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We study steady-state correlation functions of nonlinear stochastic processes driven by external
colored noise. We present a methodology that provides explicit expressions of correlation functions
approximating simultaneously short- and long-time regimes. The non-Markov nature is reduced to
an eA'ective Markovian formulation, and the nonlinearities are treated systematically by means of
double expansions in high and low frequencies, We also derive some exact expressions for the
coe%cients of these expansions for arbitrary noise by means of a generalization of projection-
operator techniques.

I. INTRODUCTION

The analysis of steady-state correlation functions is a
useful tool in the characterization of the noise acting on a
system. An example of this fact is given by the dye laser.
In a series of experimental' and theoretical papers
on the static and dynamic properties of a dye laser, it has
been concluded on the necessity of modeling this system
in terms of stochastic equations driven by external
colored noise, instead of the usual internal white-noise as-
sumption of the standard laser theory. In this context, a
fundamental role has been played by the steady-state
correlation function. A comparison between experimen-
tal results and numerical results for the steady-state
correlation function associated with white- and colored-
noise models ' has determined the colored character of
the noise. Furthermore, the existence of a characteristic
initial plateau of the correlation function, predicted as a
consequence of the colored-noise assumption, has been
later corroborated experimentally. Despite its interest,
however, there are no analytical techniques available in
the literature to deal with steady-state correlation func-
tions for these problems in the complete time regime.
Other dynamic properties that may depend strongly on
the characteristics of the noise are the relaxation times of
steady states and the escape times from unstable or meta-
stable states. References 9 and 10 contain reviews of the
role of external noise in different physical systems.

Our aim in this paper ss to develop an analytical
method to obtain steady-state correlation functions of

nonlinear systems driven by colored noise, for both short-
and long-time regimes. The calculation of these func-
tions involve two different types of difficulties. The first
one is inherent to the non-Markovian character of the
process, due to the presence of colored noise. Unlike the
Markovian case, the joint probability distribution, from
which the two-time correlation function is obtained,
obeys a different equation than the single probability dis-
tribution. In Refs. 11 and 12 equations for the joint prob-
ability distribution and for correlation functions associat-
ed with non-Markovian processes have been obtained.
The second type of problems involved in the determina-
tion of non-Markovian correlation functions are also
present for Markovian processes. They are related to the
nonlinear character of the stochastic equations, giving
rise, for instance, to infinite hierarchies of coupled equa-
tions. Apart from a reduced number of exactly solvable
problems, approximate methods have been explored, such
as the Stratonovich decoupling ansatz' and the
continued-fraction-expansion method. ' Both methods
give good qualitative results in situations when there are
not very different time scales involved, but they only give
the short-time behavior in other situations, such as near
instability points. Recently, Nadler and Schulten' have
proposed a unified scheme, based on the introduction of a
complementary approach of that of the continued frac-
tion expansion. This methodology contains information
on both short- and long-time scales simultaneously, and
has been applied in Ref. 16 to the calculation of the
steady-state correlation functions in the complete time re-
gime of nonlinear processes driven by multiplicative
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Gaussian white noise. It has been obtained an excellent
agreement in the comparison with exact results. '

In Sec. II we discuss a generalization of the techniques
studied in Refs. 15 and 16 to Gaussian colored noise in
the framework of a first-order approximation in the
correlation time of the noise ~. An application of this
method in the context of laser systems will be presented
elsewhere. ' The method contains two main ingredients,
one dealing with the non-Markovian nature and the other
with the nonlinearity of the process. The first one estab-
lished the connection between the non-Markovian corre-
lation function, C (t), and effective Markovian correlation
functions CM(t). A similar philosophy was used in Ref.
18, but the result was only valid for the short-time re-
gime. A derivation of an expression of C(t) in the con-
text of an expansion to first order in the intensity of the
noise was done in Ref. 19. These expressions were first
used for the obtention and discussion of relaxation times
in non-Markovian processes in Refs. 18 and 20. Howev-
er, its practical usefulness for the explicit calculation of
correlation functions was quite limited at that time due to
the lack of appropriate techniques to deal even with Mar-
kovian correlation functions in the complete time regime.

The expression for C(t) contains by construction some
interesting generic features associated with the non-
Markovian character which make it very convenient as a
starting point of any theoretical analysis. For instance, in
the short-time regime, it contains the characteristic ini-
tial plateau of any non-Markovian correlation function.
On the other hand, for time scales much larger than the
correlation time of the noise, the result corresponds to
the one of a Markovian process with an effective initial
distribution. In this way, the result provides an implicit
calculation of effective initial distribution as it is done
from a different method in Ref. 21.

Once the problem has been reduced to effective Marko-
vian correlation functions, the second step is the applica-
tion of the method studied in Refs. 15 and 16 for the cal-
culation of CM(t), that we will call the double-expansion
method. It has been obtained in Ref. 16 that this pro-
cedure gives excellent quantitative results for these func-
tions for all time regimes, even very near instability
points where very different time scales coexist. In this
way, we can determine systematically, to any degree of
approximation, the complete time behavior of C~(t), and
therefore, that of C (t) as far as the small r approximation
holds.

The method is based on two simultaneous expansions
of the Laplace transform of C~(t) in high and low fre-
quencies. The coefficients of these two separate expan-
sions are related to the derivatives at the origin of times
and to the so-called relaxation moments of CM(t), respec-
tively. The zero-order relaxation moment is the usual re-
laxation time, and like the other relaxation moments con-
tains information on a global or large time scale, related
to the distribution of area under the curve of CM(t). The
goal of the method is to use information of both expan-
sions simultaneously to approximate CM ( t ) both in the
short- and long-time scale. The interpolation is done by
means of Pade approximants, which provide systematic
approximations of the CM(t) as a sum of exponentials.

The different orders of approximation of the method are
related to the conditions on the derivatives at the origin
and the relaxation moments that one imposes to be
satisfied by the Markovian correlation function CM(t).
The usefulness of the method relies on the possibility of
computing the coefficients of the expansions. This can be
done exactly for Markovian processes' ' and for the
non-Markovian case only the relaxation time has been
obtained to first order in ~ in Ref. 20. The generalization
of this result to the higher-order relaxation moments is
presented in Appendix A.

In Sec. III we consider some more formal aspects of
the theory of non-Markovian correlation functions. Until
the present time most of the standard techniques were re-
stricted to the white-noise case. Here, we present a gen-
eralization of the projection-operator technique to deal
with completely arbitrary noises. Our starting point is an
integrodifferential equation for the joint probability dis-
tribution valid for any noise. In Appendix 8 we give
some details of the derivation of this equation. In its ap-
plication to the Ornstein-Uhlenbeck noise and to first or-
der in ~, it reduces to the equation considered as the
starting point in the preceding section.

One remarkable result of the generalization of the
projection-operator technique is the formal exact solution
of the coefficients of the two frequency expansions for ar-
bitrary noise. However, their combination in the spirit of
the double-expansion method for the calculation of corre-
lation functions has to be explored, in principle, for each
particular situation.

II. THE METHOD

A. An expression for non-Markovian correlation functions

In this section we restrict ourselves to the study of
non-Markovian processes described by stochastic
differential equations of the following type:

q(&) =U (q)+g (q)g(r), (2.1)

where v and g are general nonlinear functions of q and
g(t) is the Ornstein-Uhlenbech process with zero mean
and correlation function given by

(g(r)g(r')) =—exp
D

(2.2)

D and ~ are the intensity and the correlation time of the
noise, respectively. We are interested in the calculation
of the steady-state correlation function C (t) defined by

(6q (r +r')6q (r') )Ct=lim
((~q)')

J f dq dq'P (q, q', t)5q6q', (2.3)
1

where 5q(t)=q(t) —(q). (q) and (q ) are the steady-
state moments. P(q, q', r)=lim, P(q, t+t', q', t') is
the stationary joint probability distribution. The equa-
tion obeyed by P(q, q';t), when q is a non-Markovian
process, has been studied in Ref. 11. To first order in ~
the equation is
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P(q, q';t)=[L&(r)+D exp( t/r)Lqq (r)]P(q, q', t)C}

(2.4)

where

v (q)+D g (q) h (q),8
Bq Bq Bq

L„,(r) = g (q), h (q'),=a a
Bq Bq'

L (r)=— (2.5)

(2.6)

P(q, q', t)=e ' [I+rD(l —e ' ')L,(r)]P(q, q', 0)

and h(q)=g(q) —r[v(q)g'(q) —v'(q)g(q)]. The primes
on g and U denote derivatives with respect to q. The
Fokker-Planck operator L (r) appears, in the same ap-
proximation, in the Fokker-Planck equation for the single
probability distribution P(q, t). In the limit &~0, the
second term of Eq. (2.4) disappears and the equations of
P(q, q', t) and P(q, t) coincide. Integrating Eq. (2.4) we
obtain to first order in r

the double-expansion method to the Markovian correla-
tion functions, CM(t) and C~(t), in order to get the com-
plete time behavior of C(t). But, before that, some re-
marks on the general properties of Eq. (2.8) will be useful
for the practical application of the method.

First, Eq. (2.8) implies the characteristic initial plateau
of any non-Markovian correlation function Ref. 6, thanks
to the presence of the term proportional to e

C(t) = C~(t)+e ' 'yoC~(t)
dt

+«I —e "»o~ CM(t)
dt t=0

(2.12)

Here we have used Eq. (A14) for the derivatives at t =0
of Markovian correlation functions.

A more global characterization of C(t) is given by the
relaxation time

(2.7) T = dtC t =TM ~+~. (2.13)

with P(q, q';t =0)=P„(q)5(q —q'). P„(q) is the station-
ary distribution. Introducing the result (2.7) in Eq. (2.3),
we get

C(t)=C~(t)+r(1 —e ' ')y M(t)+0( r), (2.8)

where

(5qL 5q)

and

(5q (t)5q )~
CM(t) = (,)

(5q (t)L "5q )I
(5qI.,'5q )

(2.9)

(2.10)

C~( t) and C~( t) are correlation functions associated
with an effective Markovian process with Fokker-Planck
operator L (r). L (r) is the adjoint Fokker-Planck
operator. For a Markovian process we can write the
average ( )M as

C~(t)= — J dqP„(q)5qe ' 5q
1 L s

(2.1 1)

and in a similar way for CM(t) [see Eq. (A3)].
The interest of Eq. (2.8) is that the non-Markovian

correlation function C(t) is expressed, to first order in r,
in terms of effective Markovian correlation functions
CM(t) and CM(t) Asimilar phi. losophy was used in Ref.
18 in the context of a continued-fraction-expansion
method for the short-time regime. An expression of C(t)
from the perturbative solution of P(q, q';t) to order D
was first derived in Ref. 19. To first order in ~, this result
reproduces Eq. (2.8), but no analytical techniques were
available at that time for a systematic calculation of the
Markovian correlation functions in the complete time re-
gime. Our purpose in this section is precisely to apply

C(t)=CM(t)+rloC~(t) . (2.15)

According to (2.11), the result (2.15) can be reinterpreted
as the correlation function corresponding to a Markovian
process with an effective initial distribution
(1 —rL&)P„(q), instead of P„(q). The calculation of
effective initial distributions of non-Markovian processes
has been investigated in Ref. 21 by means of a different
method. In particular, in the application to Brownian
motion, our result (2.15) coincides with the one obtained
in Ref. 21. In this way, Eq. (2.15) provides the explicit
calculation of effective distributions for the general case.

B. The double-expansion method

As the second step in our procedure we apply the
double-expansion method to calculate the Markovian
correlation functions defined by Eqs. (2.9) and (2.10). The
method has been described in detail in Refs. 15 and 16.
The basic idea is to consider two expansions of the La-
place transform of any Markovian correlation function
both for high and low frequencies, w:

'k
1 k 1

CM(W) g pM
k=0

(2.16)

A detailed discussion of result (2.13) is given in Ref. 20
where a closed expression for TM, which has a nontrivial
dependence on ~, is also derived. As we show in Appen-
dix A, a similar result can be obtained for the so-called
relaxation moments

r'= j etc(t)t"=a~(r)+rkrM" (2.14)

T~ is the kth order relaxation moment associated with
CM(t) The hier. archy of relaxation moments provides a
global characterization in terms of the distribution of
area under the curve C (t).

On the other hand, for t ))~ the term proportional to
e '~' in Eq. (2.8) is negligible and we obtain
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and

CM(W)= g Mw
( —1)"

k=0
(2.17)

where the coefficients of the expansions are related to the
derivatives at t =0, p, M, Eq. (A14), and the relaxation
moments, TM, Eq. (A4). Equation (2.16) provides infor-
mation on the short-time behavior of C~(t). This expan-
sion is the one involved in the usual continued-fraction-
expansion method. On the other hand, Eq. (2.17) is relat-
ed to a more global or long-time characterization of
CM(t). The goal of the method is to obtain a systematic
approximation for CM ( t ) which combines simultaneously
information from both expansions. A convenient way to
do so is to interpolate them by means of Pade approxi-
mants.

An approximation of order X will then correspond to
an ansatz of the form

N

CM( w)—
n=1 n

(2.18)

where the coefficients a„and A., have to be determined by
imposing that the expansions in w and 1/w of (2.18) coin-
cide up to the desired order with (2.16) and (2.17). The
explicit approximation for CM(t) is then a superposition
of N exponentials of the form

CM(t) = g a„e
n =1

(2.19)

In practice, the calculation of C~(t) starts by assuming
an expression of the type (2.19) and imposing the normal-
ization condition, CM(0) = 1. Then, one asks for the con-
ditions on the coefficients such that n derivatives and m
relaxation moments are contained exactly, with
n +m + 1 =2X. These conditions read' '

N

g a, (A, , )"=(—I)"pM; k =0, 1, . . . , n, (2.20)

N

g a, (X, )
TM

k

k=0, 1, . . . , m —1 . (221)

The coefficients pM and T~ are known exactly for a
generic Markovian process defined by the operator L (r).
The explicit expressions are given by Eqs. (A4)—(A7) and
(A 14).

C. Discussion of different orders of approximation

Here we discuss some different approximations of C(t).
To do so, we make use of Eqs. (2.8) and (2.12)—(2.15) and
the results of Sec. II A.

From Eqs. (2.12)—(2.15) we observe that CM(t) is im-
portant both in the small- and large-time scales. Howev-
er, C~(t) has no infiuence in the short-time regime and
only contributes essentially for long times. Then, in the
calculation of the low-order approximations of the
double-expansion method, a good criterion will be to con-
sider conditions both on derivatives at the origin and re-
laxation moments for CM(t) and mainly on relaxation

moments for CM(t)
At the lowest order, imposing the conditions on the

first derivative of C~ ( t ) and the relaxation time for
CM(t), we recognize the Stratonovich decoupling ansatz
Ref. 13:

C(t)=e "+r(1—e ' ")yoe '+0(r ) . (2.22)

This approximation contains only one exact derivative
C'(0) =0, and approximates the relaxation time by
T —pp +7 instead of the correct one to order ~, given
by Eq. (2.13).

The next simplest approximation, with the right relax-
ation time of C(t) to order r (2.13) and the same exact
derivative (2.12), will have the form

C(t)=(a, e ' +a~e '
)

+r(1 —e ' ')yoe '+0(r ) . (2.23)

In this case, to determine a, , a2, A. „X2 one imposes the
conditions on one derivative and two relaxation moments
of C~(t) and the relaxation time of CM(t) In th.is case
the next relaxation moment of C(t) is approximated by
T' = TM +ryo ' instead of the right value (2.14),
T TM +VTM

III. PRO JECTION-OPERATOR TECHNIQUE
FOR NON-MARKOVIAN PROCESSES

In this section we derive some exact expressions for
correlation functions by means of projection-operator
techniques. We present a generalization of the standard
technique capable to deal with any noise. As in the usual
formulation, ' '' one obtains high- and low-frequency ex-
pansions of the I.aplace transform of the correlation
function. These two independent expansions give infor-
mation on the short- and long-time behavior of the corre-
lation function, respectively. The coefficients of the ex-
pansions, related to the derivatives at the origin and the
relaxation moments, are given in terms of the moments of
projection operators. However, it is necessary to remark
that, in general, a unified treatment of the two expansions
in order to approximate the complete time regime, in the
same spirit of that of Nadler and Schulten, ' ' should be
explored for each particular situation. In this aspect and
for the Ornstein Uhlenbeck noise with small ~, our stra-
tegy has been to search first for an expression of C(t)
which contains as much physical information as possible
on the behavior for the short- and long-time scales and
then apply the unified procedure to the calculation of the
remaining Markovian correlation functions, for which
the method has been checked and gives excellent re-
sults. ' ' Nevertheless, the exact calculation of the
coefficients of the two expansions in the general case is in-
teresting by itself and will be addressed below.

The starting point of this derivation is an
integrodifferential equation for the joint probability dis-
tribution valid for any noise. This equation has been in-
troduced in Ref. 12 and is adapted to our purposes in Ap-
pendix B. In this appendix we show that the equation for
the two point probability density can be put in Laplace
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transform, when expliciting the noise, as

wP (q, q';
w )

—P„(q)5(q —q')

=M(w)P (q, q'; w)+S(q, q'; w), (3.1)

an operator depending on w.
Let us define a scalar product (F, G) and a projection

operator as follows:

(F,G)= f dq dq'F(q, q')G(q, q'), (3.2)

where M(w) is an operator and S(q, q', w) a function (see
Appendix B). In the white-noise case M is independent of
w and S(q, q';w) is zero. This equation is very adequate
for using the projection-operator technique in the obten-
tion of expansions for high and low frequencies. In fact,
the standard technique' starts also with a Laplace
transformed equation for the Markovian case. Here, we
generalize it to the non-Markovian case.

A. High-frequency expansion

IIF =(V,F)
(v, u)

(3.3)

where u =P„(q)5(q —q')+S(q, q';w) is the vector
defining the projection space and v is the dynamical vari-
able of interest. At this point, we let v be undetermined.
Note that in a Markovian case S(q, q', w)=0, then u

defines the initial stationary condition. The adj oint
operator of II defined as

First, we consider a high-frequency expansion. In the
Markovian case the continued fraction expansion is ob-
tained by introducing an operator which projects in the
subspace associated with the initial state, ' in our case the
stationary state. In the non-Markovian case the method
is similar with changes in the projection space and with

FII = (F,u)
(v, u)

(3.4)

is also a projection operator. Now, as it is usual in pro-
jection techniques we apply H and (1—II) to Eq. (3.1) ob-
taining two coupled equations. By solving the second
equation and substituting into the first one, we obtain

wIIP =u +IIMIIP+HM(1 —II)[w —(1 —II)M] '(1 —H)MIIP . (3.5)

Taking the scalar product with v in both parts of this equation and rearranging, we get

(V, P) = (v, u)
w —(v, Mu)/(v, u) —[1/(v, u)](vM (1—H ), [w —(1—II)M] '(1 —II)Mu)

We can proceed now introducing new functions and projectors as

v, =vM (1 —H ),
u, =(1—H)Mu,

(3.6)

(3.7a)

(3.7b)

0)
II, =(v, ,0)

(Vi, lli )

M, =(1—H, )M .

Iterating this procedure we get the following result for (V, P):

(3.7c)

(3.7d)

(v, P) =
(v, Mu)

(v, u)

(v, u)

(V, , M, u, )

(Vi, u1)

(V1, ll1)

(v;, u;)
( Vi 1~ ui —1)

(v, ,M, u, )
W

(v;, u, )

(3.8)

This equation is valid for any dynamical variable v (q, q ). To calculate correlation functions we take
v (q, q') = (qq'/( q ) ), and obtain

C(w)=

with

w —a(w)—
w —a (w)—

K;(w)
w —a.(w)—

l

1+So(w)
IC, (w)

(3.9)
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(v;, M, u;)
a;(w)=

(v, , u;)
(3.10a)

K, (w)=
(v, , u, )

(qq'S(q, q', w) )
(q')

An equivalent description of (3.9) in terms of the variable t is

(3.10b)

(3.10c)

=aMC(t)+KM f 'dt C, (t —t')C(t')+ f dt'n (t —t')C(t')+ f dt'K, (t —t') dt"C, (t' —t")C(t")+So(t),
dt 0 0 0 0

(3.1 1)

dC,
dt

=a, C, (t)+K, f dt'C, (t t')C, (—t')+ f dt'ct, (t —t')C, (t')+ f dt'K, (t t')—f dt"C, (t' t")C,(t—")

where we have split u, and K, in contributions which do
and do not depend on the frequency:

u;(t)=X 'Ia;(w)] =a; +u; (t),
(3.12)

K, (t)=X 'IK, (w)] =K, +K, (t) .

(v, P)=

(v, M 'u)
(v, u)

(v, u)
(Ui, u i )

W
(v, u)

(U„M, 'u, )
1 w ~ ~ ~

(Ui, ui)

(3.15)
(3.11) C(0)The initial conditions are

=C, (0)= =1.
From (3.9) and (3.11) it is easy to see that an approxi-

mation of order n [C'(t)=0 or K„=a,=0] leads to an

approximate correlation function which reproduces ex-
actly the derivatives in t =0 up to order n +1. For the
first derivatives we obtain

C(w)=

where

, p&(w)

1 —w9(w)— p(w)
1 —w9, (w)—

(3.16)

and for the correlations, taking v = (qq '/( q ), we have

p' =a +So(0),

p =cr p, '+Kg+a (0)+So(0), (3.13)
p, (w)=(v, , u,. ), (3.17a)

p, =rt p, +[K, +a (0)]p'+K, aM+a"(0)+K, (0) .

In the Markovian case So(0)=a, (0)=K, (0)=0 and
(3.13) gives known results. '

B. I,om-frequency expansion

(U;, M, 'u, )
9;(w)=

(v, , u, )
(3.17b)

Now it is also easy to see that the kth order approxi-
mant reproduces exactly the relation moments T . For
the first moments [T =( —I)"(8 IBw")C(w)~ 0] we
obtain

Now, we consider the low frequencies. We use the
same procedure that in the previous expansion but now
using as the starting equation

T =P(0),
T' = —Pi(0)P'(0) —P(0)9(0),

(3.18a)

(3.18b)

T =P"(0)+29(0)a'(0)+a(0)9'(0)+2P(0)9 (0)
P(q, q', w)+M '(w)S(q, q';w)

= wM 'P (q, q'; w) —M 'P„(q)6(q —q') (3.14)
+P,(0)[a(0)+9'(0)] . (3.18c)

instead of (3.1). This equation is obtained from the appli-
cation of M ' to (3.1). Now we define
u = —M '

P( )5q( qq') —M 'S(q, q';w). The scalar
product and projector are the same than for the high-
frequency expansion. Proceeding as before we obtain for
(v, P)

In the white-noise case we have M independent of w

and S(q, q';w)=0. It can be seen that in this case (3.18)
reproduces the known results for T .

Equations (3.13) and (3.18) give the exact expressions
for the first derivatives and relaxation moments valid for
any noise. They are essential ingredients in the applica-
tion of the projection-operator technique.
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C. Exponentially correlated noise

Now, we apply the results of this section to an ex-
ponentially correlated noise to first order in D and ~.
Then, we compare these results with the ones obtained in
Sec. II for the Ornstein-Uhlenbeck noise.

For an exponentially correlated noise, the operator
M(w) and the function S(w) are given to first order in D
by (see Appendix B):

M(w)= — u(q)
Bq

By antitransforming Eq. (3.20) we obtain

S(t)= g (q)exp — I /~+ w + u (q) t
a

Bq dq

X5(q —q') P„(q) .v(q)
g(q)

Then,

(qq'S(q, q', t =0)) (qu(q))
(q') (q')

(3.22)

(3.23)

+D/r g (q) —+ w + u (q)
a 1 a
9q ~ Bq

S(w)= g(q) —+w+ v(q)
a & a

Bq ~ ~q

g(q),a
Bq

(3.19)

This result implies that p'=a" +So(t =0)=0, in agree-
ment with Eq. (2.12). In fact, this is an exact result for
colored noise valid to any order in D. '

Now, we obtain the relaxation time T to first order in
D and ~. First, we consider the following expansion:

x5(q —q') P,„(q) .
u(q) (3.20)
g(q)

From Fqs. (3.19) and (3.20), the first derivative of C (t) at
t =0 can be easily calculated to first order in D. By using
(3.10) and (3.19), we get

a =, qq', — u (q)5(q —q')P„(q)1, i3, (qv(q))
(q')

(3.21)

1/~ =1 rw+— v(q) +O(r )
a

1/r+ w+(a/aq)u (q) Bq

(3.24)

c)M(w =0)=L (r) Dr g g— u
Bq Bq Bq

in Eqs. (3.17) and (3.18), we get T to first in D and r:

(3.25)

in Eqs. (3.19) and (3.20). Now, using the relation given
by

=ft(0) = — (qq', L 'P„(q)5(q —q'))+ qq', L g g uP„(q)5(q q')—
qq', M(w =0) ' u(q)P„(q)5(q —q') =TM+r

q Bq
(3.26)

which reproduces Eq. (2.13).
Finally, we consider the relationship between the sta-

tionary joint probability distributions given by Eqs. (3.1)
and (2.4). By substituting Eqs. (3.19) and (3.20) in Eq.
(3.1), iterating and using (B6), we obtain to first order in
D and ~:

wP 5(q —q')P„(q) =—L (r)P+S,5(q —q')P„(q),
1 Dr g (q) —g (q) P„(q)

a a
Bq Bq

(3.30)

Therefore, in this condition Eqs. (2.4) and (3.1) coincide.
They correspond to a Markovian process with a Fokker-
Planck operator given by L (r), Eq. (2.15), with an
effective initial distribution given by

where

(3.27)
instead of P„(q). The corresponding steady-state correla-
tion function to first order in ~, associated with this Mar-
kovian process is given by Eq.(2.15).

S,=Dr g(q), g(q') .
Bq 0q'

For times t ))~ and to first order in ~, we have

D exp( —r/~)L (r)P(q, q';t)

—rD5(t) g(q), g(q')5(q —q')P„(q) .
a a

Bq Bq'

(3.28)

(3.29)

IV. SUMMARY

In this paper we have focused on methodological as-
pects of the treatment of non-Markovian correlation
functions, both from a practical and a formal point of
view. First, we have developed a scheme that provides
explicit expressions of correlation functions for both
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short- and long-time regimes. The nonlinearities are
treated in a systematic way by means of the double-
expansion method, and the non-Markovian nature is re-
duced to an effective Markovian formulation in the con-
text of the usual small-~ approximation. This approach
may be particularly useful in the application to the study
of physical systems driven by colored noise, like dye
lasers, as will be shown in future work. '

From the more formal point of view and in order to
formulate the problem of non-Markovian correlation
functions for arbitrary values of w, we have generalized
the projection-operator technique for an arbitrary noise.
This has allowed us to obtain the exact expressions for
the coefTicients of the high- and low-frequency expansions
of the Laplace transform of the correlation function.
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APPENDIX A

Here we derive the expression for the relaxation mo-
ments of the non-Markovian correlation function C(t) to
first order in r. According to (2.8) and (2.14), th- kth re-
laxation moment T" of C (t) will be given by

T"=TM(r)+y pr f dt t "(1 e'~')C—M(t) .
0

The term proportional to e ' ' gives rise to contribu-
tions of higher-order, so to first order in r (Al) reduces to

M(v) 1'pr ML

where T~L is the relaxation moment of order k corre-
sponding to CM(t).

Now we want to relate T~L to the relaxation moments
of CM(t). To do so let us consider a steady-state correla-
tion function of a Markovian process defined by L (r) of
the general form

C„(t)= & f, (q(t))f, (q) )I—(f, ) (f, )

(f,f, ) —( f, )(f, )

1 b L t

( f dq Ifz(q) —&f2 &]e ' If((q) —&f) &]P,((q»
z

(A3)

where a and b are the natural boundaries of the process
q(t). The exact expression for the relaxation moments

can be derived in a similar way than that of Ref. 16 and

reads

However, in the following we can put ~=0 because we
neglect higher-order terms in (A2). Equations (A4)—(A7)
then reduce to those of Ref. 16 for white noise

I
h (q) =g (q)]. In our case the functions f; are

(
—1)"k! G())( )G(2)(

(f)fp) —&f, & & f, & ~ Dg (q)h (q)P„(q)

f((q)=q,
f2(q)=Lqq =Dg(q)g'(q)+u(q) .

(A8a)

(Agb)

(A4)

(A5)

G(2)
dq" P„q' A6

where

f dq If (q ) (f &]P, (q')

and G&
' are defined by the recurrence

G(2)
G&"(q)= f dq' f dq"

a a Dg hP„

From the form of L (2.5) one has

(q) = —f dq'(Dg g'+u)P„= Dg~(q)P„(q)—
a

so we can write

G() )(q)= —f dq' f dq"

dq" P„q' =G0
a

(A9)

(A10)

with

G' '(q) = —f dq'[f, (q') —(f, ) ]P„(q') . (A7)

Using now (A10) and proceeding by induction one can
prove that for Eqs. (A8)

For the particular case of CM(t) appearing in the text,
the f, are given by (A4)—(A7) with f, =fz =q. Note that
there is a r dependence contained in P„(q) and h (q). so that (A4) in this case reduces to

(A 1 1)
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( —1) k! b Go

&5qL 5q) ~ Dg P„ Xo
(A12)

&[L "f,(q)j(t)f, (q))
dt" " &f f &

—&f )&f )
(A14)

Substituting (A12) into (A2) we get the general result

T~= Tk (r)+1 kTk —
1 (A13) APPENDIX 8

The T~ for k )0 are given by (A4)—(A7). Notice that in

the first term of (A13) one has to keep the nontrivial r
dependence coming from P„(q) and h (q). The particular
case of the relaxation time is given by (2.12) and
(A4)—(A6).

For completeness let us include here the general ex-
pression for the derivatives of (A3) at t =0, which reads

In Ref. 12 an integrodifferential equation for the two
point probability density is derived. This probability is
calculated by averaging the two point 5 function
5(q —

q (t) )5(q' —q (0) ) over stationary realizations of the
noise. A projection-operator method is used for calculat-
ing this average. The equation obtained valid for any
noise is given by

P(q, q—'; t) =—
at

where

U(t, s)= Texp f du (1 P) A (u—)
S

and

g t(t) e
—(aUraq)t

g (q)g(t)e(a/a9)"ta
Bq

v(q)P(q, q', s)+ g(q)e " ' ~'f ds&g(t)U(t, s)g(s))e' "~ q' g(q)P(q, q';s)—t(a. /a ) s(dv/0 )

Bq

+ g (q)e -""""f '
ds & g(t) U(t, O)5(q —q') U(O, s)g(s) )e' " ~' g (q)P„(q),—t(a. /a ) s(BU/0 )

Bq oo Bq
(Bl)

(B2)

(B3)

P is the projector defined as PF= &F ), and —T is the reversed time ordering operator.

By expanding U in powers of the noise this equation is expressed in terms of the so-called "totally ordered cumu-
lants. " The first order in the intensity of the noise is obtained by making U = 1. If the correlation is exponential with
intensity D and correlation time ~, we get to first order in D

8 a
at ' '

aq
' '

aq
P (q, q'; t) = — v (q)P (q, q';s)+ g (q) exp

Bv 1+— t f dsexp
Bq ~ o

+—s g(q)P (q, q', s)Bv 1

Bq w Bq

+D g (q) exp
Bq

Bv 1+ — t 5(q —q') f exp
0

Bq 00
+—s g (q)P„(q)ds .Bv 1

Bq ~ Bq

The last term can be written in compact form taking into account the equation for P„(q):

a 0
v (q)P„(q)+D g (q) f ds exp

Bq Bq 00

Bo 1+—s g(q)P„(q)+O(D ) .2

Bq ~ Bq
(B5)

The Laplace transform of Eq. (B4) taking into account
(B5) gives Eq. (3.1) with the operator M(w) and the func-
tion S(w) done by Eqs. (3.19) and (3.20).

Furthermore, Eq. (3.5) is very useful in order to obtain
compact expressions. In the Markovian limit a similar

equation given by

0= —v (q)P„(q)+Dg (q) g (q)P„(q)
a

Bq

is used to get Eq. (3.27).
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