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Nonlinear dynamics near the zero-dispersion point in optical fibers
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We analyze the nonlinear dynamics in the normal-dispersion regime near the zero-dispersion

point of a single-mode optical fiber using a connection between the nonlinear Schrodinger and

Korteweg-de Vries equations. We predict a new type of optical soliton in this region and demon-

strate a possibility of transformation of one type of soliton to another.

The possibility of using soliton pulses as information
carriers in optical communication systems has attracted
considerable attention after it was shown theoretically and
experimentally that solitons can propagate in single-mode
optical fibers without dispersive broadening. ' In a com-
munication system it is desirable to work near the zero-
dispersion (ZD) point, where the second-order disper-
sion is zero, because there the power required for creating
bright solitons is significantly lower. Although exact
analytical solutions describing the soliton propagation
near the point are not available, numerical and pertur-
bative methods have explained the main features of
pulse propagation near and at the ZD point in the
anomalous-dispersion regime. These results may be sum-
marized as follows. Solitons emerge from arbitrary initial
pulses whose central frequencies are exactly at the ZD
point. The emerging soliton and an additional dispersive
wave are generated simultaneously but with different fre-
quencies: the soliton has a central frequency that is shift-
ed into the anomalous-dispersion region, and the disper-
sive wave is shifted into the region of normal dispersion.
This means that bright solitons may exist near the ZD
point but not at it. The effect was described analytically
in recent papers ' using diAerent perturbative ap-
proaches.

Meanwhile, dark solitons have also drawn the attention
of several research groups. They are stable localized exci-
tations of the cw background in the normally dispersive,
nonlinear medium (see, e.g. , the last chapter of Ref. 2),
and these solitons also have been observed experimentally
in optical fibers' ' (temporal dark solitons), wave-
guides, ' and laser beams' ' (spatial dark solitons).
These solitons may also be useful in optical systems be-
cause, in particular, they may be created without a thresh-
old or due to a phase modulation of a background
pulse. ' ' In this paper we analyze the nonlinear dynam-
ics and dark-soliton propagation near the ZD point in the
normal-dispersion regime using the analytical approach
recently developed in the paper' for the small-amplitude
case. In particular, we demonstrate that dark solitons
may exist near the ZD point and we predict a region of
the group-velocity dispersion where a new type of solitary
wave in optical fibers, the so-called soliton on a constant
background, i.e., a "pedestal, "may be observed.

Using the slowly varying envelope approximation (see,
e.g., Refs. 2 and 3) we may find that the dimensionless en-

where the subscripts x and t mean the partial derivatives.
Time t in the reference frame moving with the group ve-
locity is measured in units of the pulse duration T, the
coordinate x along a fiber is measured in units of T/I k '

(,
and also a=k /2T~Ik '

~, P=k /6T Ik '
~, where k

is the propagation wave number, and k ~J~ Q'k/tlco~,

j=1,2, 3.
In the case p =0 for a & 0, Eq. (1) is exactly integrable

and it has stable soliton solutions in the form of localized
dark pulses propagating on a modulationally stable cw
background ~u~ =uo=const. The one-soliton dark pulse
has the form

u(x, t) =uo exp(2iuox),(X iv) +ex—pZ . 2

1+expZ
~here

(2)

Z =2vuo(t —to —2l, v auox)/Wa, X =1 —v, (3)

v is the soliton parameter, 0 & v ( 1, and to is an initial
phase. At A. =0 the soliton (2),(3) describes the so-called
fundamental dark soliton

u(x, t) =uotanh[uo(t —to)/J~]exp(2iuox),

and for v « 1 it corresponds to the so-called gray (small-
amplitude) dark solitons '

u(x, t) =[uo —
—,
' uov sech (Z/2)lexp[2iuox+ip(x, t)],

p(x, t ) = —2 v/(1 +expZ ),
Z =2vuo[t —to+ uo Ja(2 —v )x]/Ja,

(4a)

(4b)

which propagate in opposite directions.
To discuss the dark-soliton dynamics in the neighbor-

hood of the ZD point for the normal-dispersion regime,
i.e., P =0 and a & 0 in Eq. (1), we look for a solution in
the form of small-amplitude excitations of the cw back-
ground (see Ref. 19):

u(x, t) -[uo+a(x, t)lexp[2iuox+iy(x, t)] (5)

[cf. Eq. (4)]. Substituting Eq. (5) into Eq. (1), we may

velope amplitude u(x, t) of the electric field in the neigh-
borhood of the ZD point satisfies the generalized non-
linear Schrodinger (NLS) equation

iu. —au„+2[uPu =iPu„, ,

1677 @1991The American Physical Society



i' IIII ~ ~ II I I I I II II ~ II II II I .'g.

1678 YURI S. KIVSHAR

obtain for the small-amplitude case, when a &&uo, two
equations:

(a„—au pr/rrr ) a(2arr/rr +ar/rrr ) =P(arrr» pr/rr r/r«)

u p(r/r„—4u pa) +aP„+aa« —aup(Pr ) —6u pa 3/2
R /flip

Q& p

=/3 (3arr r/rr + 3ar r/rrr + u okra ) . (6b)

The method to solve the system (6) has been described in

Ref. 19. The main basis of this approach is to use the new
("slow" ) variables R //Up

C)0

z =E(r Cx), z =6 x,
e being an arbitrary smail parameter connected with the
soliton amplitude v, and to present the wave fields a(z, z)
and p(z, z) in the form of the asymptotic series in the
same small parameter e:

a =E ap+e a~+, P=r.'Pp+E P~+ (8)

2C(ap), + 24aup(1+PC/2a )ap(ap),
—(a + 2PC) (ao) „,=0 . (10)

Equation (10) at a =1 and rg=0 coincides with that ob-
tained in Ref. 19. The sign of the velocity C depends on
the propagation direction and, as a result, we obtained two
different equations (for sgnC =+1 and for sgnC= —1).

The soliton solution of the KdV equation (10) has the
form

[(a + 2PC)/up(2a +PC)] rr
ap z, z

cosh [rr[z+ (2' /aC)(a +2PC)z]/Wa

K being an amplitude parameter of the KdV soliton.
Comparison of Eq. (11) and Eq. (8) with Eq. (4) at P =0
leads to the result eK = vuo which demonstrates a relation
between the soliton parameter v and the perturbation
scale r.' in the small-amplitude limit (see Ref. 19).

It is important to note that Eq. (10) and the soliton
solution (11) depend on the sign of the velocity
C, C=+2up Ja. In particular, it means that dark soli-
tons propagating in opposite directions are different, i.e.,
they have different parameters (intensities) at the same
value of the velocity.

A simple analysis of Eq. (11) demonstrates that there
are two types of solitons near the ZD point (see Fig. 1).
First of all, there are usual dark solitons which in the
neighborhood of the ZD point change their shapes:

ap(z, z) = —(2rr /up)sech [rr(z+4Prr z/a)/Wa],

a «Pup.

The parameter C arising in Eq. (7) is the limit velocity (in
the t space) of linear waves propagating on the cw back-
ground:

C =4uoQ . (9)
Substituting Eqs. (8) into Eqs. (6) and using the variables
(7), we may reduce Eqs. (6) in the zeroth approximation
to the well-known Korteweg-de Vries (KdV) equation for
the soliton amplitude ap (similar calculations may be
found in Ref. 19 for P =0 and a = 1):

FIG. 1. Regions of the dimensionless Parameter a'r2/Pup cor-
responding to diff'erent types of optical solitons on the cw back-
ground for C & 0 and C & 0.

Second, for C & 0 there is a region

1 &a /Pup&4, (12)

where the soliton (11) changes the sign of its amplitude
and then is actually a bright soliton on a pedestal (see Fig.
1); the pedestal is the cw background which is stable in
this case, too.

The above result means that in the region of the disper-
sion parameters (12) two different types of optical solitons
may coexist together. Solitons moving to the right are
dark, but solitons moving to the left are bright, and these
solitons may propagate on the same cw background.
Therefore, it is possible to observe interactions between
different types of optical solitons; probably, this situation
is the only one when dark and bright solitons may interact
directly but for the nonzero cw background pulse. We do
not believe that this interaction will be elastic because the
system (1) is not integrable, the latter has been demon-
strated in Ref. 9 for the reverse sign of the second-order
dispersion a.

As follows from our analysis, there are regions in the di-
mensionless parameter 6=a //Pup where coefficients in
Eq. (10) may change their signs. It means that for vari-
able dispersion properties of fibers new interesting effects
may be predicted. The much more important case is that
in which either coefficient (I+PC/2a ) or (a +2PC) in

Eq. (10) vanishes at some z =zp. A similar situation for
two-layer shallow liquid with a changing depth is well
known (see, e.g. , references in Ref. 20). In the case when
the coefficient in front of the nonlinear term ap(ap), in Eq.
(10) vanishes as the result of the KdV soliton transforma-
tion induced by a change of the sign of this term has been
studied numerically by Helfrich, Melville, and Miles '

and analytically by Malomed and Shrira (see Ref. 20, p.
874). The analytical approach may be directly applied to
the problem under consideration and the main results of
this analysis are as follows. Because of the vanishing of
the coefficient (1+PC/2a ), when the fiber's parameters
are slowly changing passing the point 8'=a / /Pup=I,
e.g. , from the value 8~ & 1 to the value 4 & 62 & 1, the soli-
ton amplitude varies in space, and, simultaneously, the
dark soliton gives rise to a long small-amplitude shelf.
The duration of this shelf is directly proportional to the
distance L to the critical point z =zo. After the change of
sign of the coefficient (1+pC/2az) in Eq. (10), the shelf
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decays into new (bright) solitons which may be regarded
as dark solitons of opposite signs of amplitude. The total
number N of these new solitons can be found analytically
[see Eq. (8.43) of Ref. 20]; for example, the value N is
directly proportional to L ' and to the limit value of the
coefficient (1+PC/2a ), i.e., in fact, to the value
(1+6'q)/82, where b2 has been defined above. The same
transformation is possible when the changing coe%cient
(I+PC/2a ) will cross the critical point in the opposite
direction. As a result, the changing in the dispersion
properties of a fiber gives rise to transformations of one
type of optical soliton to another. The eAect does not de-
pend sufficiently on higher-order nonlinear terms, e.g. ,
ao(ao)„which also may be taken into account near the
ZD point (see Ref. 20, p. 875). It is important that these
transformations do not occur in the vicinity of the second
critical point 8 =a t /Pun =4, where the linear dispersion
coefficient in Eq. (10) changes its sign. As was demon-
strated by Malomed and Shrira (see Ref. 20, p. 875), in
that case the shelf generated by the primary soliton can-
not produce secondary solitons at all, and the soliton sim-
ply decays passing the second critical point.

In conclusion, using the small-amplitude approximation
we have studied the nonlinear dynamics and dark-soliton
propagation near the zero of the second-order dispersion

in single-mode optical fibers for the normal-dispersion re-
gime. We have demonstrated that dark solitons may exist
as stable excitations near the ZD point and, similar to
bright solitons, they do not exist exactly at this point. We
have also predicted a new type of optical soliton, the so-
called bright soliton on a pedestal, which may exist in the
region I ( a t /Puo (4, where a and P are coefficients of
the second- and third-order dispersion, respectively, and
up is the amplitude of the background pulse. In this re-
gion it is possible to observe interactions between two opti-
cal solitons of different types. Probably, this is the only
example when the direct interaction between dark and
bright solitons is possible. In a fiber with changing pa-
rameters, when passing through the critical point
a t /Puo =1 is possible, transformations of one type of sol-
itons to another may be observed. In particular, a dark
soliton crossing the critical point has to generate a set of
bright solitons on a pedestal.
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