is approximated
directly by the successive points on the attractor
x, +, =f(x;), i =I, . . . , ¹

Consider the unstable periodic orbit x of length n, i.e.,
points x,", i =1, . . . , n, such that f"(x,*)=x,* and

f (x,*)=x,*+,, f being the flow. Let K(x*) denote the in-
stability of the orbit x [i.e., the sum of the positive
Lyapunov exponents of f"(x*)]. Then exp[ —K(x*)] is
proportional to the probability of the orbit points x,* and

5(x—x,*)e

e
—K(x )

is the approximation of the invariant density by the un-
stable periodic orbits of length n. In Eq. (2) no
difference is made between primitive and nonprimitive
periodic orbits of length n. In contradistinction to (1),
Eq. (2) is invariant under the dynamics and averages us-
ing (2) are expected to converge rapidly with n.

In order to extract UPO's from a time series of a time-
continuous system, first one has to look at the most prob-
able return times. Therefore it is desirable to have a mea-
sure for the probability P, (t) for returns in a time t in
phase space into a small radius e, especially because in
general the usual autocorrelation

C(r) = (g(t)g(t +r) ) =( I/N)g (;g;

fails to show sharp peaks (Fig. 1). Csiven a scalar time
series Ig, ) reconstructed optimally by the method of de-
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FIG. 1. y=e~ (t)/2m and y= C(0)—C(t) (from above)
from an experimental time series of N=2X10 points of a
driven damped pendulum with I =5, ~=5, and p =256 (arbi-
trary scale).

FIG. 2. The number N of periodic points of order 7 obtained
with resolution r2 for the paradigmatic Henon map (Ref. 13)
from a time series of 10 points.

lays ' which leads to Ix, J, x; ER, one might define

P, (t) most directly' by simply counting the number of
sequences of length t in the time series that returns within
a given distance e, that is

P,(t)=(1/X) (number of i: ~x,
—x, +i~ (e') . (3)

Since P, (t) provides only discrete values, we can
equivalently look at the inverse function e (t), which is
the distance e for which there are p returns in the time
series. This function is numerically easy to obtain, since
for every t one simply needs to sort the distances
e, = ~x,

—x, +, ~. e~(t) then is the pth smallest distance un-
der the e;. Small e (t) are considered" to reveal a high-
return probability, i.e., the existence of UPO's of length t.
On the other hand, e (t) is directly connected to the auto-
correlation function. To show this we consider the dis-
tances e in the Euclidean reconstruction phase space of
embedding dimension m. For N ~ ~ it then holds' that

Figure 1 demonstrates that e„(t)/2m, unlike the auto-
correlation function, shows sharp peaks at certain times
t* which are candidate times for finding the less unstable
periodic orbits present in the time series. This function
converges at the correct embedding dimension when the
delay time for the reconstruction of the attractor is
chosen optimally.

For the construction of the UPO's from a given time
series, the function e (t) now provides two important
pieces of information: the times ~* for which we have a
high probability of finding UPO's and the scale
r, ~@~(r*) at which we must look to find at least p re-
turns within the time series. We then follow the method
presented in Ref. 3: A sequence s, (x;, . . . , x „) is con-i+w
sidered to be close to an ~-periodic orbit if

~ x; —X. + ~ ~

~ r &, where r
&

is an appropriate distance.
Two sequences s, , s are considered to belong to the same
orbit if they are less than a second distance rz & r

&
apart.

Since periodic oprbits are defined only up to a cyclic per-

FIG. 3. (a) —(e) Some unstable periodic orbits extracted from
a time series of N =10 points of the Roessler system. (f) Pro-
jections of all UPOs obtained from N = 10 points of the
Roessler system (m =4, ~=46~, 6t =m. /12).
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mutation II, we first permute one of the sequences such
that ~s,

—IIsj~=d, becomes minimal. If d, ~r2, the two
sequences are grouped together.

A heuristic criterion for the appropriate choice of r2 is
the requirement that the correct grouping should not
alter when r2 is slightly changed. This comes about as
one knows that different unstable periodic orbits tend to
separate on the attractor. To illustrate this, Fig. 2 shows
the number of periodic points of periodic orbits of length
7 obtained from a time series of n =10.000 points of the
paradigmatic Henon map' (a =1.4 and b =0.3) versus
r2. There is a broad range for r2 where the correct
grouping does not change.

The orbit points then are obtained as averages of the
points of the (possibly permuted) sequences in the group.
Figures 3—5 illustrate the result. Plotted are unstable
periodic orbits obtained from the time series of 10 points
from the Roessler system (Fig. 3), the Makey-Glass de-
lay equation' (Fig. 4), and experimental data from a
driven pendulum (Fig. 5). We found all primitive UPO's K(x*)=g A, +(x*) . (5)

up to a length ~/~0—=5 when ~o was the first return time
in the system corresponding to the first peak in e '(r).
Especially for the Roessler system we found 1,0,2,2,4
primitive periodic orbits for ~/~o =—1,2, 3,4, 5, respective-
ly. Plotting projections of the orbits onto each other
gives an approximate picture of the attractor [Figs.
3 —5(f)].

Finally to obtain the instabilities K(x*) of an UPO x*
of length n (x*), Jacobians J,. are fitted at the orbit points
I,* from the corresponding sequence points and their suc-
cessors. We then multiply the Jacobians around the or-
bit, and diagonalize the resulting matrix
J=J .J . J The Lyapunov exponents A. of the
unstyable periodic orbit x* are estimated from their ei-
genvalues (for details see, e.g. , Ref. 15). The instability K
of the unstable periodic orbit x* is given by the sum of
the positive Lyapunov exponents k+:

(b) (a)

(c) (c)

(e)

FIG. 4. Same as Fig. 3, but for the Mackey-Glass equation
(I =30, rn =4, ~=66~, ht =I /20).

FIG. 5. Same as Fig. 4, but for data from an experimental
pendulum.
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III. PREDICTION USING UNSTABLE PERIODIC
ORBITS

While prediction for unstable systems may at first sight
seem a self-contradictory concept, such a prediction is in
fact possible for short times, with the minimal error being
dominated by the average expansion rate K&. ' At least
modeling dynamical systems from a time series is possi-
ble. ' By model we mean an approximation f of the Aow

f. While in the original coordinates the Aow f is a mapf:R":R, in the case of delay coordinates the nontrivial
part of the Aow is of the form f:R . IR. This follows
directly from the delay method.

Let j(t) be the measured time series. Then
x(t)=[/(t), g(t +r), . . . , g(t +( m —1)r)] is the recon-
structed vector and the Aow reduces to

g' denotes the sum restricted to UPO points x, for
which

~ x; x( ~

~ e .This makes formula (9) a local
linear procedure for predicting an orbit in such a way
that the unstable periodic orbits in the vicinity "guide"
the trajectory.

In order to derive this result we make an ansatz

f(x)=f '(x)(x —x, )+b (10)

and minimize the one-step prediction error

Considering now only UPO points within a distance e
from x, in the average ( . ), that is

f '(x(t) ) =x(t +r )

containing a nontrivial new component only g(t +mr).
For an infinitely long-time series the delay time ~ should
be almost arbitrary, but in practical cases the number of
data points N is finite and ~ has to be chosen very careful-
ly. When choosing ~ optimally m (2d + 1 may be
sufficient, a fact which is of great importance in the con-
text of systems mode1ling and prediction, where there is a
need to restrict the number of degrees of freedom to the
greatest possible extent. The approximation f of the Aow

f then usually is a least-squares fit of the model's parame-
ters:

dE=d((f f ) )=0—
which is equivalent to minimizing the (one-step) predic-
tion error of the model f. ( ) denotes the average with
the invariant density.

Instead of modelling the Aow f globally using UPO's
we here attempt to demonstrate that UPO's should be
used directly to predict chaotic time series. The idea is to
make use of the fact that an unstable periodic orbit e not
only contributes to the static information on the attractor
but furthermore represents the Aow f, first, by providing
to a given UPO point x,* its successor f(x,* )=x,*+&

and second, by determining the dynamics in the vicinity
of the UPO point through the linearized Aow given by
the Jacobian J(x,* )=f'(x,* ).

The successor of a given point x, therefore is deter-
mined by a nearby UPO point x,* and the Jacobian, and
we have as a first approximation

x, +, =f ( x, ) =f '( x,* )( x,* —x, ) +x,*~,

OI

La

C)

0—
0

00
0

0
0

(12)

we finally have Eq. (9).
Figure 6 demonstrates the usefulness of UPO's from

time series for predictions. A time series of X =10 sca-
lar points of the Roessler attractor has been used to ex-
tract all UPO's of length rlro=—5 [Fig. 3(f)]. Then a con-
tinuation of this time series (10 points) has been used to '

calculate the prediction error E =((f ' f') ), w—hich
has been normalized to standard deviation o". F =E/o. .
In Fig. 6 we compare this result to a prediction tech-
nique' where in contrast to the method presented here
every point within a certain neighborhood contributes to
the forecast with equal probability. We chose the neigh-
borhood to consist of 2m nearest points according to Ref.
18. While the one-step prediction error of this local
linear prediction is small, this method may fail when
iterated: In that case some predicted orbits fall off the at-
tractor which leads to huge errors (E ))cr) and restricts
the forecast time strongly. In Ref. 18 this effect is dis-
cussed. There the suspicion is that such bad predictions
depend essentia11y on the proper selectioon of neighbor-

In the case that within a given distance e of x, there are
several UPO points x,* their contributions have to be
weighted according to their instabilities and then aver-
aged, and we obtain

-3
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g'[f (x,* ) —f'(x,* )(x,* —x, )]exp[ —K(x*)]
f(x, )=

g'exp[ —K (x*)] FIT&. 6. Normalized prediction error F for iterated local
linear prediction (see Ref. 16) (0) and UFO prediction accord-
ing to Eq. (9) ( ) from a time series of 10 points of the Roessler
system with M =4, ~=4ht, At =~/12.
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hoods, which clearly becomes better when the number of
available points is increased. While the problem of
choosing optimal neighborhoods has not been treated sat-
isfactorily up to now, Fig. 6 demonstrates that this prob-
lem is solved for the Roessler system by our method: The
predictions using UPO's get the local dynamics right
everywhere. The fits of the Jacobians J by the orbit se-
quences seem to capture the stable and unstable mani-
folds in the sense that the predicted orbits are bound to
the attractor. This fact makes prediction using unstable
periodic orbits an attractive method.

number of data points. As unstable periodic orbits con-
tain the dynamics, they are appropriate for constructing
models from time series and can be used directly for pre-
diction. We have presented here a method which uses
unstable periodic orbits for predictions and have demon-
strated by application to the Roessler system that such
predictions are superior to ones using the time series
directly. We believe that extraction of UPO's from ex-
perimental data will become an important tool for deter-
mining the static and dynamic properties of chaotic ex-
perimental systems.
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