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Dynamical symmetry of the quadratic Zeeman effect in hydrogen: Semiclassical quantization
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By exploiting the approximate SU(2) symmetry of the m =0 quadratic Zeeman Hamiltonian

within multiplets of fixed principal quantum number, the dynamics is mapped onto a twofold hin-

dered rotor. This allows a singularity-free uniform semiclassical quantization of Solov'ev's ap-

proximate integral of the motion to be performed. Excellent agreement with quantum results is

obtained.

A =4A —5A

where A is essentially the Runge-Lenz vector,

A = (p x L —r/r )/( —2mH) 'l, (2)

and A lies in the range —1 ~ A ~ 4. The two extremal
values correspond to diA'erent limiting types of classical
motion, usually labeled rotational (A )0) and vibrational
(A (0), with the separatrix occurring at A =0.
Solov'ev's invariant (A) is a consequence of the approxi-
mate separability of the QZE through second order in the
magnetic field in elliptical cylindrical coordinates on the
O(4) sphere. '' The quantum evaluation of A is fairly
straightforward involving the simultaneous diagonaliza-
tion of the zero-order Hamiltonian, I., and A, after which
low-order perturbation theory can be used to estimate the
QZE energies. ' ' In contrast, semiclassical methods
have the potential advantage of providing the means of
generating and quantizing much higher-order approxima-

The proposal by Zimmerman, Kash, and Kleppner' in
1980 that the hydrogen atom in a strong magnetic field
[the quadratic Zeeman effect (QZE)] possesses a hidden
symmetry marked the start of a decade of extraordinary
theoretical and experimental interest in this problem.
Nevertheless, the quadratic Zeeman effect (QZE) contin-
ues to be one of the most challenging unsolved problems in
atomic physics and nonlinear dynamics. In the opposite
limits of very weak and very strong magnetic fields the
Hamiltonian is almost integrable, whereas in the regime
where the Coulomb and magnetic fields are comparable
the dynamics is strongly chaotic. The accessibility of the
QZE to both experimental and theoretical studies makes
it an ideal system on which to probe issues relating to
chaos and the correspondence principle. With this in
mind, semiclassical methods have featured prominently in
studies of the QZE, proving invaluable, for example, in

explaining the diff'erent series of quasi-Landau resonances
observed in photoabsorption spectra. Despite suc-
cesses, however, the semiclassical theory of the QZE
remains primitive; the most apparent and long-standing
problem being the lack of a canonically invariant,
singularity-free quantization formula covering the topo-
logically distinct kinds of trajectories which can arise.

Through second order in the magnetic field, the "hid-
den" dynamical constant of motion was shown by
Solov'ev to be

tions to the hidden constant of the motion than A.
There have been several attempts, ' ' ' ' starting

with Solov'ev, to quantize A semiclassically, but all have
encountered difticulties due to singularities in the quanti-
zation formulas occurring at the separatrix between rota-
tional and vibrational types of classical motion, and none
has been able to incorporate tunneling in any consistent
way. The object of this Rapid Communication is to
resolve diSculties associated with the semiclassical quant-
ization of A, which is of considerable experimental and
theoretical importance. Classical perturbation theory is
first used to normalize the QZE after which a canonically
invariant uniform semiclassical quantization formula is
obtained for A in terms of action-angle variables based on
the SU(2) symmetry of the system.

In cylindrical coordinates and atomic units (m =e
=h. =1) the QZE is two dimensional, with the Hamil-
tonian given by

H =F. = —,
'

(Pp +P, ) + ——+—y p2p' 8 (p'+z') 'l' '

where E is the energy,

p =x +y

(3)

P = = —,
' (p„'+u')+ —,

'
(p, ,'+v')

( —2E) '"
2

+ y (u'+v')u'v'.
32E

(4)

The SU(2) algebra is generated by the following quanti-

and the reduced field, y=8/(2. 35X10 T). The dis-
cussion is simplified by considering only the rn =0
(Pt, =m A, =0) case which has been the subject of most ex-
perimental studies and is quite representative of the
dynamics for all m. Classically, the m =0 case displays
numerical pathologies because trajectories can penetrate
the Coulomb singularity at the origin. This problem can
be avoided by transforming to "regularized" parabolic
coordinates' which also make the SU(2) symmetry of the
system apparent, and facilitate application of classical
perturbation theory. Upon setting p =uv, z = (u —v )/2,
making a time transformation, and performing a trivial
canonical transformation to normalize the oscillator fre-
quencies, the rn =0 Hamiltonian becomes
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ties:

vari
= —,

' (p„'+u') ——,
' (pz+ v'),

&2 VPu QPv

pupv+ uV,

(sa)

(sl )

(sc)

which commute with the zero-order energy,

&o=&o= 2' (p„'+u')+ —,
' (p2+v')

and satisfy the Poisson bracket relations,

[&j~&k] &jkl &I

together with the relation,

2 2+ 2+ 2

(sd)

(6a)

(6b)

8 =5(zo —
vari ) —4+2, (9)

the form of which is particularly suggestive when com-
pared to Eq. (1). Transforming the Runge-Lenz vector

Using classical (Birkhoff-Gustavson) perturbation theory
an integrable approximation (the normal form denoted
PNF) to /f can be found as a power series in coordinates
and momenta. The normal form was originally obtained
in Ref. 15, which was an independent determination of
Solov'ev's invariant for m =0 to high order in the
field. ' ' In terms of the SU(2) generators the normal
form toorder y is'

PgF =tto+cKo[S(Ão Ã~ ) 4xp],

where c =y /256E . Using group-theoretical methods it
is possible to show that the approximate constant of
motion obtained from the normal form is equivalent to
A. ' In particular, z~ can be identified with A, and x2
with A to within constants. Semiclassical quantization
of Eq. (7) is complicated by the zero-order resonance in

Eq. (4) making the transformation to action-angle vari-
ables nontrivial. This problem can be solved using a gen-
eral Lie algebraic approach to the uniform semiclassical
quantization of resonant systems developed previously. '

One choice of actions is the following, where Eqs. (4) and
(Sd) have been used to quantize J~,

zp=Ji =2n,

n2 =JJ~

—J2 cos2p2,

Ã3 JJ~ —J2 sin2$2

with p2 in the range 0 ~ pz ~ tr. Although this is not the
only choice possible [in general the spherical symmetry al-
lows the subscripts between tr~, try, and x3 in Eq. (8) to be
interchanged in any order, see Eq. (6b)] it turns out to be
the best choice of Jz consistent with the actual dynamics
of the QZE. This is because the generator z~ is propor-
tional to A„which is almost a good constant of motion
for the localized vibrational states (for these states
A- —W,').

Because J] is conserved, quantization of J2 may be per-
formed in terms of the auxilliary quantity [see Eq. (7)],

J2- J)'-
5 —4cos 2/2

(10)

The phase portrait of J2 as a function of p2 is shown in

Fig. 1 and is a twofold hindered rotor. At this point it
should be noted that because the transformation from cy-
lindrical to regularized coordinates is nonlinear, doubling
the size of phase space, only half of the states of the oscil-
lator match up with actual states of the QZE; these are
those oscillator states of even-even parity. ' The states in
the wells correspond to rotational (A& 0) states of the
original Hamiltonian (3) while the vibrational states
(A(0) of Eq. (3) have been mapped onto rotational
states in the rotor picture. This might seem puzzling:
However, the original vibrational trajectories are local-
ized in two disjoint regions of phase space when the
dynamical constant A is negative, ' and the transforma-
tion to regularized coordinates maps these trajectories
into local mode states of the oscillator. Since local modes
in the oscillator picture are those maximizing (and con-
serving) lx&l, they correspond to the rotational states of
the rotor, which do (almost) conserve J2 as they
should. ' ' This is why m~ was chosen as the generator to
be quantized; other choices are either singular at the
separatrix (Jz tr2) or give poorer agreement with quan-
tum results (J2 =n3), not being appropriate to the topolo-

gy of the trajectories. The oscillator nortnal mode states'
in the wells (A & 0) become the ridge states of Fano as
A approaches its maximum value. The stability of these
states against "falling" off the ridge can now be under-
stood since they exist at the bottom of a well in action-
angle space. In the harmonic-oscillator picture these
states behave like asymmetric normal modes, being essen-
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FIG. l. Phase plot of J2 at various values of A between its
minimum and maximum values, as determined using Eq. (10)
with J ] 2n 46. The rotorlike states correspond to A & 0
while the states in the wells have A &0. The classical turning
points a, b, and c used in the evaluation of the phase integrals
are illustrated at an arbitrary value of A.

into regularized coordinates gives A =8/J j —1, where 8
is restricted to the range 0 ~ 8 ~ 5J ~ since 0 ~ J2 ~ J~.

Combining Eqs. (8) and (9) and solving for the action J2
gives

' 1/2
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pb
a = Jzdpz for vibrators,4a

t n/2

a = J2d&2 for rotators,4 0
(i 2)

t c

and the classical turning points, a, b, and c (shown in Fig.
I) are complex for states above the barrier tops. The
quantum correction function N is an antisymmetric func-
tion of its argument and is defined by

@(e)=e+ arg[1 ( 2 + ie)] —ein ( e~ . (13)
Every k gives rise to two states (~ ), but only half of
these states correspond to states of the QZE. The sub-
separatrix normal-mode states occur in pairs but only one
member of a pair can map back into each rotational state
in the original cylindrical coordinates (the Zeeman rota-
tional states are not split by tunneling). Below the separa-
trix only the symmetric states of the rotor qualify and
these are obtained by taking the minus sign in Eq. (11)
corresponding to the at, —

~ state in Mathieu notation. '
Above the barrier the required states have k even (in a
primitive quantization of these levels, a =-kyar, with k even)
and the degeneracy between the + states is lifted due to
tunneling between the vibrational Zeeman states. Most
importantly the quantization formula is completely singu-
larity free and passes uniformly through the separatrix
separating vibrational from rotational states. Results ob-
tained from the semiclassical quantization condition are
presented in Table I and are clearly in excellent agree-
ment with quantum results. Interestingly the doublets in
the quantized values of A are not due to tunneling through

tially localized in one well or the other.
The uniform semiclassical quantization formula for the

twofold hindered rotor which accounts for tunneling is '
a —e(e) =km+ tan '(e "),
k = 1,2, . . . , 2 int(n/2),

where int takes the integer part of its argument. The
phase integrals are given by

TABLE I. Quantum (Refs. 12 and 13) (A ) and semiclassi-
cal (A") values of Solov'ev's invariant for the n =23 (m =0)
manifold; k —refers to Eq. (11). The separatrix occurs classi-
cally when A =0.

22+ —0.815 18 —0.811 77
22 —0.815 18 —0.811 77
20+ —0.474 47 —0.471 03
20 —0.47445 —0.471 01
18+ —0.191 24 —0.18767
18 —0.18860 —0.185 09
16+ —0.006 50 —0.002 71

Separatrix
16 0.050 73
15 0.17902
14 0.31783
13 0.479 35

0.054 13
0.178 97
0.320 83
0.482 14

pqm

12 0.659 82
11 0.858 67
10 1.075 54
9 1.309 82
8 1.561 67
7 1.830 84
6 2. 11724
5 2.42082
4 2.741 15
3 3.079 30
2 3.434 14
1 3.80602

pSC

0.662 49
0.861 21
1.077 86
1.312 16
1.563 92
1.833 02
2.11936
2.422 87
2.743 50
3.081 22
3.435 99
3.807 78
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the rotor barrier in this picture. The splittings are a
consequence of dynamical tunneling and occur as a result
of reflection above the barrier tops.

This analysis has provided a singularity-free, uniform,
semiclassical quantization of the QZE. It should be noted
that Robnik and Schriifer s quantization involved diago-
nalization of the normal form in a quantum-mechanical
basis and was therefore not a canonically invariant semi-
classical approximation. ' The semiclassical method also
has the advantage that ordering of operators is not an is-
sue. The Lie algebraic picture developed here is crucial to
constructing a scheme by which to quantize the QZE to
higher order in the field and/or for m &0.

Note added in proof. Since this paper was submitted a
paper by Uzer has appeared in which the QZE is
mapped onto an asymmetric top, providing a complemen-
tary view to that of this paper.
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