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Generalization of the linear algebraic method to three dimensions

D. L. Lynch'
Department of Chemistry, University ofNevada, Reno, Reno, Nevada 89557

B. I. Schneider
Theory Division, Los Alamos Rational Laboratory, Los Alamos, New Mexico 87545

(Received 30 July 1990)

We present a numerical method for the solution of the Lippmann-Schwinger equation for
electron-molecule collisions. By performing a three-dimensional numerical quadrature, this ap-
proach avoids both a basis-set representation of the wave function and a partial-wave expansion of
the scattering potential. The resulting linear equations, analogous in form to the one-dimensional
linear algebraic method, are solved with the direct iteration-variation method. Several numerical
examples are presented. The prospect for using this numerical quadrature scheme for electron-
polyatomic molecules is discussed.

INTRODUCTION

Low-energy electron-molecule collisions are important
in many processes e.g., modeling planetary atmo-
spheres, gas-discharge lasers, and low-temperature plas-
ma physics. Accurate and reliable methods for obtaining
the scattering cross sections are necessary for such mod™
cling efforts. For collisions with linear molecules various
theoretical and numerical approaches have been
developed including the linear algebraic method, the
Schwinger-variational method, and the R-matrix
method. " In general, these techniques rely on a decompo-
sition of the scattering potential, the continuum wave
function, and/or the scattering amplitude into spherical
harmonics. However, the extensions of these approaches
to nonlinear systems have been slow due to the loss of cy-
lindrical symmetry which substantially increases the
difhculty for a numerical solution of the electron-
molecule collisional equations.

The study of electron-polyatomic molecule scattering
introduces many inherently interesting features absent or
substantially reduced in the linear molecule analogs.
These include a richer electronic structure and a more
dynamical interplay between the electronic and nuclear
degrees of freedom. Recently several ab initio techniques,
e.g. , the Schwinger multichannel method (SMC) and
the complex Kohn method (CKM), have been
developed, refined, and applied to a variety of systems,
e g NH3 CH4 H2CO, ' and H20. " In both of these
variational methods the wave function is expanded in a
basis set and matrix elements that contain either the
Careen's function (SMC) or the Hamiltonian (CKM) are
computed. Early applications of the SMC relied on a
spectral decomposition of the Green's function using
finite, I. (gaussian) basis sets. Due to the slow conver-
gence of this expansion with respect to the Gaussian basis
set, this procedure has now been replaced by a three-
dimensional, numerical quadrature in momentum
space. " These results as well as earlier studies' for
solving the integral scattering equation in momentum

space have demonstrated the efficiency of such multidi-
mensional numerical methods in electron-scattering prob-
lems.

In order to investigate multidimensional quadrature
schemes in coordinate space we have developed a three-
dimensional (3D) numerical method for solving the
electron-molecule collisional equations. In this pro-
cedure the Lippmann-Schwinger integral equation is cast
into a set of linear algebraic equations by introduction of
a 3D quadrature. The resulting large set of linear equa-
tions are then solved by the direct iteration-variation
method. ' This approach is a straightforward generaliza-
tion of the one-dimensional linear algebraic method,
where the angular degrees of freedom are handled analyt-
ically through a partial-wave expansion. One advantage
of this 3D approach is the ability to avoid a basis-set ex-
pansion of the scattering wave function and potential.
However, basis-set expansions of the complicated, nonlo-
cal portions of the scattering potential may still be imple-
mented.

Although the primary goal of this work is application
to molecular systems, we have erst performed scattering
calculations with model spherical potentials in order to
investigate the feasibility of this 3D numerical method.
The first potential chosen is the following attractive ex-
ponential potential: V(r) = —e ", where accurate results
are available for comparison. ' Since the Green's func-
tion is represented in its 3D form, even this spherical po-
tential requires a full 3D treatment. Therefore these cal-
culations provide meaningful tests for the 3D grid driven
linear algebraic method (LAM). In addition to the ex-
ponential potential the K matrix for s-wave scattering
from the long-range model potential V (r)= —(I —e ") /r was also calculated This po. tential,
V(r) ~ —I /r, has an asymptotic behavior characteris-r~ oo

tic of long-range potentials which can dominate low-
energy electron-molecule collisions. ' Such potentials are
quite difficult to represent using L basis sets and thus
represent a critical test of our new approach.
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In the following sections the method, its implementa-
tion, and drawbacks are discussed. Results for the model
systems and the potential such direct 30 numerical
methods hold are analyzed.

3D LINEAR ALGEBRAIC METHOD

The Schrodinger equation governing potential scatter-
ing processes can be replaced with an equivalent integral
equation, i.e., the Lippmann-Schwinger equation, given
by

Pk(r)=Pk(r)+ f 6 (rlr')U(r')Pk(r')dr',

where U(r) is the scattering potential and for simplicity
we restrict the analysis to local potentials. In Eq. (1) k is
the kinetic energy of the electron, pk(r) is the plane-wave
solution of the homogeneous equation,

term in Eq. (6) is of some concern since at j=i the
denominator of the Green's function approaches 0. In
practice, as discussed more thoroughly below, one can
simply drop the j =i term from the summation. Howev-
er, this singularity can be strictly removed by adding and
subtracting to Eq. (4) the following function 6

U(r)gk/ (r) f G (rlr')e ~' ' ~dr' .

The integral in Eq. (7) can be done analytically and equals—(a —k )/(a +k ) . The introduction of this function
into Eq. (4) modifies the on-diagonal terms, removes the
singularity, and produces

2 2

4k/ (i)=4k/ (i)—U(/)4k/ (&) (a+k )

+ g 6 (ijl)a) [ U(j)p k/ (j)
j (wi)

$0 ( r ) ( 1 /27r) 3/2 e /k r (2)
—U(i)pk/ (i)e ~' /'] . (8)

and G (rlr') is the 3D principal-value free-particle
Green's function given by

cos(klr —r'l )

4vrl r —r'l
(3)

The solution of Eq. (1) provides the full scattering wave
function and amplitude. For many cases of interest, i.e.,
low-energy electron-molecule collisions, only a small
number of angular momentum states contribute to the
scattering. We therefore cast Eq. (I) into its partial-wave
form,

(r)=/t/k/ (r)+ f 6'(rlr')U(r')P/,
/

(r)«', (4)

where the homogeneous solution P&/ (r) is constructed
from a product of a regular spherical Bessel function (j/)
and a spherical harmonic,

Equation (4) is then solved for the relatively small num-
ber of asymptotically important waves. Although in
some applications it may be more convenient to treat the
full Lippmann-Schwinger equation, we consider here the
solution of the partial-wave form, i.e., Eq. (4). However,
rather than expanding the wave function, Green's func-
tion, and scattering potential in spherical harmonics and
then numerically solving the coupled radial equations, we
introduce a 30 quadrature directly into the integral
equation. This quadrature converts the integral in Eq. (4)
to a summation and produces the following set of linear
equations:

p/r/ (i)+g 6'(/jl»(J)4k/ (j)~,
J

where j is a point in coordinate space and co is the jth
weight of the quadrature. This weight is a product of the
r, 0, and P quadrature weights. The central feature of
this approach is that the large number of partial waves
necessary to converge the expansion of the scattering po-
tential is circumvented.

At first sight the presence of the on-diagonal 6 (ili)

Equation (8) can be written as a set of linear equations,

( I+M)P=$
where the matrix M is given by

(9)

2 2

M, , =U(i) —U(i) g G (ijl)0/ e ' " (10)
(tx +k )

and

u —k2 2 ~ 0,(a+k )
(12)

(13)

M, =G (ilj)0/ U(j) .

Equation (9) is of the same form as the one-dimensional
(1D) linear algebraic method and can be solved by stan-
dard LU decomposition. However, the size of the vectors
P and P and the matrix M is often so large (1000—10000)
that L U decomposition becomes prohibitive. Therefore
the direct iteration-variation method' is used for these
large sets of linear equations. The matrix M is not
formed or stored, but generated as needed in the iteration
process. The details of this technique and the similarities
to direct configuration-interaction approaches and the
Lanczos method are well documented in the literature. '

The solutions are the scattering wave function P/, / (r),
from which the K matrix, or other scattering quantities
such as the cross sections and angular distributions, can
be obtained.

Results obtained from Eq. (8) must be independent of
the chosen value of e since the a-dependent terms for-
mally cancel. Incomplete cancellation of the added terms
leads to quantities, such as the K matrix, which vary with
a and indicate that the numerical quadrature is not con-
verged. Therefore a independence of the solutions to Eq.
(8) provides a useful check on the accuracy of the numeri-
cal quadratures. It is useful to note that in the limit
a~ ~, M, , ~0 since
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where jI (ii&) is the regular (irregular) spherical Bessel
(Neumann) function. Due to the spherical symmetry of
the scattering potential the wave function is also spheri-
cally symmetric and the angular integrations of Eq. (4)
reduce to

y f I;* (n„.)I'oo(n„. )dn„.=liioli o
I, m

with numerical quadrature required only for the radial
coordinate. For spherical and even cylindrically sym-
metric potentials this procedure is reasonably efficient
and results in the standard 1D linear algebraic method.
In addition, it is of interest to note that the use of the 3D
form of 6 for spherical potentials implies that a numeri-
cal calculation of the li functions in Eq. (15) is performed.

RESULTS AND DISCUSSION

The first case studied is the numerical evaluation of the
following test integral over the Green's function:

1 cos(klr —r'l ) (16)
4~ lr —r'

This integral is independent of r and can be evaluated
analytically, e.g. ,

TABLE I. Test integral. The grid is chosen as follows: The
radial coordinate is blocked into three regions as indicated in
the second column. For each region the number of r, 0, and P
quadrature points are indicated in the third column. k =0.15,
=1.

lr'l range
Number of points

gl Pl

This limit in eQect allows one to simply remoue thej =i
term in the summation in Eq. (6).

A few comments are necessary on the spherically sym-
metric model potentials presently under study. Even
when U is spherically symmetric the use of the 3D form
of the Green's function in Eq. (3) requires that the quad-
rature be performed in 3D. In fact, since we are interest-
ed in relevant test cases for the 3D linear algebraic
method we not not want to invoke any possible
simplifications based on the symmetry of these model po-
tentials. For example, the standard approach is to per-
form a partial-wave expansion of the Green's function,

6 (rlr')= —k gj, (kr& )rl, (kr& )I'& (II„)I'&* (&„),
t

(14)

TABLE II. a dependence of the K matrix for V(r) = —e

a value

1.0
10.0

1 000.0
1.0

10.0
1 000.0

10000.0
Remove singular term

Accurate
value'

Number of points'

3267

4239

4239

tan6

—1.647
—1.741
—1.733
—1.765
—1.735
—1.728
—1.728
—1.728
—1.744

'The 3267 point grid was chosen as follows: There are three ra-
dial segments which span r =0~1.0, 1.0~2.5, and 2.5~5.0
a.u. Each segment contains 9 radial, 11 0, and 11 P quadrature
points. The 4239 point grid was generated by augmenting the
3267 point grid with a fourth shell containing 12 radial
(5.0~15.0 a.u. ), 9 0, and 9 P quadrature points.
Drop the j =i term in Eq. (8).

'Reference 6.

PZ l 2

(p2+/ 2)2
(17)

For example, with p= 1 and k =0. 15 I equals 0.9349. In
Table I the results for performing this integral numerical-
ly for lr =0 and 1 are reported. The radial and 0 in-
tegrations are performed using a Gauss-I. egendre quadra-
ture while Siinpson's rule is used for the P integrations.
For r=0, where ~r —r'l = lr'l, the angular integrations
are not necessary and a 30 point radial grid gives the
analytical results to four figures. Alternately the 0 and P
quadratures can be explicitly performed, which amounts
to a numerical calculation of the angular volume element
(4'). The grid used for this calculation is presented in
Table I ~ Again four figure agreement with the analytic
value is obtained. The results for lrl=1, using the two
grids reported in Table I demonstrate that adequate
quadratures are necessary to obtain reliable numerical in-
tegration. For example, using a larger number of grid
points (7840 versus 2680 points) produces an integration
error that is less than 0.1%.

The first potential used in these studies is V(r) = —e
The s-wave K-matrix results for k =0. 15 are presented in
Table II. Two grids were used and are described in detail
in the table. Using the smaller grid (3267 points) the re-
sults depend on o.' at about the 5% level. The K-matrix

0—2
2—5

5—10

0—2
2—5

5—10

0—2
2—5

5—10

10
10
10

10
10
10

30
10
10

15
6
1

15
6
1

15
10
3

15
7
1

15
7
1

15
10
3

0.9349

0.8859

0.9344

Energy (Ry) 3D LAM' 1D LAM Accurate value

0.0225
0.1225
0.3025

—1.728
9.4052
2.2343

—1.736
9.2503
2.2089

—1.7449
9.0918
2.2004

'Please see footnote b in Table II for a description of the grid.
Reference 6.

TABLE III. K matrix for s-wave scattering from
V(r)= —e
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TABLE IV. K matrix for s-wave scattering from V ( r) = —(1—e ") /r '.

Energy (Ry)

0.0225
0.1225
0.3025

3D LAM

—0.8033
—3.1618

1.5604

Complex Kohn'

—0.7891
—3.1025

1.5650

Kapur-Peierls'

—0.7967
—3.1204

1.5640

'Reference 6.
The phase shifts 5 are reported rather than the K matrix. For this energy 6=+/2 and small deviations
in 5 produce large Auctuations in the K matrix, K = tan5.

elements using this grid are in much better agreement
with the results reported in Ref. 6 when larger u values
are chosen. This deviation of the lower a (=1) solutions
is most likely a result of incomplete cancellation of the
a-dependent terms in Eq. (8). Indeed this dependence is
reduced, to about 2%, by using the larger grid (4240
points) and indicates that the integrations are being per-
formed with high accuracy. Therefore with sufhcient
grids the calculations become u independent. In order to
avoid the error introduced by incomplete cancellation of
the n-dependent terms, the following studies were per-
formed in the e~ ~ limit, i.e., simply drop the j =i term
in Eq. (6).

In Table III results for s-wave scattering from the ex-
ponential potential for several kinetic energies are report-
ed and compared to the standard 1D linear algebraic
method. In the latter case the form of the Careen's func-
tion is given by Eq. (14) and the angular integrations are
performed analytically with the radial integrations done
numerically. The radial grids, see footnote b in Table II,
are identical in the two calculations. As seen in Table III
the differences in the K matrix between the 1D and 3D
linear algebraic method are less than 2%, indicating
reasonable convergence for the angular integrations. In
addition, we compare our calculations to the CKM re-
sults and the values reported in Ref. 6 with about a 3.5%
difference between these calculations. In fact, it is only
for e=0. 1225 that the error is at the 3.5%%uo level.

Finally, since long-range potentials such as Q/r and
a0/r (Q represents the quadrupole moment, n0
represents the polarizability) play such an important role
in low-energy electron scattering, we have investigated
scattering from V(r) = —(1 —e ") /r . One might ex-
pect that both basis-set and numerical methods, which
must sample regions of space where the potential is non-
negligible, would have more difhculty treating such long-
range potentials. In Table IV the present results for the
s-wave K matrix are reported. In these calculations the r
variable is truncated at 30 a.u. with a total of 5210 grid
points used. The u dependence for the K matrix is ap-
proximately equal to 1'Po for v =0.0225 and approximate-
ly equal to 2%%uo for v=0. 1255. At v=0. 3025 the phase
shift 6 is nearly ~/2 and therefore small variations in 6
cause large deviations in the K matrix, K =tan6. For
this energy we report the phase shifts which have an o.
dependence that is less than l%%uo. Comparisons to both
the complex Kohn and Kapur-Peierls results indicate

that our results are in good agreement with the earlier
studies and in general are adequately converged.

At this point several comments should be made about
the viability of applying the 3D linear algebraic method
to molecular systems. First, the time-consuming step in
these calculations is the evaluation of the special func-
tions, e.g. , the square root, cosine, and exponential func-
tions in Eq. (8), which must be performed during each
iteration. The solution of the linear equations via the
direct iteration-variation method is a small fraction of the
total CPU. Therefore the demonstration that calcula-
tions using the u~ ~ limit can be employed is very help-
ful. In this case evaluation of the exponential terms is
not necessary and the total computation time is reduced
by nearly a third. In addition preliminary studies indi-
cate that a considerable savings of CPU can be obtained
by using interpolation schemes for the Green's function.
This would make the 3D approach competitive with oth-
er methods. Clearly the use of a grid with as few points
as possible is highly desirable. Second, the systems stud-
ied here do not contain nuclear centers where the poten-
tial has large variations with r. In these regions many
points are required for an accurate representation of the
potential. No attempts were made in this initial study to
optimize the grid. One could construct a multiple origin
grid similar to muffin-tin approaches, ' where each atom
is enclosed in a sphere, thereby substantially reducing the
total number of grid points. Such an approach has been
used by Cohen and Struensee' in an entirely different
context but would clearly be useful here as well ~ Overall,
the preliminary studies for the 3D linear algebraic
method are quite encouraging. The numerical results are
of very good accuracy for both short- and long-range po-
tentials. The extension of these studies to molecular sys-
tems is currently in progress.
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