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Measurement of electron-transfer cross sections for H(3/) in intermediate-energy H " -He collisions
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Cross sections have been measured for the production of H(3/) atoms via electron transfer in
proton-helium collisions from 25 to 100 keV. In the experiment, the intensity of Balmer-a radiation
is measured as a function of proton energy. These measurements are combined with previously
measured density matrices for the same collision to produce relative cross sections. Our relative
electron-transfer results, accurate to 3—7 %, are normalized to the absolute o, cross-section mea-
surements of Brower and Pipkin [Phys. Rev. A 39, 3323 (1989)] at 60 keV. Comparison of our o3,
cross-section measurements with other experimental measurements shows general agreement to
within 20%, with larger differences for older results. The recent calculation of Shingal and Lin [J.
Phys. B (to be published)] agrees to within 13% of our measurements of o;; above 30 keV, but pre-
dicts a low-energy oscillatory behavior of 03, and o3, not present in experimental results.

In ion-atom collisions, electron transfer dominates the
intermediate-energy regime, where the ion velocity nearly
matches the orbital-electron velocity of the target atom.
For this reason, electron-transfer cross sections have been
measured in simple collisions for many years.! " ® Previ-
ously, we determined density matrices describing
H(n =3) atoms formed in proton-helium collisions.”®
Our results were normalized to o;; at each energy. We
have now measured o3, as a function of energy and can
normalize our previous results to bring them onto an ab-
solute scale. We compare our results to four experimen-
tal measurements and three theoretical calculations.

The apparatus was described previously.” A proton
beam traverses a He gas cell in which there is an applied
electric field. Balmer-a radiation is observed perpendicu-
lar to the beam from a section of the gas cell. The proton
current varies with proton energy from 0.5 pA at 25 keV
to 3 uA at 100 keV. The He gas pressure is 1 mTorr. A
transverse electric field of 390 V/cm is directed perpen-
dicular to both the proton beam and the direction of ob-
servation. At this field strength significant Stark mixing
of the n =3 manifold produces a shorter effective lifetime
for H(3s) atoms, leading to a larger counting rate. Addi-
tional measurements using zero electric field, which have

a larger uncertainty, agree with the 390-V/cm results.

The intensity of light polarized parallel to the beam I
is measured as a function of proton energy. Each
density-matrix element contributes to I;:
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The density-matrix elements p;,.3, relative to o,
were measured previously.® The fitting functions f ,(j‘k’ and
g} for the ith Stokes parameter for a transverse electric
field for individual H(n =3) and H(n =4) density-matrix
elements were numerically calculated.” The o4 /05, ra-
tio is determined from theoretical calculations.” By
measuring I and calculating the sum in Eq. (1) we deter-
mine o3 as a function of proton energy. The relative o
are normalized at 60 keV to the result of Brower and Pip-
kin,® since the absolute detection efficiency of our optical

TABLE 1. Electron-transfer cross sections o3, for proton-helium collisions.

Proton energy (keV) o3 (10718 cm?)

o3, (107" cm?) 03y (10718 cm?)

25 0.686+0.022
30 1.215+0.039
35 1.652+0.049
40 1.951+0.054
50 2.141£0.065
60 2.000°+0.066
80 1.417+0.057
100 0.910+0.036

1.209+0.042 0.2250+0.0081
1.194+0.042 0.178240.0070
1.118+0.037 0.1525+0.0058
0.944+0.029 0.1327+0.0049
0.659+0.024 0.1053+0.0047
0.453+0.020 0.0838+0.0044
0.247+0.015 0.050740.0037

0.1453+0.0089 0.0300+0.0021

*Normalization value from Ref. 6.
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system is unknown. We believe this absolute normaliza-
tion is correct because of the general agreement at higher
energies for o3, among our results, three other experi-
mental measurements,”>® and one theoretical calcula-
tion,'%!! in particular, the close agreement between
Lenormand® and Brower and Pipkin® at 60 keV. Our rel-
ative cross-section measurements are put on an absolute
scale using the normalized values of o ;;.

Table I lists the absolute electron-transfer cross sec-
tions oj;. The relative uncertainties are (i) 0.3-0.7 %
from I, (i) 2-3.5% from previously determined
density-matrix elements,® and (iii) 2% from the current
measurement caused by an uncertainty in the amount of
beam neutralization due to electron transfer. The results
are repeatable within the total relative uncertainty of
3-7 %. The uncertainty in the absolute normalization is
20%.% The results shown in Table I include corrections
for cascade from H(n =4) which influence the 25-keV re-
sults by 5% and the 100-keV results by 1%.

Figures 1-3 compare our results to four experimental
measurements”>>% and three theoretical calcula-
tions.!713 Three experimental groups have used the ex-
ponential decay method: Hughes et al.,! Ford and Tho-
mas,’ and Lenormand.’ The intensity of Balmer-a radia-
tion is measured as a function of position following a gas
cell. The signal is deconvoluted into three exponential
curves characteristic of decay from 3s, 3p, and 3d states.
No correction is made for cascade. Another experimen-
tal method is the microwave resonance optical detection
technique of Brower and Pipkin.® A detector is placed
downstream from a microwave cavity and a gas cell. Mi-
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FIG. 1. o3, as a function of proton energy. @, present re-
sults; M, Brower and Pipkin (Ref. 6); A, Lenormand (Ref. 5); X,
Ford and Thomas, (Ref. 3); +, Hughes et al. (Ref. 1); ,
Jain, Lin, and Fritsch (Ref. 12); - - - ., Shingal and Lin (Ref.
10); — — — (Ref. 13).
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FIG. 2. 03, as a function of proton energy. Same symbols as
Fig. 1.

crowave radiation drives transitions within the »n =3
manifold and Balmer-a intensity is measured as the mi-
crowaves are turned on and off. Corrections are made for
cascade from H(n >3) atoms up to n =8. Systematic
effects in these experiments have been discussed previous-
ly.>!* The uncertainty in the absolute value for all of the
experiments is reported to be about 20%. Three calcula-
tions have been performed for this collision. Jain, Lin,
and Fritsch!? use the augmented atomic orbital (AO+)
method, a modified two-center atomic-orbital expansion
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FIG. 3. o3, as a function of proton energy. Same symbols as
Fig. 1.
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supplemented by pseudostates. Shingal and Lin'®!'! use

the same method with a much larger set of basis states.
The calculations by Dubé'® use the continuum distorted-
wave approximation with postcollision interaction'®
(CDW-PCI).

For o, above a proton energy of 45 keV all of the ex-
perimental results agree to within 18%, except for
Hughes et al.! For O3 Lenormand,’ Brower and Pip-
kin,® and the present results agree to within 23% at all
energies. For o;; below 80 keV, our results agree to
within 41% of both Lenormand’ and Brower and Pip-
kin,® although their results differ by as much as 57%.

The CDW-PCI theory is a high-energy approximation.
As the collision energy decreases, the predicted cross sec-
tions increase monotonically, overestimating o 3; by a fac-
tor of 10 to 15 at 25 keV. At 100 keV, the calculations
asymptotically approach the experimental measurements.
For all 03, CDW-PCI predicts smooth variations as a
function of energy.

The calculations of Jain, Lin, and Fritsch!? overesti-
mate o4, by a factor of 2. The recent calculations by
Shingal and Lin'®!! agree to within 13% of our measure-
ments of o3, above 30 keV. Both coupled-state calcula-

tions predict oscillatory behavior for o3, and o3, not
found in experimental measurements. Because the cross
sections o, are several orders of magnitude smaller than
the H(n =1) cross section, coupled-state calculations
must include large basis sets to be accurate.

In our previous research, considerable effort was made
to eliminate systematic effects in the experiment, leading
to self-consistent results.” Because of this we believe our
relative results for o;; are the most accurate to date, and
should therefore be used in comparison with future ex-
perimental and theoretical research.
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