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Zero-frequency spectral peaks of underdamped nonlinear oscillators with asymmetric potentials
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The spectral density of the fluctuations of an underdamped, single-well, nonlinear oscillator
driven by a random force has been investigated. Electronic analog experiments have demonstrated
the existence of a narrow spectral peak at zero frequency; such a peak only appears, however, in
those cases where the potential is non-centro-symmetric. The evolution of the peak with variation
of a parameter characterizing the asymmetry of the potential, and with noise intensity, has been in-
vestigated both experimentally and theoretically. It is found that the half-width of the peak remains
relatively small (of the order of the reciprocal relaxation time) over a broad range of noise intensi-
ties. The theory of the peak shape is shown to be in close agreement with experiment. The relation-
ships of the peak to the (apparently similar) zero-frequency peaks observed previously in double-
well oscillators, where they are responsible for stochastic resonance, and to the supernarrow spec-
tral peaks found near kinetic phase transitions in periodically driven systems, are discussed.

I. INTRODUCTION

There are many physical systems that can be well de-
scribed by nonlinear oscillators. The frequency spectrum
of the conservative periodic eigenvibrations of such an
oscillator for given energy E consists of the fundamental
frequency co(E) and, due to nonlinearity, a series of har-
monics neo(E) with n =2, 3, . . . . For an oscillator with a
centrosymmetric potential, only the odd (n =3,5, . . . )

harmonics are present. In the case of asymmetric poten-
tials, on the other hand, the even (n =2,4, . . . ) harmon-
ics are present as well; furthermore, the equilibrium posi-
tion qo(E) of the oscillator is dependent on energy.

Because of relaxation eff'ects, and as a result of the Auc-
tuations ubiquitous to real physical systems, the frequen-
cies of the vibrations are in practice smeared. The Auc-
tuational behavior of a vibrating system of this kind is
best described in terms of the spectral density of its Auc-
tuations, Q(A),

Q(A)= —Ref dt([q(t) —(q)][q(0)—(q)])e' ', (1)
7T 0

where q is the coordinate of the system and ( )
denotes ensemble averaging. For thermal equilibrium
systems the function Q(II) determines the susceptibility,
including the absorption coe%cient. ' In the case of un-
derdamped oscillators with relatively weak nonlinearity,
the function Q(Q) has peaks near the fundamental fre-
quency co(0) of small amplitude vibrations about the equi-
librium position and its overtones (the energy E being

measured from the bottom of the potential well). These
peaks correspond to the Fourier components of the
eigenoscillations mentioned above.

It was shown in Ref. 2 that, in addition to the spectral
peaks at finite (nonzero) frequency, a peak also arises at
zero frequency in the case of oscillators with asymmetric
potentials. The zero-frequency peak can be considered as
a "continuation" downwards of the even harmonic series
(n =2,4, . . . ) to n=0. It is due simply to the dependence
of the equilibrium position qo(E) of the oscillator on its
energy. It is precisely this dependence that gives rise to
the Auctuations of qo(E) which accompany the fluctua-
tions of the energy E. The former do not have any
characteristic frequency and are relatively slow, so that
they give rise to a spectral peak at zero frequency. Their
characteristic time scale is given by the reciprocal damp-
ing constant I ', which substantially exceeds the charac-
teristic period of the vibrations 2~co (0). Consequently,
the width of the zero-frequency peak, —I, is small com-
pared to co(0). A corresponding peak in the absorption
spectra of weakly nonlinear localized vibrations in solids
was predicted on the basis of quantum theory by Krivo-
glaz and Pinkevich.

We note that, for underdamped systems of the kind un-
der consideration, the zero-frequency peaks arise in addi-
tion to the peaks near eigenfrequencies and their over-
tones. For overdamped (or very strongly damped) sys-
tems, on the other hand, no matter whether they are
linear' or nonlinear, relatively broad zero-frequency
peaks are the only maxima in the spectral densities of
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their fluctuations.
A zero-frequency peak in Q(Q) for an underdamped

oscillator with a double-well potential has been observed
both in electronic experiments and numerical calcula-
tions and was investigated analytically in Ref. 2. How-
ever, in the such potentials there are two mechanisms
contributing to the peak: the mechanism described
above; and a second one associated with the noise-
induced interwell transitions (cf. also Ref. 8 where the
case of overdamped motion was considered). In the
present case, for an underd amp ed oscillator with a
single-well potential, the latter mechanism clearly cannot
occur and we are thus able to study in isolation the zero-
frequency peak arising purely from the slow variations of
qo(E).

In the present paper, the zero-frequency peak is inves-
tigated by means of an analog electronic experiment, and
described theoretically, for the single-well, underdamped,
nonlinear oscillator already analyzed in Ref. 9 (herein-
after referred to as I): it corresponds to a Brownian par-
ticle vibrating in a potential with a quartic nonlinearity
and a superimposed homogeneous field. The equation of
motion is of the form

q+21 q+ =f (t),aU

U(q)= —,'q + —,'q + Aq,

(f (t)f (t ) ) =4rr5(t —t') .

(2)

Here, f (t) is white Gaussian noise of characteristic inten-
sity T; when both the friction and the noise originate
from coupling of the oscillator to a thermal bath, T is
equal to the temperature of the latter. The term Aq in
the potential U(q) represents the homogeneous field act-
ing upon the oscillator; it is this term that removes the in-
version symmetry of the potential U(q) and is thus re-
sponsible for the appearance of the zero-frequency peak.
As already mentioned in I, the model (2) refers to a num-
ber of physical systems, and in particular to localized vi-
brations in solids, ' where the "strength of the homo-
geneous field" 2 can readily be varied.

The theory of the zero-frequency peak for an under-
damped oscillator is developed in Sec. II. Experimental
results obtained from an electronic model of (2) are
presented in Sec. III. In Sec. IV, the theory of Sec. II is
applied to the model (2) and the theoretical and experi-
mental results are compared with each other. Section V
contains concluding remarks.

5'�«co(0), 5co=max~co(E) —co(0)~ (4)

for E & T, the peaks in Q(O) corresponding to the over-
tones of the eigenvibrations do not overlap. The shapes
of the peaks are determined by the two broadening mech-
anisms mentioned above, namely, the frequency strag-
gling and the relaxational smearing of the eigenfrequen-
cy. For su%ciently strong noise intensities, when
5co » I", the first of those mechanisms must obviously be
dominant, so that the characteristic widths of the peaks
then substantially exceed the relaxational broadening. A
detailed experimental and theoretical investigation of the
peak of Q(Q) at the fundamental frequency for the mod-
el (2) has already been presented in I.

It is evident that frequency straggling should not
influence the shape of the zero-frequency peak directly:
this is because the latter is connected, not with the
periodic vibrations of the coordinate as such, but with
the (slow) fiuctuations of its mean value qo(E). Thus the
zero-frequency peak is expected to be much narrower
than the other peaks in Q (0), for not too small noise in-
tensities, such that 6co» I . Moreover, it would be well
resolved, irrespective of the ratio 5'/co(0), provided that
(3) is fulfilled.

A convenient approach to the calculation of the spec-
tral density of the fluctuations is based ' on the ap-
propriate Fokker-Planck equation. An analysis of the
properly transformed Fokker-Planck equation (see I) sub-
ject to the condition (3) shows that Q(Q) in the region of
its peaks is formed, to lowest order in I /cg(E), from a su-
perposition of the peaks themselves with a smooth back-
ground. The shape of the peak at the nth overtone is de-
scribed by the spectral density of fluctuations of the nth
harmonic q„(E) of the coordinate. The latter is deter-
mined from the equations of the conservative motion,

~(E) " =p (E,P),aq(E, a)

also I.)
We shall consider underdamped oscillators whose

damping is small compared to their eigenfrequencies,

I «co(E),
for the case of energies E ~ T. Here, and in what follows,
we take the zero of potential energy to be its value
U(q, ) in the equilibrium position q, , for which
U'(q, )=0.

Where the intensity T of the external noise is not too
high so that, in addition to the inequality (3), the frequen-
cy straggling is also small,

II. THEORY OF THE ZERO-FREQUENCY PEAK

The main factors that determine the shape of the spec-
tral density of the fiuctuations (1) of a single-well non-
linear oscillator (cf. Ref. 7) are (i) the presence of the
overtones of the vibrations of a given energy; (ii) strag-
gling of the vibrational eigenfrequency co(E) due to ener-

gy straggling [that is, to the finite width ( —T) of the
oscillator's energy distribution]; and (iii) smearing of the
eigenfrequency co(E) due to relaxation of the oscillator.
(Some other relevant factors are discussed in Ref. 11; see

E ap(E, y)
ay

E =
—,'p + U(q) —U(q, ),

BU(q)
Bq

q„(E)= f dPexp( —in/)q(E, Q) .
277 0

U'(q, ) =0
(where p is the momentum of the oscillator and P is its
phase) as the Fourier component of the coordinate
q(E, Q) over P,
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This is also the case for the zero-frequency peak. In the
range of low frequencies

Q (Q) =Q„+Qo(n), Q ((co(E),

we obtain

f dE co '(E) Wo(E, Q) =0 .
0

(12b)

Qo(n) = R—ef dt ( [qo[E(t)]—(q ) ]
7T 0

X tqo[E(0)] —(q) J )exp(int) .

By making use of the results of I based on the Fokker-
Planck equation, the function Qo(n) can be written as

Qo(n) =Ref dE co '(E)qo(E) Wo(E, Q),
0

(9)

where Qb is the frequency-independent background
caused by the harmonics q„(E) with n %0 [the
relaxation-induced "tail" of the peak of Q (Q) due to the
eigenoscillations], and Qo(n) describes the shape of the
zero-frequency peak and is given by the spectral density
of the fluctuations of the "smooth" component of the
coordinate q0,

The boundary condition (12b) is of the form of the in-
tegral equation. For a weakly nonlinear oscillator
[co(E)=const] with a nonlinear friction force, such a con-
dition was obtained in Ref. 12.

The boundary problem (10—(12) can be solved numeri-
cally for an arbitrary potential. The simplest method is
to find two solutions, Wo" and Wo ' of (10} satisfying
(12a) with some differing arbitrary Wo" (O, n) and
Wo '(O, n). The solution is given by a linear combination

llaw"'(E,

n)+( I —CX) w' '(E, n),
with the coefficient cc chosen so that condition (12b) is
satisfied. Numerical results obtained for the model (2) by
this procedure are discussed in Sec. IV.

An analytic expression for Qo(n) can be obtained for
the case of comparatively weak noise. In deriving it we
note that, for small energies, the quantities qo(E), co(E)
can be series expanded as

where Wo(E, Q) is the Fourier transform over time of the
zeroth harmonic (in P) of the probability density (in-
tegrated over initial conditions with the proper weight)
for the oscillator performing Brownian motion. It
satisfies the equation

E Eqo«) =~i +t 2E, E,

co(E}=co(0) 1+v +

+ ~ ~ ~

t n W, +2r~(E) ~-'(E)p 2 1+T W,BE BE

= —2[qo(E) —(q ) ]w,„(E), (10)

p =p (E)= f dip (E,cd),

where w,„(E) is the stationary distribution of the oscilla-
tor

w„(E)=Z 'exp( E/T), —

Z =2m f dE co '(E)exp( E/T) . —
0

We have chosen the origin of coordinates such that
qo(0)=0; the quantity E, gives a characteristic energy
scale for the nonlinearity of the oscillator. To find the ex-
pression for Qo(n) for noise intensities in the range
T &(E„ it is convenient to transform from the
differential equation (10) to the set of equations for the
moments

M„=f dEco '(E)E"Wo(E,Q) .

Decoupling this set at n =2 and allowing for the relation
(cf. Ref. 4)

Equation (10) is a second-order ordinary differential equa-
tion: note that the differential operator in the second
term coincides with the operator describing the drift and
diffusion of an underdamped system over energy, origi-
nally derived by Kramers. '

The boundary conditions for (10) follow from the phys-
ical meaning of Wo(E, Q) as a component of the probabil-
ity density. The first of them follows from the vanishing
of the probability density for infinite energies,

8T Pz

Ec p].

2vt
4t +0

d [~ '(E}p'] „-i E
dE

we obtain
2

(n) 1 2 T 2r
4r'+n'

T«E, .

Wo(E, Q) —+0, forE~ ~ . (12a) (14)

The second follows from the vanishing as E~ ~ of the
flow of the probability density along the energy axis,
which (cf. Ref. 13) is proportional to
co '(E)p (1+Tc}/c}E)WO. Integrating (10) over E with
the weight co '(E) and taking into account this property
and the relation

(q ) =2'f dE co '(E)qo(E)w„(E),

It is evident from (14) that, to lowest order in T/E„ the
zero-frequency peak is described by a Lorentzian distri-
bution centered on Q, =O with a half-width 6Q=2I (cf.
Ref. 2). The intensity of the peak is proportional to
(T/E, ) . The corrections —T/E, alter both the intensi-
ty and the shape of the peak. The latter is directly relat-
ed to the frequency dispersion (dco/dEWO). It follows
from (14) that the half-width of the peak,
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FIG. 4. The zero-frequency peak measured (histogram) and
calculated (solid lines) for (2) with the field-strength parameter
A=2 and noise intensities: (a) T=0.222; (b) T=0.671; (c)
T= 1.58.

FIG. 6. The half-width at half maximum (HWHM) 5Q of the
zero-frequency peak plotted as a function of the noise intensity
T for three values of the field-strength parameter: (a) A=0.2;
(b) A =0.43; (c) A =2.0. The data points represent measure-
ments on the electronic analog model; the solid curves represent
the theory.
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because it was often very much larger than the zero-
frequency peak. There were two aspects to the problem.
First, because the motion of the system was predominant-
ly at frequencies close to the eigenfrequency co(0), ex-
tremely long averaging periods were required to obtain
acceptable statistical quality in the range of the zero-
frequency peak. Second, the relatively very large ampli-
tude of the resonant peak meant that the discrete fast
Fourier transform (FFT) algorithm tended to "fold back"
the high-frequency wing of the peak lying beyond the Ny-
quist frequency, thereby distorting the low plateau region
of the spectrum between the two maxima. These prob-
lems were overcome by filtering the fluctuating voltage
from the circuit with a single-pole filter whose time con-

stant was chosen such that it drastically attenuated the
resonant peak: its value was selected so as to reduce the
spectral density by a factor of 300 at A=co(0). The e6'ect
on the zero-frequency peak, while very much smaller,
was nonetheless to introduce significant distortion, and it
was consequently necessary to divide the spectrum by an
appropriate (frequency-dependent) compensating func-
tion. The latter was determined by measuring the power
spectral density of quasiwhite noise that had been passed
through the same filter. The procedure was tested by
comparing the resonant peaks of the unfiltered, and the
filtered/compensated, spectra measured under otherwise
identical conditions, and was found to work well. It vir-
tually eliminated problems associated with artifacts aris-
ing from the "folding back" of frequencies beyond the
Nyquist frequency.

When the circuit was adjusted so as to set A =0, (i.e., a
centrosymmetric potential), no peak was seen at zero fre-
quency; the peak appeared only for finite A. The evolu-
tion of the peak with varying values of 3 and T is shown
by the histograms in Figs. 2 —4. The peak is well resolved
and can be separated easily from the smooth background
for the parameter ranges in question.

The variation of the intensity (integrated area) of the
zero-frequency peak with 3 is shown for several values of
T by the data points in Fig. 5. The measured half-width
at half maximum (HWHM) M is shown as a function of
T for three values of A by the points in Fig. 6.

0.000
0 2

IV. DISCUSSION OF RESULTS

FIG. 5. The integrated intensity of the zero-frequency peak
(with the background subtracted) plotted as a function of the
field-strength parameter A. The data points represent measure-
ments on the electronic analog model of (2); the solid curves
represent the theory. The noise intensities for the five curves
and associated data, reading from bottom to top, were
T=0.0754, 0.222, 0.671, and 1.58.

The low-frequency spectra Q(Q) measured experimen-
tally (histograms) are compared with those calculated nu-
merically (solid curves) from (9)—(12) in Figs. 2 —4. To
obtain the coefficients co(E),p (E),qo(E) in these equa-
tions, the results of I were used. The spectral back-
ground Qz in (7) was not, however, computed. Rather, in
the comparison of experiment and theory, a small vertical
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adjustment was made in the latter; this procedure did not
affect significantly the comparison of the calculated and
measured peak shapes or intensities. Apart from this,
there were no other adjustable parameters; the experi-
mental and theoretical scales of Q(A) and 0, and the
values of I, A, and T in (2) were all absolute. It is evident
from Figs. 2 —4 that the theory fits the experimental data
well, both qualitatively and quantitatively.

A peculiar feature of the system (2) is the nonmonoton-
ic dependence of the intensity I of the zero-frequency
peak (where we mean the intensity of the whole "zero-
frequency" peak, including the part at negative frequen-
cies, which is symmetric to that at positive frequencies)
on the "field" A (see Fig. 5). It is also immediately ap-
parent that the dependence of its half-width 6Q on the
noise intensity T can take quite different forms, depend-
ing on the value of 3 (see Fig. 6). For small T, both of
these features follow from (14) and (15) if one takes ac-
count of the explicit form of the coefficients pi, v in (13)
for the particular case of (2). These coefficients can be
obtained readily either by direct analysis of (2) or, more
conveniently, by making use of the results given in I:

1.0 I I I
I

I

0.8

0.6

0.4

0.8

0.0
0

dt
= —2rp'(E )+2r T . (20)

FIG. 7. The power spectrum of Fig. 1 (histogram) compared
with theory (solid curve).

2
p] 3qeq v 3 l 7qeq

(1+3q, ) E, 4 (1+3q~ )3
(17) The differential friction coe%cient" determining the en-

ergy relaxation is

Here, q, is the equilibrium position of the oscillator. It
is evident from (2) that it is given by the solution of

q, +q,„+3=0 . (18)

The characteristic energy E, for the oscillator (2) is
(1+3q,„);cf. (17).

According to (14) and (17), the intensity I of the zero-
frequency peak

I= dQ A qo E qoE (19)

is proportional to q,„/(1+3q,„) for small T/E, .
Therefore, taking account of (18), I ~ 3 for ~A~ &(l.
[Of course I=O for A =0 because it is the term Aq in the
potential U(q) in (2) that makes U(q) non-
centro-symmetric. ] For

~

A
~

&) 1, on the other hand,
I ~

~
A

~
. Thus I at first increases with increasing

~

A ~,

and then decreases again. The maximum of I occurs for
~
3

~

=
—,
'o if T/E, (&1. A qualitative explanation for the

decrease of I for large
~

A~ can be found in terms of the
suppression of fluctuations due to the increasing "rigidi-
ty" of the system in this range of 3 [a~(0) ~ ~A~'

E, ~
~
3

~
for

~

2
~

&& 1]. Thus the nonmonotonicity of
I( A) is expected to occur irrespective of temperature.
This is confirmed both by the calculations based on (19)
and by the experiment, as shown in Fig. 5. The position
of the maximum in I shifts to higher

~
A

~
with increasing

T; and I itself also increases with increasing T: cf. (14).
To account for the behavior of the half-width 60, of the

zero-frequency peak (see Fig. 6), we could emphasize
once again that this peak is due to the Auctuations and
relaxation of the oscillator energy E. The relaxation of
its energy E averaged over the vibrational period and
over realizations of the random force is described by the
well-known equation

2I dp /dE =21
I 1+p d[lnco(E)]/dE] .

For des(E)/dE )0, this coefficient exceeds 21 . It is nat-
ural, therefore, that the half-width of the peak of Qo(Q),
which is determined just by the energy relaxation time,
should exceed 2I in this case. It increases with T for
T & E„since qo(E) increases with E for E & E, and
therefore the actual energies are E —T. For the opposite
case of negative den(E)/dE, on the other hand, the half-
width should decrease with T for T &E, . These qualita-
tive arguments are confirmed in the low T/E, limit by
the explicit expression (15). It should be noted that the
half-width of the zero-frequency peak for
T ))1 /~dro(E)/dE~E o [an inequality that is compatible
with T ((E, for r (&cu(E)] is much smaller than those
of the peaks at the fundamental frequency and overtones,
which are determined by frequency straggling in this
range of temperatures (cf. Ref. 7). The agreement be-
tween experiment (data points) and theory (full curves) in
Fig. 6 may be regarded as satisfactory: the fit for 3=0.2
is the least good; but, given that the zero-frequency peak
was then smaller than the resonant peak by more than
two orders of magnitude, the quality of the agreement is
in fact remarkable.

Taken in conjunction with the theory of the peak at the
fundamental frequency given in I, the above discussion
provides a good description of the spectral density over a
wide range of frequencies. As an example, the power
spectrum of Fig. 1 (histogram) is compared with theory
(solid curve) in Fig. 7.

V. CONCLUSION

It follows from the above results that, in the spectra of
non-centro-symmetric underdamped single-well oscilla-
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tors, there arise well-resolved peaks at zero frequency.
The width of the zero-frequency peak is close to the re-
ciprocal relaxation time for the energy, and it varies
smoothly with noise intensity. The intensity of the peak
depends strongly upon the potential asymmetry; it van-
ishes in the case of a symmetric potential. In the particu-
lar model (2) investigated, an oscillator with fourth-order
nonlinearity with asymmetry due to a homogeneous field,
the intensity as a function of field strength is "domelike"
in form.

We note that, although the zero-frequency peak may
be thought of as one of the series of peaks at the over-
tones neo(E) of a nonlinear oscillator, appearing at n=O,
it is often much more prominent than the peaks at the
other overtones (n =2, 3, . . . ). This can be understood in
the following way. The peaks at the overtones arise be-
cause of nonlinearity; the latter increases with the vibra-
tional energy (at least for relatively small E) and hence
the intensities of the peaks also increase with increasing
noise intensity T (at least for T E, ); but with increasing
T, the width of the energy distribution and, correspond-
ingly, the size of the frequency straggling, increase as
well. Consequently, for rather small T, E, ))T))I /
~dc@(E)/dE~z o, the broadening of all peaks except the
zero-frequency peak turns out to exceed substantially the
relaxational broadening I . Thus the zero-frequency peak
is much sharper and, correspondingly, more clearly
resolved. At small T, T& I /~den(E)/dE~F o&&E„ the
widths of the zero-frequency and the second overtone
(n=2) peaks are of the same order of magnitude and
their intensities are of the same order in T [ —(T/E, )~;

the intensities of the peaks of n )2 are
—( T/E, )"«( T/E, ) j. However, the intensity of the
peak at =2'(0) is smaller by a factor of 9 than that of the
zero-frequency peak: this can be demonstrated theoreti-
cally by making allowance for the lowest-order (cubic)
nonlinearity of the oscillator potential which is significant
at low energies and which is responsible for the peaks in
question (cf. Ref. 14).

We note in conclusion that the onset of the zero-
frequency peak discussed in this paper is one of the fac-
tors that complicate observations of stochastic reso-

nance' ' for double-well underdamped systems. This
phenomenon is characterized by a domelike ("resonant")
dependence of the signal-to-noise ratio (SNR) on the
external noise intensity in periodically driven systems.
The terms "signal" and "noise" are to be understood here
in terms of the power spectrum, being defined, respective-
ly, as the intensity of the spike at the field frequency, and
the spectral density of the noisy background at the same
frequency in the absence of the periodic force. The
external-noise-induced increase of the SNR is due to the
stimulation, by noise, of interwell transitions. It can be
seen from Fig. 5 that, for the (single-well) oscillator stud-
ied in the present paper, Qo(II ) rises rapidly with increas-
ing T: as already mentioned, this behavior is inherent to
underdamped systems with non-centro-symmetric poten-
tials. Exactly the same effect will be associated with vi-
brations within each of the individual (asymmetric) po-
tential wells of the underdamped double-well oscillators
for which stochastic resonance has been investigated. It
results directly in an increase of the "noisy" denominator
of the SNR. The corresponding reduction in the magni-
tude of the stochastic resonance effect can be larger than
that associated with the relatively slow growth of the
background Qb in (7) with increasing noise intensity (the
latter effect being common to both underdamped and
overdamped systems). A detailed analysis of the SNR for
weak periodic forcing can be accomplished in terms of
linear-response theory and will be presented in full else-
where. "
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