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Free-electron laser operation with a circularly polarized wiggler and an appropriately directed
axial magnetic field of suitable strength is shown to generate significant coherent emission of radia-
tion into higher frequencies.

The radiation of frequency fto„(f = 1,2, 3, . . . ),
to„=k„c, wavelength A,„/f =2m/fk„, amplitude E(z, t),
and phase 8=fk„z fto„t+/(z, t) in th—e FEL cavity
may be represented by the vector potential

A„(z, t) = ' (x sin@' —y cosh ) .E(z, t)

r
(lb)

Harmonic generation in free-electron lasers (FEL's)
has been a subject of great interest. It extends the tun-
able range of a laser to higher frequencies without using
ever-increasing electron-beam energies. ' The single-
particle approach followed by Colson clearly shows that
these harmonics are generated by a small periodic longi-
tudinal motion acquired by electrons passing through the
FEL cavity. Plane-polarized wigglers are, therefore, used
in practical devices. ' In this paper we show that a cir-
cularly polarized wiggler in the presence of an axial mag-
netic field of appropriate strength but directed opposite
to the electron beam is also capable of generating stable
electron trajectories, leading to significant coherent emis-
sion of radiation into higher frequencies. The gain mech-
anism is the usual axial bunching of the electrons as in
the case of other FEL devices.

Axial fields are generally applied in free-electron lasers
with circularly polarized wigglers for electron-beam
confinement and for obtaining gain enhancements (close
to magnetoresonance). It is important to note that these
fields may also be utilized to generate higher frequencies.

Consider a relativistic electron of energy
ymc =mc (1—P )

' moving with velocity v=cP
through magnetic wiggler and axial guide fields in the
presence of a plane electromagnetic wave copropagating
along the direction z of particle motion. The
configuration of the wiggler field of amplitude B, wave-
length A0=2vr/ko, (coo=cko), phase koz, and the con-
stant axial field of strength b is taken as

8 =xB cos(koz) yB sin(koz) z—b . —

d e
(yP ) = — [bP —BP,sin(koz) E(1—P—, )cosN],

(yP»)= [b/3~+BP, cos(koz)+E(1 —P, )sin@'],d
dt ~ mc

(2b)

d e8 . dy
(yP, )= — [P,sin(koz)+P cos(koz)]+, (2c)

dy eE
( P„c os6' +/3 sin@) .

dt mc
(2d)

For p, close to 1 (or y ))1), the last terms of Eqs. (2a)
and (2b), describing the transverse optical force, may be
neglected in comparison with the others due to the trans-
verse force of the static magnetic fields. Thus, to a very
good approximation (for a typical value K= 1) the solu-
tions corresponding to the axial injection of the electron
beam (P, =/3o, y=yo=(1 —Po) '/ at t=o) are given by

P„= /30(K/y )[co—s(koz) —cos(koz At) ], —

p» =po(K/y)[sin(koz) —sin(koz —At)],

(3a)

(3b)

where K =eB/mcA, A=cob+coopo and cob (=eb/mcyo)
represents the Larmor frequency of the electron due to
the axial field.

Substitution of P„ from Eq. (3) in the relation
y = 1 —P gives an expression for P, which may be ex-
panded for y )) 1 to yield

/3, =1—
—,'y I 1+2K [1—cos(At)] I . (4)

The slow evolution of the dynamical variables about the
periodic oscillations on the scale of the magnetic wave-
length may now be obtained by taking an average over it.
The averaged P, is thus found to be

The nonlinear wave equation and pendulum equation
for this configuration are derived by following a pro-
cedure similar to that described by Colson. For slowly
varying amplitude and phase of the radiation field, the
Lorentz force equations of electron motion approximate
to

P, =l —
—,'y (1+2K )

so that

y( 1+2K2)—1/2
y ( 1+2K2)—1/2

where the overbars denote the average values.

(5a)

(5b)

43 1633 1991 The American Physical Society



1634 BRIEF REPORTS 43

We now define a slowly evolving dimensionless velocity
uf (t) over the length L of the cavity such that

uf(t)= —[f[(co, +co())f3, —(co„—cob)] —cob] .L
c

where c.=Ee'~. j and j are obtained with the help of
Eq. (3) by summing over all single particle currents
spread uniformly over the initial positions (pf(0) and ve-
locities uf(0). Using Eq. (10) and writing af = laf le'~, the
wave Eq. (11) assumes the form

u, (t)= —[coop, —co„(1—P, )]
c CObf +(f —1)

COp

8rrNe& L p

P pmC

(12a)

(12b)

is the usual resonance parameter. For u, (0)=0 exactly
one wavelength of light passes over an electron as it
moves through a period of the wiggler magnet and the
coupling between the radiation and electrons is maxim-
ized. The dimensionless phase describing the interaction
between the electron and electromagnetic (e.m. ) radiation
then assumes the form

cpf ( t) =f [(k„+k() )z —(co„—cob )t] cob t, —

where

X f ( (c ) =K [Jf (f(c ) —J(f ( ) (f(c ) ]

ic=co„K /Qyo .

(9b)

(9c)

Jf is a fth-order Bessel function of the first kind and the
overdot represents differentiation with respect to
~—:tc /L.

The pendulum equation describing the electron motion
is obtained from Eq. (7) by using Eqs. (5) and (9). Thus,

cp(7 ) laf leos((pf +p)

COp

2rrNe%'f ((c)LE

yomc

(10a)

(10b)

where ~ =L/p.
We next use Maxwell's equations to derive the slow

evolution of the optical amplitude E and phase c)I( aver-
aged over many optical wavelengths for transverse elec-
tron currents (j„,j ) in the form

The slow motion along the z direction given by z to-
gether with the oscillating term arising from Eq. (4) give
the total axial displacement

cXz(t)=z(t)+, sin(Qt) .
y Q

The second term on the right-hand side of Eq. (8) is re-
sponsible for generating higher frequencies.

Using Eqs. (8) and (3) in Eq. (2d) and retaining only the
slowly varying terms we can find the rate of exchange of
energy between the electrons and e.m. radiation. This is
given by

eEL
Af(K)c o( spf(+f)

mc pp

where

The coupled Eqs. (10) and (12) describe the FEL opera-
tion for higher frequencies.

These are easily solved in the low-gain limit by expand-
ing the pendulum equation in weak fields for which

l af l
((1. The gain

Gf = —1

and the phase shift b, ()((=P(1)—()I((0) for evolution of the
system from time ~=0 to ~= 1 are then given by

cosvof —1

2
Upf
c

S1nUpf Upf
2

Vpf

Gf =W
dVpf

1 d
2 dvof

(13a)

(13b)

The gain is maximum for vof =2.6056 and is given by
Gf =0.135% with the phase shift b,(t(=0.0185%. The
corresponding frequency of radiation is

27ofco (f0 cob) . —
(1+2K )

(13c)

The spontaneous emission per unit solid angle dao in
the forward direction per unit frequency interval d (fco„)
is seen to be

deaf

COb=2 f+(f —1)
COp

Mf ((c)
X

c

Mf((c)=K [Jf((c)+J(f ))((c)] .

2 2
enyo

1+2%

(14a)

(14b)

F0~0 2.6056
67q 1—

1+2E2 koI

2To~o 2.6056
coy —1 1 1—

11koL

From Eqs. (12) and (13) the maximum FEL gain is seen
to vary as [f + (f —1)co„/coo]Wf Taking f.= 5,
coI, =1.5coo, and &=1, the FEL gain is seen to decrease
by a factor of 3.7 for an elevenfold increase in frequency
from

BE, 1 BE,

Bz c Bt
((j +'J )

C

The factor multiplying the length L of the cavity in the
second term of co„ leads to stiff requirements of beam

11
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quality. The same frequency enhancement can also be
obtained by raising the electron energy from yomc to
&llyomc but the corresponding decrease in gain, as
given by Eq. (14), is by the much higher factor of
(11)"—36.

It is interesting to see from Eq. (3) that for cob
——copo,

and with z(t)-z(t)-I3oct [obtained from Eqs. (5) and (8)
for K/y « I], P, tends to zero and the electron motion

becomes sinusoidal along the 1' direction. Equation (13)
then shows that the usual odd harmonics of the principal
frequency 2yccoo/( I+2K ) are generated in this case.
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It may be noted that in the absence of radiation field
(y=const) Eqs. (3) and (4) can be solved up to second order
in K/y to yield the electron trajectory. This is found to be a
superposition of two helices characterized by frequencies coo

and cob with constant radii cfjolt /yocoo and cPolt" /yotob, re-
spectively. For b large enough, so that cob coo, stable elec-
tron trajectories continuously interacting with e.m. radiation
through the length of the cavity are obtained.


