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In this contribution, we discuss dynamical phase-transition-like behavior in dynamical systems
and give evidence for the occurrence of such effects in an experimental, parametrically modulated
radio-frequency laser. We elucidate the connection between a generalized scaling behavior that de-
pends on two scaling exponents, i.e., the fractal dimensions and the Lyapunov exponents, and the
procedures available for the evaluation of scaling functions of Lyapunov exponents from experimen-

tal data.

I. INTRODUCTION

The scaling behavior of experimental dynamical sys-
tems has become a wide-ranging field of research since it
was realized that for a description of such a system vari-
ous mutually independent characterizations are neces-
sary. The most prominent among these characterizations
are the fractal dimensions and the Lyapunov exponents,
on the one hand, and the different concepts of entropy
and complexity, on the other hand. For a convenient
description of a system, fluctuations of at least the first
two quantities should also be taken into account. This is
achieved by considering scaling functions of fractal di-
mensions and Lyapunov exponents.

In this contribution, we concentrate on the Lyapunov
exponents and their scaling functions. We show that in
the dynamical scaling behavior of NMR-laser data
different phase-transition-like behaviors can be observed
that indicate the usefulness of the thermodynamic ap-
proach to dynamical systems. A mathematical descrip-
tion of an appropriate dynamical system starts with the
definition of a suitable generating partition. For a given
system, many diverse generating partitions are possible,
in principle, depending on the point of view one is in-
terested in. If one wants to investigate the dynamical be-
havior, however, a partition is necessary that is “compa-
tible” with the dynamical scaling behavior, i.e., a dynami-
cal partition is required

II. THE PARTITION FUNCTION

Using such a partition consisting of M symbols, we
proceed analogous to statistical mechanics and define the
partition function for an attractor or repeller 4 (Ref. 1)

Zg(g,Bn)= 3 1P (1
JEU, . .., M)"

Here the size of the jth region R; of the partition is

denoted by /;, whereas the probability of falling into this
region is denoted by p; [pj=ijp(x)dx, where p(x)
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denotes the natural measure]. To account for the noniso-
tropy of the attractor, they can be thought of as vectors.
[ and q are sometimes called “filtering exponents.” Local
scaling of / and p in n (where n denotes the “level” of the
partition) is expected. In this way, the length scale / and
the probability p give rise to scaling exponents € and «
through

—HhE;

Li=e ", @)

p=1". 3)

These exponents should be considered again as vectors.
Using the above expression, from the partition function
the generalized free energy F; can be derived?

o1 —ne (a;q+B)
F;(q,B)= lim —In > e "R
e jeq, ..., Mr"

4)

A generalized entropy function S;(a,A) is then intro-
duced through the global scaling assumption that the
number of regions N which have scaling exponents be-
tween (a,€) and (a+da,e+de) scales as

S

N(a,e)ddade~e (a’E)dads . (5)

Writing the partition function formally as an integral,
via a saddle-point approach, the relationship between the
generalized free energy F; and the generalized entropy
S is found?

Sgla,M)=Fg(q,B)+({a)qg+B)Xe) , (6)

where the angular brackets indicate that those values of a
and ¢ leading to the maximum of Z; ( as a function of
given g and 3) have been chosen. In the following, we
will omit the brackets. The free energy F; or the gen-
eralized entropy S describe in this way the scaling be-
havior of the dynamical system. Note that the
information-theoretical Renyi entropies evolve from (4)
for f=0.

From the generalized free energy and entropy, respec-
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tively, two additional free energies and entropies can be
derived by restriction: For ¢ =0, we obtain the free ener-
gy first discussed by Oono and Takahashi*? as the max-
imum value of S;(a,e) with respect to variation of a
alone for given €. The associated free energy and entropy
are in this case denoted by F;(B) and S;(g), respectively.
Similar approaches, which also correspond to a dynami-
cal approach to the scaling behavior, have been put for-
ward in Refs. 3(b)-3(f.

Furthermore, the fractal dimensions (see Refs. 4 and 5
and later, in a modified form, in Ref. 1) can also be ob-
tained from F;(q,B) as the zeros By(q) of Fs;(g,B) for
given ¢.° The entropy-like function f(a) introduced in
Ref. 1 (often called dimension spectrum) is then given by
Sglag,e0)=¢gf (ap), where €y and ¢ lead to the zero of
F for given q and appropriately chosen B(g). From (6) it
follows that —By(g)=ayg — f(ay). Due to the relation-
ship with the fractal Hausdorff dimensions
D(g) [—By=(g —1)D(q)], this point of view is often
called the probabilistic approach. Note that in Ref. 1
—Bo(g) has been denoted by 7(g). An analogous Legen-
dre transformation relation can also be derived for the
dynamical approach: It follows immediately from (6)
that Sg(e)=eB+F;(B). This notation conforms to the
pressure formalism used in Ref. 6. However, instead of
Fs(B), —Fg(PB) can also be used; the latter convention
leads to the completely analogous Legendre transform
situation if compared with the probabilistic approach.

III. MODEL SYSTEMS

For a simple example, let us recall the scaling behavior
of the tent map

x—x/l; for x€[0,1,/(I,+1,)],
x—(1—x)/1, for x€[l,/(l,+1,),1].

It is easy to see that for less than fully developed chaos
and the fully developed case itself the fractal dimension is
always equal to one [hence, the scaling function f () is
trivial], while the Lyapunov exponents have a nontrivial
scaling function. In the case of a strange repeller
(I, +1,<1), it can be shown that the scaling function of
Lyapunov exponents and the scaling function of fractal
dimensions are not mutually independent and can be de-
rived from one another. The reason for this lies in the
fact that the natural partition which is used is an
equimeasure partition.

To account for more general situations, it has been
proposed to include probabilities p; as in (1) which can-
not be expressed through the derivative of the dynamical
map in such a simple way as, for example, for the tent
map and other simple models.® Already for a three-scale
Cantor set, a relatively complex scaling behavior is ob-
tained which is shown in Figs. 1(a)-1(c). For a generic
dynamical system which might be only asymptotically
self-similar or might have no complete symbolic tree, the
situation must be expected to be even more complicated.

As far as nonhyperbolic systems are concerned, in de-
tail mainly maps of the interval or their two-dimensional
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analogs have been investigated. It has been found that
for the exemplary family of maps y =1—|1—2x|? (Refs. 6
and 7) for z=2 an equimeasure partition can again be
used; therefore, the probabilistic and the dynamical ap-
proach yield essentially the same scaling functions. A
careful investigation of the free energy function in this
nonhyperbolic case shows that, due to singularities in the
natural measure, the free energy is no longer real analyt-
ic. This nonanalytic behavior can be interpreted as a
phase transition (see also Sec. V). While for the above ex-
ample the “temperature” at which this effect occurs is the
same for both scaling functions, already the quartic map
(y =1—|1—2x|* shows that this needs not to be the
case. For one-dimensional maps, the action of the dynam-
ical partition can be described with the help of the gen-
eralized Frobenius-Perron operator;® for some of these
maps, the natural measure then evolves as the eigenfunc-
tion of this operator for “temperature” B=1. It can,
furthermore, be seen that (analogous to most “real”
phase transitions) different eigenfunctions belong to
different phases which can be characterized by different
values of the temperature 8.° In this way, they indicate
the different symmetry or order properties of the different
phases. For the dynamical and the probabilistic ap-
proach, phase-transition-like behavior has been detected
in a number of prominent model cases, such as the Hénon
map, the circle map, and the logistic map (Refs. 10, 11,
and 6; see also Ref. 9). However, phase-transition-like
behavior is not restricted to nonhyperbolic systems, as it
can be shown to occur also for hyperbolic systems with
more than one contracting direction.

IV. APPLICATION TO EXPERIMENTAL DATA

From the concept outline, it can be expected that
phase-transition-like behavior could also be observed in
experimental systems. For experimental data, it has been
proposed in Ref. 6 to use the symbolic dynamics ap-
proach directly and to consider strings of symbols ob-
tained from an experiment. This approach, however, is
not as easy to follow as it seems, although interesting pro-
gress has been obtained for the Hénon and the Lozi maps
in Ref. 12: There is no general recipe of how to obtain a
generating partition, even for model systems.!3

In the following, we therefore use a different formalism
adapted to the generic situation of random sampling. We
assume for the probabilistic approach that no distribution
of length scales is known; for the dynamical approach, it
is customary to sample in time. Accordingly, the scaling
exponent € is replaced by the Lyapunov exponent A, and
the scaling function ¢(A) corresponds to Si(€). Note that
for two-dimensional hyperbolic maps the two symbols
denote identical quantities. As a consequence, instead of
formula (4), the following set of relations emanates from
(1). For the probabilistic approach,

In{P(B(x,e))? ")

g =lim EEEE o
P(B(x,€))~e**) | (8)

where P(B(x,e€)) is the probability for a randomly
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FIG. 1. Scaling behavior of the three-scale Cantor set. (a) a-¢ area on which the entropy Sg(a,¢€) is nonzero. The lines are indicat-
ed along which the functions S;(€) and f(a) are evaluated. Different symbols indicate the different values of S;(a,e). However,
more information can be obtained from (b). (b) Sg(¢e) for the three-scale Cantor set. The fact that the maximum is In3 indicates the
complete symbolic tree. (c) f(a) evaluated for the same model as in (a) and (b). Observe again the smooth shape of the graph (no

phase-transition-like behavior).

chosen point of having a smaller distance than € from
point x,

fla)y=aq —7(q), 9
a(q)zm , (10)
dq
Pla,e)dda~e* M q . (11)
For the dynamical approach,
. In((DFrT)~B7D)
A(B)= lim (12)

n— oo 1n‘T ’

where T=e ", and DF>" denotes the product of the
stretching factors of absolute values larger than 1 in the

tangent bundle associated with the n-times iterated
dynamical map F,,

n, + x
Px, T)NT(I/n)ln[DFa (x)] ’ (13)
HA)=BL—A(B) , (14)
_dAB)
AMB) TR (15)
P(AKk)d)~e K= MTrga (16)

[note again that, in a strict sense, the interpretation of
P(x,7T) as a probability holds only for the hyperbolic
case].
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V. THERMODYNAMIC FORMALISM

For each of the two approaches, a thermodynamic for-
malism can be formulated separately. As an example, we
consider the dynamical approach. In the mapping onto a
thermodynamic formalism'# time is considered as a one-
dimensional lattice. Negative lattice sites correspond to
backward iteration, positive lattice sites to forward itera-
tion in time. The partition function corresponding to Eq.
(1) can be written as

—F (V,T)/k,T
Z (V,T)=e °* B
—n(B—DMmx,) (g
=Se n(B mXo) _ ,—n(B=1)K(B) (17)
S

n

and is identified with a canonical ensemble. The micro-
states .S, are characterized by fixed volume and differing
energies such that the following identification can be
made (though not in a unique way):

E=(—nA<0, 1/kzT=—(B—1),

V=n>0, F(V,T)=(—n)K(B),

where E denotes energy and k the Boltzmann constant.

The microcanonical description that deals with all en-
sembles with energies in the range [E,E +dE] is associ-
ated with the partition function

Z(E, V):eS<E)V)/kB~e(~n)[x~¢(m] (18)

which relates via the saddle-point approach to the func-
tions ¢ and A, where now the nondifferentiable case is
considered:

A(B)=infy[BA—¢(X)], (19)
d(M)=infz[BA—A(B)] . (20)
From the last two equations, it follows that
(A)—A
K(B)=AB) 61 (21)

which can be interpreted as the classical thermodynamic
relation
F, (T)=E,—TS, , (22)

5,0

where the subscript v is used to denote the original quan-
tities divided by the volume. As can be checked, all ther-
modynamic relations follow. In particular,
(dS/3E),=1/T and (3S /dV)g=p /T, where p denotes
the pressure [p =K ()], ensure that this set can be taken
as an axiomatic thermodynamic system. By using the
analogy between the scaling of the support and the scal-
ing of the measure, a corresponding interpretation can be
given for the scaling of the measure (with —n replaced by
Ine). In both cases, the corresponding entropy S is a con-
vex function of E and V, E is convex in S and V, etc.
From that property of S, it follows that a point on the
graph of S is either extreme or an inner point of a linear
part of it. The former can be identified with pure phases,
the latter with mixtures, since points of nonanalytic be-
havior of A(f) [7(q), respectively] will lead to such parts

of S. They are responsible for a phase-transition-like be-
havior of the system.

In view of the generalized case where two scaling in-
dices are present, such a close analogy to the thermo-
dynamic formalism is not possible (however, the ensem-
ble could be viewed as an isobar-isotherm ensemble).'®
The simplest example of a phase-transition-like behavior
in both the probabilistic and the present dynamical ap-
proach is provided by the coexistence of a repeller and an
attractor. More specifically, it has been pointed out that
phase-transition-like effects are to be expected generically
from the existence of homoclinic tangency points.!®!77
Qualitatively different effects are obtained from systems
at a crisis.!®!® In Fig. 2 a schematic picture of the two
cases is shown.

VI. EXPERIMENTAL RESULTS FROM
THE NMR LASER

The ruby NMR laser®® is one of the ideal systems for
an experimental application since it possesses a variety of
nonlinear behaviors. This behavior results from a strong
nonlinear reaction to weak external modulation of pa-
rameters at low frequencies (~100 kHz). Upon altera-
tion of the modulation amplitude A (experimentally, in
most cases the quality factor of the resonator cavity was
modulated, but other possibilities also exist), the most
prominent features that can be observed are bifurcations
of different types and crisis. The latter is triggered by a
collision between attractors and unstable trajectories.
For low modulation amplitudes, the NMR laser can be
described in a satisfactory way by Lorentz-type equations

d)=A (a)

o)
A (arb. units)
(b)
A
o)
A (arb4 units)
FIG. 2. (a) Schematic drawing of a phase-transition-like

effect caused by the coexistence of a repelling fixed point 4 and
an attractor B for the dynamical function ¢(A). (b) Schematic
drawing of the scaling function ¢(A) in presence of a crisis.
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derived from the Bloch-Kirchhoff equations. Due to
necessary adiabatic elimination, in order to achieve
chaotic behavior, the phase space has to be enlarged by
parametric modulation. Let us point out, however, that
for higher modulation amplitudes the system shows frac-
tal dimensions larger than three and more than one posi-
tive Lyapunov exponent. Using a term coined by
Roessler,?! the latter states can be called hyperchaotic.
In this case, the former set of equations is no longer
sufficient, and for a description of the system other transi-
tions than the spin 1/2— —1/2 transition have to be tak-
en into account.

In the following, we present the scaling functions of
the Lyapunov exponents for two exemplary experimental
files taken at different small modulation amplitudes A
(see Fig. 3). From data files of at least 250000 integers
taken with 12-bit resolution, the Lyapunov exponents
have been calculated, and the scaling functions have been
derived. For the numerical evaluation, the algorithm de-
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FIG. 3. (a) Phase-transition-like effect for the dynamical scal-
ing function ¢(A) for the experimental NMR laser, far away
from a crisis, due to the presence of homoclinic tangency points.
(b) Phase-transition-like effect for the dynamical scaling func-
tion #(A) for the experimental NMR laser due to the presence of
a crisis.
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scribed in Refs. 3(f) and 22 has been used. The first file
was recorded at the modulation amplitude A4 ~0.40,
whereas the second situation occurred for 4 ~0.48 (for
experimental details, see Ref. 20). When the modulation
amplitude is smoothly changed from the first value to the
second, before the second value is reached a crisis sets in.
There, the attractor abruptly changes its shape, and a
larger area of the phase space is occupied in comparison
to the situation before. Furthermore, a much more irreg-
ular behavior is displayed. On one hand, this qualitative
change is indicated by an increase of the information di-
mension from about 2.2 to 2.8. But also the spectrum of
Lyapunov exponents changes considerably; after the
crisis, the first exponent becomes more than twice as
large if compared to the old value. With reference to the
theoretical outline given above, the scaling functions of
the Lyapunov exponents for the two situations [Figs. 3(a)
and 3(b)] are of interest. In particular, we focus on two
facts.

For the first file, we note a straight-line behavior on the
left-hand side of the scaling function [Fig. 3(a)]. This be-
havior is believed to be due to the presence of homoclinic
tangency points. From theoretical considerations for a
dynamical map with a quadratic maximum, a line of
slope 1 would be expected.'® Our numerical investiga-
tions yield a slope which is somewhat larger. Taking into
account the accuracy of the methods used, such an inter-
pretation, however, is not inconsistent: It has been ob-
served, when comparing scaling functions obtained from
dynamical equations with scaling functions from time
series of the same model that for the scaling functions
from time series the left-hand slope is overestimated.
This effect is probably due to a “‘smearing” of the homo-
clinic tangency points, which are responsible for the most
negative Lyapunov exponents, by the discretization and
the embedding processes. As a second element, the finite-
ness of the data could account for such a deviation.

In the scaling function of the second file [see Fig. 3(b)],
a two-humped structure is evident. This item can be seen
as the information contained in the scaling function
about the crisis that has occurred before. The first hump
of the scaling function is characteristic for the remainder
of a merged attractor after an attractor-merging crisis.
The situation should be compared with the results ob-
tained in Ref. 19, where the same effect was found and
discussed for the circle map. The scaling function ob-
tained from this model system is almost identical with the
scaling function of the NMR laser after the crisis.

Let us point out that at a higher modulation amplitude
far from crisis where the NMR laser displays hyperchaot-
ic behavior, again a scaling function of the form as re-
ported in Fig. 3(a) is obtained. For this case, note that
the fluctuation of the sum of the positive Lyapunov ex-
ponents has to be considered [see also Ref. 3(f)].

VII. CONCLUSION

Theoretically predicted phase transitions could be
detected from experimental NMR-laser files. In this way,
it is indicated that calculated scaling functions are a
powerful means for the characterization of experimental



43 DYNAMICAL PHASE TRANSITIONS IN A PARAMETRICALLY ... 1807

data. For example, visual observation of a crisis has been
corroborated with the help of the calculated scaling func-
tion and by comparison with the behavior of a well-
known model system. Proceeding this way, one might be
led to new insights into experimental systems. As far as
the phase-transition-like behavior is concerned, we note,
however, that the above observed phase transitions
should not be interpreted as phase transitions with
respect to the generalized formalism [i.e., with respect to
Sg(a,e)], but rather with respect to the more specific
scaling function ¢(A). In order to establish a more expli-

cit connection between these two functions than present-
ed here, more model cases should be investigated from
this point of view.
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