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In this paper a phenomenological semiclassical theory of pulsed-laser-pumped dye-laser light
amplifiers is presented. The theory accounts for the broadband radiation absorption and emission
characteristics of dye molecules in liquid solvents. Dye-molecule fluorescence, vibrational, rotation-
al, and electric polarization relaxation processes are represented by phenomenological relaxation
rates. In general, it is found that due to dye-molecule rotational relaxation the laser-pumped dye
medium is optically anisotropic. The pump- and dye-laser beams propagate through the dye rnedi-

um as essentially transverse electromagnetic waves whose amplitude and polarization state changes.
The theory is applicable to pulse durations ~~ 10—100 ns including the ultrashort pulse regime.
The regime ~~ 1 ps in which the pump- and dye-laser pulse lengths are long compared to the dye-
molecule vibrational and electric polarization relaxation times is considered in detail. Amplification
of partially polarized quasimonochromatic light is described by a self-consistent set of equations for
the components of the pump- and dye-laser light coherency matrices and the orientation popula-
tions of the lowest vibronic levels of the dye molecule's So and S& electronic states. The interaction
of the pump- and dye-laser beams with the dye molecules is characterized by complex electric sus-

ceptibility tensors. Kramers-Kronig or Hilbert transform relations are found that permit dye-
molecule absorption and emission cross sections to be used to calculate the pump- and dye-laser sus-

ceptibility tensors. All the physical parameters in the theory may be determined by conventional
experimental techniques. When the dye-molecule rotational relaxation rate y& is much larger than
the fluorescence rate yF, ~ ', and the pump-laser absorption and dye-laser stimulated emission
rates, then the dye-molecule electric susceptibility tensors are diagonal. The laser-pumped dye-laser
medium is optically isotropic. When these conditions do not hold the medium is optically aniso-
tropic and coherency matrices may be used to describe the propagation of the pump- and dye-laser
beams. This procedure is illustrated for the case of transversely pumped dye lasers. In the small-
signal regime analytic solutions for the dye-laser-light coherency matrix components are developed
for arbitrary initial polarization state, pulse duration, and yF/y~. In the large-signal regime nu-

merical solutions are obtained for the amplification of short, (~yF, ~yR ) ((1,and quasi-steady-state
(~yF, ~@~ ) ))1, pulses for arbitrary values of yF/yz when the pump- and dye-laser polarizations
are parallel. In general, it is found that for a wide range of physical conditions of interest dye-
molecule rotational relaxation is important, and significant changes in the amplification characteris-
tics of the medium, i.e., the rate of amplification, amplification efficiency, and polarization state of
the light, will occur.

I. INTRODUCTION

For several years there has been considerable interest
in the use of pulsed dye-laser media to generate and am-
plify light pulses. ' Specific studies "have addressed a
wide range of laser-pumped, dye-laser radiation and
medium physical conditions. The characteristics of
amplified spontaneous emission and mirrorless dye lasers
have been explored. Laser-pumped dye media have
been used to generate and amplify high-power subpi-
cosecond pulses. ' " In all of these studies a radiation-
transport, rate-equation formulation was used to theoreti-
cally describe the coupled radiation-field, dye-medium
dynamics. Rotational relaxation of the dye molecules
was not included. However, dye-molecule rotational re-
laxation can be important because it makes the dye-laser
medium optically anisotropic. This can significantly alter

the amplification characteristics of the dye medium. Pre-
vious theoretical investigations of this behavior have been
restricted to either the small-signal regime' ' or the lim-
it of frozen or fixed dye-molecule orientation. ' ' Build-
ing on these earlier investigations, a phenomenological
semiclassical model of pulsed-dye-laser amplifiers has
evolved. The model provides a self-consistent elec-
tromagnetic field treatment that accounts for the broad-
band emission and absorption of the dye medium, ' '
the polarization state of the pump and laser radia-
tion; collisional relaxation of the induced dye-
molecule electric polarization; and the Auorescence, vi-
brational, and rotational relaxation of the dye molecules.
It is valid for both small- and large-signal amplification
regimes. This paper presents the essential elements of
this theoretical model of pulsed dye lasers. The regime in
which the pump- and dye-laser-light pulse lengths are
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long compared to the dye-molecule vibrational and elec-
tric polarization relaxation times is considered in some
detail. Application of the theory is illustrated by treating
the amplification of partially polarized, quasimono-
chromatic light pulses in transversely laser-pumped dye
media. Both small- and large-signal regimes of
amplification of short and quasi-steady-state light pulses
are considered in detail ~ The methodology described here
may be readily extended to treat tunable solid-state
lasers. The principal limitations of the present semi-
classical approach are that spontaneous emission and
nonradiative dye-molecule relaxation processes are de-
scribed phenomenologically. However, in the applica-
tions considered all of the physical parameters in the
theory may be determined by conventional measurement
techniques. The inclusion of amplified spontaneous emis-
sion requires a complete quantum theory approach.

This paper is divided into several sections. In Sec. II
the characteristics of laser-pumped pulsed-dye-laser
media are described. A phenomenological semiclassical
theory of laser-pumped dye-laser amplifiers, including
dye-molecule rotational relaxation, is presented. In Sec.
III the amplification of pulsed, quasimonochromatic par-
tially polarized radiation is considered in both the large-
and small-signal regimes. The regime in which the
pump- and dye-laser-light pulse lengths are long com-
pared to the dye-molecule vibrational and electric polar-
ization relaxation times is considered in some detail ~ Ap-
plication of the theory is illustrated by treating trans-
versely laser-pumped dye lasers. The polarization states
of the pump- and dye-laser radiation are described by the
coherency matrices of Wiener and Wolf. ' In Sec. IV
the relationship between the theoretically calculated
dye-laser radiation coherency matrix and its experimen-
tally measured values is established by generalizing the
concept of the time-dependent physical spectrum of light
introduced by Eberly and Wodkiewicz. Section V in-
cludes a summary and conclusions.

Singlet States

S
Vibrational Relaxation

Triplet States

average separation' between vibrational levels of
1200—1600 cm '. In large dye molecules, many vibra-
tional modes of diA'ering frequencies are coupled to the
electronic transition. Collisional and electrostatic pertur-
bations due to the solvent molecules broaden these vibra-
tional states. ' Interaction with solvent molecules and in-
tramolecular coupling leads to vibrational relaxation on a
subpicosecond time scale. ' The relative importance of
intramolecular and intermolecular vibrational relaxation
processes is not presently well understood. Each vibronic
level has closely spaced rotational levels superimposed on
it. These rotational levels are broadened by frequent col-
lisions with solvent molecules and thus form a near con-
tinuum between each vibrational level. Rotational relax-
ation of the dye molecules takes much longer than vibra-
tional relaxation. It occurs on a time scale of 100—500
ps for the solvents methyl alcohol and ethanol ~ However,
for highly viscous solvents, it can exceed a nanosecond.

The longest-wavelength light absorption is from So to
S, . The absorption from So to T, is spin forbidden.
Nonradiative coupling of the singlet and triplet manifolds
is also weak with a time scale typically greater than 100
ns. Since the laser-pulse lengths and stimulated emission
times of interest in the applications' " are much less
than this time, excitation of triplet states may be neglect-
ed. Consequently, when the dye molecule is optically ex-
cited to the S, state it then decays rapidly by vibrational
relaxation to the lowest vibronic sublevel of the S& state.
Spontaneous (fluorescence) and stimulated emission occur
between this level and a vibronic sublevel of So. These

II. SEMICLASSICAL THEORY
OF PULSED DYE LASERS

A. Physical characteristics of dye-laser media

t
Excited-State Absorption

I

and Relaxation 2

The dye-laser medium consists of dye molecules such
as DCM (Ref. 31) or rhodamine 6G (Refs. 32 —34) dilute-
ly dissolved in a liquid solvent. Table I summarizes the
important physical characteristics of several organic dyes
along with the solvents methyl alcohol (MeOH) and etha-
nol (EtOH). The broad emission and absorption proper-
ties of a dye molecule such as DCM or rhodamine 6G
may be explained' by the electronic band-structure
model sketched in Fig. 1. The dye molecule is typically a
large, complex molecule with an electronic structure that
is richly broadened by an almost continuous distribution
of vibration-rotation substates. As shown in Fig. 1, the
electronic structure consists of a ladder of singlet states
S, (i =0, 1,2, 3, . . . ) containing the ground state So and a
ladder of triplet states T, (i =1,2, 3, . . . ), which are dis-
placed toward lower energy. Each electronic state has a
number of vibrational levels superimposed on it, with an

Triplet Absorption and Relaxation

I [E

Intersystem Crossing

So

FIG. 1. Energy level diagram (Ref. 1) of a typical dye mole-
cule with radiative ( ) and nonradiative (

———) transi-
tions indicated.
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vibronic sublevels then rapidly relax by another nonradi-
ative decay to the lowest vibronic sublevel of So. The
wide distribution of available vibronic sublevels of So
gives the observed broadband fluorescence and gain. The
strength of the interaction of light with a dye molecule
depends on the orientation of the dye molecule relative to
the polarization direction of the electric field of the light.
Consequently, the orientation distribution of the dye
molecule's So and S, states during the lasing process is
determined by the relative magnitudes of the laser-pulse
length, absorption, stimulated emission, Quorescence, and
rotational relaxation time scales. When the orientation
distribution of the dye molecules is not completely ran-
dom or isotropic the dye-laser medium becomes optically
anisotropic. ' ' In this paper, the effect of dye-molecule
rotational relaxation on pulsed-dye-laser dynamics is
treated in some detail. The orientation of the radiation-

induced dipole moments of the dye molecule's S& ~SO
transition is denoted by spherical polar angles 8 and P.
Euler angles may also be used to specify the orientation
of the dye molecule. The energy-level structure and the
vibrational and rotational relaxation behavior of the dye
molecule described here depends on the solvent. In addi-
tion, many solvents are available with a wide range of op-
tical and Quid properties (Table I). In general, the dye-
laser medium is a nonmagnetic dielectric.

The excited-state absorption process S& ~S2 followed
by rapid internal conversion S2~S& is a potentially seri-
ous loss process. However, experimental data have
shown that the absorption cross section for this process is
small compared to the stimulated emission cross section
for the dyes considered. In general, in addition to
Auorescence as shown in Fig. 1, the S, band may also re-
lax by internal conversion and intersystem crossing.

TABLE I. Typical physical parameters of organic dyes and solvents; dye-molecule photochemical properties refer to rhodamine
6G except where noted otherwise.

Quantity

Fluorescence lifetime'
Intersystem crossing lifetime
S~~S) lifetime
Vibrational relaxation lifetime '

within S&

Rotational relaxation time"
Dephasing time
Excited-state-absorption

cross section
Peak emission cross section
Peak absorption cross section
Quantum yield

Numerical value

Dye-molecule properties
1 —5 nsec
290 nsec
30—50 psec
190—500 fsec

100—500 psec
75 fsec
4X10 ' cm

1.8-4 X 10 ' cH1

2.7—4.2 X 10 ' cm
0.8—0.86 (MeOH)
0.982 (MeOH)
0.93 (EtOH)
0.88 (EtOH)
0.95 (EtOH)
0.96+0.02 (H20)
0.76—0.81 (H20)
0.45+0.05 QptQH (Hanoi

Reference

35,33
36
37
38,39

35
40
34

1,32-34
1,32-34
41
42
34
41
43
44
41
45

Refractive index
Loss coeKcient
Nonlinear index n2
Raman gain

Raman Stokes shift
Density
Viscosity
Boiling point
Thermal conductivity

Specific heat

Methanol (M) and ethanol (E) properties
1.3288 (M); 1.3611 (E) at Na D line
0.0031 cm ' (M); 0.01 cm ' (E) at 570 nm
2.2X10 ' esu (M); 2.5X10 ' esu (E) at 10 ps
5.5 X 10 ' cm/W (M)
5.1X10 ' cm/W (E)
2831 cm ' (M); 2921 cm ' (E)
0.7914 g/cm (M); 0.7893 g/cm' (E)
0.547 cP (M); 1.2 cP (E) at 25'C
65 C (M); 78.5 C {E)
2.02 X 10 W/cm'K (M)
1.67X10 W/cm K (E)
0.609 cal/g K (M); 0.586 cal/g K (E)

46

47,48
49
49
49
46
46
46
46
46
46

'Typical range.
"Cresyl violet.
'Rhodamine 640.
Typical range in the solvents methanol and ethanol.
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Thus the observed lifetime of the S, state is less than the
radiative lifetime. The ratio of the observed lifetime to
the radiative lifetime is known as the quantum yield
(Table I). For good laser dyes, such a rhodamine 6G, the
quantum yield approaches unity.

B. Propagation of electromagnetic radiation

Consider a dye-laser medium that is optically pumped
with a separate laser. The propagation of pump laser
(j =p) light and dye-laser (j=I) light through a dye-laser
medium is described by the field equations

VX[VXE ( xt)]+c B,E (x, t)= —p i),P ( xt) (2.1)

V [eoE, (x, t)+P (x, t)]=0,
where E is the electric-field intensity and

(2.2)

P J( xt)=e OJ dt'y, (t —t')E (x, t')

+I dAP, (x, t, Q)
4a

(2.3)

is the medium electric polarization associated with the
light at location x and time t. The quantities c, eo, and po
are the speed of light, permittivity, and permeability of
free space, respectively. Unless otherwise specified,
throughout this paper the subscript j=(1,p ). The first
term on the right-hand side of Eq. (2.3) is the electric po-
larization due to the interaction of the light with the sol-
vent molecules. The quantity y, is the electric suscepti-
bility response function of the solvent. The solvent elec-
tric susceptibility y, is given by the Fourier transform

y, (co) =j dt y, (t)e' ' . (2.4)

In general, y, is complex and may be written as

g, =p,'+I.g,". Since the solvent is generally nearly trans-
parent in the dye-molecule absorption and Auorescence
wavelength bands, y,

' ))g," there. In this region, the sol-
vent refractive index and absorption coefficient are given
by n, =1+g,' and a, =cog,"/cn„respectively.

The second term on the right-hand side of Eq. (2.3) is
the electric polarization due to the interaction of the
pump laser (j=p) light and dye laser (j = l) light with the
dye molecules of all orientations. The quantity P (x, t, 0)
is the induced electric polarization per unit solid angle
due to dye molecules whose orientation Q=(0, $) is in
the solid angle range A to 0+d A where
d 0=sinO d 8 dP. Equations (2.1) and (2.2) are coupled by
the electric polarization produced by the dye- and
solvent-molecule response to the pump and laser electric
fields. In each case this polarization P (x, t, 0) due to the
dye molecules depends on the details of the pump and
laser light fields and the dye-molecule dynamics discussed
in Sec. II A. The determination of the P (x, t, Q) for the
pump and laser radiations is taken up in Sec. II C by con-
sidering only the dye-molecule —radiation interaction.
Relaxation processes are included in Sec. IID, using a
phenomenological methodology. '

C. Macroscopic dye-molecule —radiation interaction

Consider a group of dye molecules whose orientation is
the same. At a given location x in the dye-laser medium,
in the semiclassical and electric dipole approximations,
the interaction of a dye molecule with electromagnetic
radiation is described by the Schrodinger equation

(2.5)

where ~4 & is the state vector of the optically active elec-
tron in the dye molecule. The time-independent quantity
H& is the Hamiltonian operator associated with the dy-
namics of this electron in the coupled dye-
molecule —solvent environment. The time-dependent re-
laxation dynamics due to the dye-molecule —solvent in-
teraction are treated phenomenologically in Sec. IID.
The vector x, in Eq. (2.5) denotes the electron position
with respect to the dye-molecule center in a coordinate
system fixed relative to the dye molecule. The local mac-
roscopic electric-field intensity at the dye molecule, uni-
form over the molecule, is @(t)=g (t)+bi(t). The local
pump laser and dye-laser electric-field intensities are
6~(t) and Ai(t), respectively. In this section, for nota-
tional simplicity, the parametric dependence of physical
quantities, such as @,on location of x of the dye mole-
cule is suppressed, i.e. , 8 (t) = 6' (x, t ). The physical
constants e and A are the charge on an electron and
Planck's constant divided by 2~, respectively.

It should be noted that in a dielectric medium, the lo-
cal macroscopic electric field 8 and corresponding in-
duced polarization P are not equal to the total macro-
scopic electric field E and polarization P in the medium
that appears in the field equations, Eqs. (2.1)—(2.3). In
the dye-laser medium, these differences are due to the
inhuence of the polarizable solvent molecules on the local
electric field seen by each dye molecule. The prescription
for relating the total and local fields depends on the sym-
metry properties of the medium and the characteristics of
the field and is known as the Lorentz local-field correc-
tion. ' For an isotropic medium, such as the dye-laser
medium, and a monochromatic high frequency v, field
@=LE and P=LP, where L(v)=[n, (v)+2]/3 is the
Lorentz correction factor. If the fields are nonmono-
chromatic, these relations may be applied to each high-
frequency component. Generally, the solvent refractive
index is essentially constant over the dye-molecule ab-
sorption and emission bands and the frequency depen-
dence of the Lorentz correction factor can be neglected.
In the following the Lorentz correction factor will be
used to express equations in terms of the total macro-
scopic fields used in Eqs. (2.1)—(2.3).

Based on the discussion of Sec. II A, the dye-molecule
energy-level structure may be represented by the
simplified model shown in Fig. 2. The time-independent
eigenvectors ~ito& and ~$0& represent the lowest vibronic
states of So and S„respectively, and satisfy
H& ~P~ &

=
JY~&& ~iItg &, where p=(0, 1) and Wg is the energy

of the corresponding state. In the following the super-
script 0 or 1 relates to the electronic state So or Si, re-
spectively. The band of substates of energy S'", other
than the lowest, composing S„are described by the time-
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So
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Lasing Transition
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Likewise, the laser field EI(t) induces transitions between
the lowest vibronic level of S& and the e vibronic sublev-
els of So. For ultrashort pulses this assumption may not
be entirely satisfactory. Radiative coupling between the
lowest vibronic levels of So and S& is not considered here
although it occurs in some dyes. Radiation-induced in-
traband transitions are generally unimportant. Under
these circumstances, in terms of the probability ampli-
tudes I a((t, 0)], the Schrodinger equation takes the form

ihd, ao(t, Q)= f dap'a'(t, A)e 'Lp* (Q) E (t),
S1

(2.9)

iirBt, a (t, A)=a o(t, Q)e 'Lp*&(Q) Et(t), (2.10)

FICx. 2. Simplified dye-molecule energy-level model for a
pulsed dye laser. Radiative ( ) and nonradiative (

———
)

transitions are indicated. The quantities lgo), I P ) I, lgo), and

I

lit�'

) I are the time-independent state vectors of the vibronic
sublevels of the singlet So and S1 electronic states of the dye
molecule.

ikd, ao(t, Q)= f dap a (t, Q)e
'""

Lp I(A) E,(t),
So

(2.11)

and

iA'B, a'(t, Q)=ac(t, Q)e "Lp ~(Q) E~(t) . (2.12)

independent eigenvector sets I I Q & I, which satisfy
Hd I

t/i" &
= Wg I Q &. Each band of substates is taken to be

a continuum' and denoted by the quantum-number pa-
rameter o.. Physically the 0 and n subscripts represent
the set of quantum numbers required to specify the elec-
tronic substate of the dye molecule in the solvent envi-
ronment. Since the surrounding solvent is uniform and
isotropic, the time-independent state vectors I lg~k & I are
taken to form a complete, orthogonal basis independent
of Q, namely, (Qolgo& =5„„(gglg'& =0, all p, v, and
( itjti I

P' &
=5„5( a P) /p", whe—re p = (0, I ) and v = ( 0, 1 ).

The identity operator is

1

Iq:&(q:I+f dap~lq:&(y:I
p=O P

(2.6)

The quantity p" is the density of states of the S„electron-
ic band. The sign Is denotes summation over band S„,
but not including the lowest state. Consequently, the
state vector of the dye molecule may be written

1

ag(t Q)e ' If'&

Here and in the following the superscript e denotes com-
plex conjugate. The induced dipole moments p i(Q) and
coupling frequencies cu i are p ~(Q)=(g' ex, lt)'jo&,

p t(Q)=(go'lex, lgo &, co =(W' —Wo)/irt, and
cu I =(Wo —W )/fi. In the following the orientation 0
of the dye molecule is specified by the direction of the in-
duced dipole moments p (0) as shown in Fig. 3. It is
assumed that all the pump-laser and dye-laser-induced di-
pole moments are parallel' ' ' and therefore the direc-
tion of all p (II) are specified by the same spherical po-
lar angles 0 and P.

The local macroscopic equations governing the dye-
molecule —radiation coupling can be obtained in the fol-
lowing way. Since Eqs. (2.9)—(2.12) do not include rota-
tional relaxation, the local number density n(A) of dye
molecules per unit solid angle whose orientation is in the
solid angle range 0 to A+dA must be time independent.
Furthermore,

+ f da p"a" (t, Q)e (2.7)

The normalization condition ( %ci I %n &
= 1 yields

1

a(ot, Q)l'+ f dap" la" (t, Q)I =1 .
p=O P

(2.8)

The quantity lat,"(t,0)l is the probability that a dye mol-
ecule with orientation 0 is in the kth vibrational sublevel
of the S„electronic state.

Suppose the electronic states of the dye molecule in the
solvent do not possess permanent dipole moments.
Furthermore, from the discussion of Sec. II A, the pump
electric field E (t) induces transitions between the lowest
vibronic level of So and the a vibronic sublevels of S&.

FIG. 3. Orientation of the induced dye-molecule dipole mo-
ments p J(Q).
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(2.13)

is the total number density of dye molecules in the sol-
vent. In general, X is a constant determined by the dye-
molecule concentration in the solvent. It is typically
~10 times the solvent molecule number density. In
addition, if ng(t, A) is the local number density per unit
solid angle of dye molecules with orientation 0 in the kth
vibrational sublevel of the S„electronic state, then

n t', (t, A ) ='n ( A )
~
a g( t, Q )

~
(2.14)

1

ng(t, Q)+ f da p"n~(t, Q) =n(A) .
p=o P

(2.15)

The macroscopic electric polarization per unit solid an-
gle generated by the dye molecules with orientation Q
due to their interaction with the combined pump- and
dye-laser electromagnetic field is

where the overbar denotes ensemble average. Taking the
ensemble average of Eq. (2.8) and then multiplying the re-
sult by n (Q) yields the conservation relation

B, n.'(t, A)=[P, (t, Q) —P*,(t, O)].E, (t)/iA,

B, n'(t, Q)=[P*,{t,Q) P—, (t, Q)] E,(t)/iA,

and

B,no(t, Q)= f dap'[P* (t, Q)
Sl

—P (t, Q)] E, (t)/iA' .

(2.23)

(2.24)

(2.25)

Differentiating Eqs. (2.20) and (2.21) with respect to time
and using Eqs. (2.9)—(2.12), it follows that

B,P (t, Q) = iso ~P—(t, Q)

—[n 0(t, Q) n' (t, Q—) ]

first using Eqs. (2.9)—(2.12) to derive equations for the
ensemble-average sublevel occupation probabilities
j ~ag(t, Q)~ ]. These equations may then be multiplied by
n(Q) to obtain, after using Eqs. (2.20) and (2.21) the con-
tinuity equations,

B,no(t, Q)= f dap~[P i(t, Q) —P'I(t, A)] El(t)/iA',
So

(2.22)

P (t A) =n(A)L (+nl( —ex, )Iqln) . (2.16)

Substituting Eq. (2.7) into Eq. (2.16) it can be shown that

XL p*~(Q)[p (Q) E~(t)]/iA

+f dPppB p(t, Q) E (t)limni (2.26)

Pd(t, Q) =P, (t, A)+P, (t, Q), (2.17)
and

where

P (t, Q)= f dap'[P „(t,Q)+P" (t, Q)]
S)

(2.18)
B,P, (t, Q) = ice,P, (t,Q)—

+[no(t, Q) —n (t, Q)]
and

P, (t, Q)= f day'[P, (t, Q)+P",(t, Q)]
So

(2.19)

are the dye-molecule macroscopic electric polarizations
per unit solid angle generated by the pump-laser and
dye-laser fields, respectively. The induced macroscopic
polarization per unit solid angle depends on the level
probability amplitudes, induced dipole moments, and
coupling frequencies through the complex quantities

P ~(t, A) = n(Q)a—o*(t,Q)a' (t, Q)e ~ Lp ~~(Q)

(2.20)

and

P i(t, Q)= —n( Q)a *(t,Q)a (t,0A)e ' Lp*I(Q) .

(2.21)

Equations for the kth vibrational subleve1 populations
ng(t, Q) of the S„electronic state may be obtained by

X L p "i(Q)[p 1(Q).EI(t) ]/iA

—f dPpopA p(t, A) Ei(t)/i' . (2.27)
~0

The dyadic tensor quantities A p(t, O) and 8 p(t, Q) are
defined by

A p(t, Q)=n(Q)a'*(t, A)aop(t, Q)

Xe PL @*I(Q)@pi(A) (2.28)

8 p(t, Q)=n(Q)a'(t, Q)ap*(t, Q)
—in' t

Xe PL p'„(A)pp (Q), (2.29)

with A (t, Q)=8 (t, Q)=0 for all a and Q"p
=( W~ —W~p )/fi.

The set of equations, Eq. (2.22) —(2.27), can be closed
by differentiating Eqs. (2.28) and (2.29) with respect to
time and using Eqs. (2.9)—(2.21) to obtain

d, A p(t, Q)=iA~pA~p(t, Q)+L'I@~i{A)[@~I(Q)E,(t)] Pp( , tQ) —P~, (t, O)ppI(Q)[pp&(Q) E,(t)]j/iR (2.30)

and

B,B p(t, Q)= iQ'pB p(t, Q)+L I—P (t, Q)pp (Q)[pp (Q).E (t)]—p.' (Q)[p (Q).E (t)]Pp (t, Q)]/iA . (2.31)
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The above equations, a generalization of those derived by
Fu and Haken, ' include only radiative processes and to
this level of approximation form a complete set of equa-
tions that describe the response of a dye molecule of fixed
orientation 0 to the macroscopic radiation field.

Due to collisions with the solvent molecules the dye-
molecule sublevel amplitudes a and a' are randomly
phased relative to each other and, in general,

n (t, Q)L p*((Q)[p ((Q).EI(t)]

&) f dPppA p(t, Q) EI(t) (2.32)s

(2.34), and (2.35) at location x, hereafter indicated explic-
itly for macroscopic physical quantities. When dye-
molecule rotation occurs the local number density n of
dye molecules with orientation 0, is no longer time in-
dependent as in Sec. II C, i.e., n (x, Q) ~ n (x, t, Q ). Under
these circumstances the conservation condition Eq. (2.15)
becomes

1

n~o(x, t, Q)+ f dap"n" ( xt, Q) =n( x, rQ) .
p=O P

(2.36)

and

n'(t, Q)L p*p(Q)[p ~(Q) E~(t)]

» f dPp&B &(r, Q) E (r) .
Si

(2.33)

However, for a uniform dye-molecule doping density or
concentration, the total number density of dye molecules
remains a constant, i.e., Eq. (2.13) becomes

N= dQn x, t, Q (2.37)
4m.

Under these circumstances Eqs. (2.30) and (2.31) may be
neglected and Eqs. (2.26) and (2.27) become

The total vibrational level populations of the S„electron-
ic states are

and

X[p (Q, ) E (t)]/i' (2.34)

+ [no(t, Q) n(t,—Q)]L p "((Q)

X [p.,(Q) E,(r)]yea . (2.35)

BP (r Q) = ice —P (t Q)

—[n o(t, Q) n' (—t, Q) ]L p* (Q)

Ng(x, t)= f dQng( xt, Q),
4m.

(2.38)

where the quantities nI,'(x, t, Q) are the dye-molecule vib-
ronic sublevel number densities per unit solid angle with
orientation Q. In addition, in Eq. (2.3), the total macro-
scopic polarization per unit solid angle, P, (x, t, Q), due to
dye molecules of orientation Q that is induced by the
pump laser and dye-laser electric fields is given by Eqs.
(2.18) and (2.19), namely,

P (x, r, Q)= f dap'[P ( ,x,rQ)+ *Pz( xt, Q)] (2.39)
SI

Equations (2.22) —(2.25), (2.34) and (2.35) describe the
light —dye-molecule dynamics for dye molecules of
specific orientation.

D. Macroscopic dye-medium —radiation interaction
with phenomenological relaxation

From Eqs (2.22) —(2.25), (2.34) and (2.35) it can be seen
that the strength of the dye-molecule interaction with the
electromagnetic field depends on the orientation of its in-
duced dipole moment p ~(Q) or p &(Q) relative to the
direction or polarization of the exciting electric field
E (x, t) or E&(x, r), respectively. Therefore the orienta-
tional or rotational dynamics of the dye molecule is im-
portant as regards its coupling to the light field. '

It should be noted that orientational effects are also ex-
pected and observed in amorphous solid-state laser media
such as Nd:Glass.

The macroscopic response of the dye molecules, in-
cluding relaxation processes, to the macroscopic electric
field E at location x and time t may be obtained as fol-
lows. Since the dye molecules are distributed dilutely
throughout the solvent, they have collisions predom-
inantly with solvent molecules. These elastic and inelas-
tic collision events cause various relaxation processes
(Table I) to occur. In addition, spontaneous emission of
radiation may occur on the laser transition. These pro-
cesses may be treated phenomenologically by introducing
relaxation rate constants into Eqs. (2.22) —(2.25), and

PI(x, t, Q)= f dap [P i(x, t, Q)+P*i(x, t, Q)] . (2.40)
So

The complex polarization components P are deter-
mined by Eqs. (2.34) and (2.35) modified to include relax-
ation, i.e.,

B,P ( xt, Q)= —(y +iso )P ~( xt, Q)

—[no(x, t, Q) —n'(x, t, Q)]

XL p" (Q)[p ~(Q).E ( xt)]limni

(2.41)

and

B,P~I(x, t, Q) = —(y I +ice~( )P~((x, t, Q)

+[no(x, t, Q) —n (x, t, Q)]

XL p"I(Q)[p l(Q) E&(x, t)]liA,
(2.42)

where y z and y I are dye-molecule phenomenological
relaxation rates for the pump-laser and dye-laser-field-
induced polarizations, respectively. They are due pri-
marily to elastic dye-molecule collisions with solvent mol-
ecules. The induced polarizations P.(x, t, Q) are parallel
to the dye-molecule-induced dipole moments p, ( Q ),
which specify the orientation of the dye molecule as
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shown in Fig. 3. As noted earlier the pump-laser and
dye-laser-induced dipole moments are assumed to be
parallel. '

When dye-molecule relaxation processes are included,
I

Eq. (2.22) then becomes the continuity rate equation for
the number density per unit solid angle no(x, t, Q) of the
dye molecules with orientation 0 in the lowest vibronic
level of the S] electronic band, namely,

B,no(x, t, Q)= f dap'yi, (a, O)n'(x, t, Q)+ f dQ'yo(Q', Q)no(x, t, Q')
4m

—y ~o(Q)n o( xt, Q) —yrno(x, t, Q)+ f dczp [P i(x, t, Q) —P*
i( xt, Q)].E i( xt)/iA,

So
(2.43)

where for the Si band of states y~(a, O) is the vibrational
relaxation rate from the vibrational sublevel n to sublevel
0, yo(Q', Q) is the rotational relaxation rate from orienta-
tion 0'~O, for the lowest vibrational sublevel,

ygo(Q)= f dQ yo(Q Q) (2.44)

is the corresponding total rotational relaxation rate, and

yF is the total fluorescence rate for the S& to Sp transi-
tion.

The first term in Eq. (2.43) represents the vibrational
relaxation of all o. sublevels of S, into the lowest sublevel
of S&. Since the solvent is an isotropic amorphous medi-
um, it is reasonable to expect the vibrational relaxation
rates y z(a, O) to be independent of dye-molecule orienta-
tion. It is assumed that vibrational relaxation is a one-
step process S&(a)~S&(0) and does not involve inter-
mediate sublevels. ' The second term represents the
rotational relaxation of all orientations A into orienta-
tion A. The third term represents rotational relaxation
from orientation 0 to all other orientations. The fourth
term is due to spontaneous emission and internal conver-
sion. The fifth term in Eq. (2.43) is due to radiative cou-
pling of all laser transitions Si(0)~So(a).

If y F is the fluorescence relaxation rate for the
S, (0)~So(cx ) transition, then

yF = daP~yF~0

So
(2.45)

Since it is assumed that the relaxation rate yF is due to
spontaneous emission and internal conversion, yF is
essentially independent of dye-molecule orientation.
Consequently, yF is also independent of dye-molecule
orientation.

The dye-molecule orientation or rotational relaxation
is essentially a random-walk process involving many
small rotational increments. Since the solvent is an iso-
tropic, amorphous medium, the total dye-molecule rota-
tional relaxation rate must be independent of the initial
orientation of the dye molecule. Therefore yzo(Q) is

I

equal to yzo and, consequently, yo(Q', Q)=yo(Q').
Furthermore, the rate of rotational relaxation must be
essentially the same for each orientation. Therefore
yo(Q') is equal to yo. Consequently, from Eq. (2.44),
p p g g p /4~. Therefore the phenomenological rotational
relaxation terms in Eq. (2.43) may be approximated by

dQ yo(Q, Q)no(x t Q ) yRo(Q)no(x ttQ)
4~

T

=yzo f dQ'no(x, t, Q')/4m no(x, t, Q—)
4n

(2.46)

Furthermore, if the orientational distribution gradients
are not too large, then the local diffusion approximation
yields

y~o f dQ no(x t Q )/4n no(x t Q)
4~

=DRoVnno(x t Q) (2.47)

where Dz 0 is the isotropic rotational diffusion
coefficient for the lowest vibrational sublevel. The
quantity Vz is the Laplacian operator in spherical coordi-
nates:

V'ti = ( I /sin8) [Bz(sinOB~)+ ( I /sin8)B&] . (2.48)

The diffusion coefficient Dzp and the total rotational re-
laxation rate y~p are related by ygp=6Dgp. The mag-
nitude of the rotational relaxation rate and diffusion
coeScient depends strongly on the solvent.

The assumption of isotropic rotational relaxation is a
good approximation for many dye molecules, but is not
essential to the semiclassical methodology developed
here. More sophisticated models that exhibit the aniso-
tropic nature of dye-molecule rotational relaxation can be
readily incorporated into the level population equations,
e.g. , Eq. (2.43). In this case, Q may be interpreted as
specifying the Euler angles for the dye-molecule orienta-
tion. For the isotropic rotational relaxation diffusion
model, ' ' in the following assumed to hold for all vib-
ronic substates of So and S, , Eq. (2.43) becomes

g, no'(x, t, Q)= f d~p.'y', (a, O)n'(x, t, Q)+yzo[(no(x, t)) —no(x, t, Q)] yFno(x, t,Q)—
Sl

+ f dap [P,(x, t, Q) —P*,(x, t, Q)] Ei(x, t)/i',
So

(2.49)

where

(no(x, t)) = f d Qn ( otx,i)Q4/~ (2.50)

is the orientation-averaged density per unit solid angle of

dye molecules in S,(0).
From Table I, for typical dye-laser media the dye-

molecule vibrational relaxation rates are much larger
than the corresponding rotational relaxation rates, i.e.,



43 THEORY OF PULSED DYE LASERS INCLUDING DYE-. . . 1581

r), n ' (x, t, Q)

= —y'i (~z, O)n '(x, t, Q)

+[P (»t &) P* (x, t, n)] E (x, t)/ih (2.51)

and

yii, (a, O)))y~Ro. Consequently, Eqs. (2.23) and (2.24) be-
come the continuity equations for the number densities
n '

( x, t, A ) and n (x, t, 0 ) of dye molecules with orienta-
tion A in the a vibronic sublevels of S& and So, respec-
tively,

B,n (x, t, O)= —yi, (a, O)n (x, t, A)+yF no(x, t, Q)

+[P*l(x,t, O) —P i(x, t, Q)] Ei( xt)/iA .

(2.52)

In Eqs. (2.51) and (2.52) for the S„band of states,
y~(a, O) is the vibrational relaxation rate from vibronic
sublevel a to sublevel 0. The last term in Eq. (2.51)
represents coupling of pump-laser radiation to the transi-
tions So(0)~Si(a). Likewise, the last term in Eq. (2.52)
accounts for radiative coupling of the dye-laser transi-
tions S,(0)~So(a).

The equations for the level populations are completed
by the relaxation form of Eq. (2.25), namely,

B, noo( xt, Q)= f dap yi, (ct, O)n (x, t, Q)+yzo[(no(x, t)) —no(x, t, Q)]
So

+ f dap'[P* (x, t, Q) —P (x, t, Q)] E (x, t)/i',
Si

(2.53)

where (no(x, t)) is the orientation-averaged density per
unit solid angle of dye molecules in the So(0) level.
Equation (2.53) is the continuity rate equation for the
number density per unit solid angle no(x, t, fI) of the dye
molecules with orientation Q in the lowest vibronic level
of the So electronic band. The quantity yzo is the rota-
tional relaxation rate for this level. It is related to the
isotropic rotational diffusion coefficient D~o of this level

by Dzo =yzo/6. The first term in Eq. (2.53) represents
vibrational relaxation of all a sublevels of So into the
lowest level of So. The second term represents the rota-
tional relaxation of the lowest vibrational level of So.
The third term is due to laser-pump radiation coupling of
all the transitions So(0)~Si(a).

In constructing the continuity equations, Eqs. (2.49),
(2.51), and (2.52), for the dye-molecule excited-state level
populations it is assumed that, due to the nonequilibrium
laser dynamics and (Wo, W")))kT the level population
densities are much larger than their thermal equilibrium
values. In addition, the phenomenological vibration re-
laxation rates y~z represent the one-step vibrational relax-
ation S„(a)~S„(0).This approximation is motivated by
the limited current understanding of the vibronic mode
structure and relaxation dynamics of dye molecules in
liquid solvents. It could be tested by comparisons be-
tween the theory presented here and the results from
ultrashort-pulse dye-laser experiments.

The self-consistent Eqs. (2.1)—(2.3) and (2.36)—(2.53)
developed in Sec. II, together with suitable boundary and
initial conditions for the electromagnetic field and dye-
medium properties, describe the macroscopic dynamics
of pulsed-dye-laser media including rotational relaxation
of the dye molecules. These equations are applicable to
radiation pulse lengths much less than the nonradiative
coupling time of the singlet-triplet manifolds of the dye
molecule. They also form a foundation for inclusion of
nonlinear processes such as self-focusing and Raman
scattering ' that are known to be important at high
light intensities, i.e., 100 MW/cm . In the following,

the utility of this theoretical formalism is illustrated by
application to several situations of practical interest.

III. AMPLIFICATION
OF QUASIMONOCHROMATIC LIGHT PULSES

A. General description

Due to the linearity of the field equations, Eqs. (2.1)
and (2.2), the pump-laser and dye-laser-induced polariza-
tions are of the form

P, (x, t ) =Re I P~ (x, t )exp[i(k x co t ) ]],— (3.2)

where P (x, t ) is the slowly varying complex polarization
amplitude. In general, the complex polarization ampli-
tudes P ( t,x0) produced by the interaction of the
pump-laser and dye-laser electric fields with the dye mol-
ecules of the orientation Q may be written

P, (x, t, Q)= A, (x, t, Q)exp[i(k x co,t)]—
+B,( t,xA)exp[ —i(k, x co, t)], —(3.3)

where A (x, t, Q) and B ( t, Qx) are slowly va, rying
complex amplitudes. Using Eqs. (2.3), (2.39), (2.40), (3.1),

Consider a laser-pumped dye-laser medium in which
the pump laser and dye-laser-light beams are quasimono-
chromatic plane waves:

E (x, t ) =Re I E (x, t )exp[i(k x —co t ) ]], (3.1)

where Re denotes the real part. The complex electric-
field amplitudes E (x, t) are slowly varying in space and
time compared to the field wavelength A, =2~/k and
period 2~/co~, respectively. The pump-laser frequency
vp cop /2' ranges over the dye molecule So —+S i absorp-
tion band. Similarly, the dye-laser frequency v& =cot/2~
ranges over the dye molecule S

&

—+So emission band.
The durations of the pump- and dye-laser pulses are
much greater than an optical period.
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and (3.3), it can be shown that the complex polarization
amplitudes in Eq. (3.2) are given by

P (x, t)=2f deaf dap'[A (x, t, Q)+B* (xt, I2)]
4~

+roy, (co )E~(x, t) (3.4)

and

P&(x, t)=2f dQ f dap [A 1(x, t, Q)+B*&(x,t, Q)]
4~ ~p

+roy, (coi )E((x, t) . (3.5)
In general, the dye concentration in the solvent is such
that the dye-molecule number density X is much less
than the solvent-molecule number density. Consequent-
ly, the induced electric polarization contribution from
the dye molecules is much less than the contribution
from the solvent molecules:

and

e~, (co& )EI(x, t )

))2f dQ f dap [A I(x, t, Q)+B*i(x,t, Q)] .4' 0

(3.7)

In the field equations the induced electric polarization
due to the dye molecules may be treated as a perturba-
tion. If Eqs. (3.1), (3.2), (3.4), and (3.5) are substituted
into the field equations, Eqs. (2.1) and (2.2), and the slow-
ly varying plane-wave approximation is employed, it can
be shown that the complex electric-field amplitudes of the
pump-laser and dye-laser beams must satisfy the follow-
ing: for the pump-laser beam

e~, (co„)E (x, t)

))2f dA f da p'[ A (x, t, Q)+B* (x, t, A)]

(3.6) and

k .E~(x, t)=0 (3.8)

(n, /c)B, E (x, t)+(k Ik ) VE (x, t)=i(poco Ik ) f dQ f dap'[ A (x, t, Q) +B* ( xt, Q)] —a, E (x, t), (3.9)
4~ S,

and for the dye-laser beam

ki.Ei(x, t ) =0 (3.10)

(n, /c)B, EI(x, t)+(kl/k&) V'EI(x, t) =i(poco&/k&) f dO f da p [ A I(x, t, Q)+8*&(x,t, Q)]—
aE&( xt) .

4' 0
(3.1 1)

Equations (3.8) and (3.10) indicate that to first order the
pump-laser and dye-laser beams propagate through the
dye medium as transverse electromagnetic waves. How-
ever, Eqs. (3.9) and (3.11) suggest that the polarization
states of the pump-laser and dye-laser beams may change
as they propagate through the dye medium.

Equations governing the complex polarization com-
ponents A and B may be obtained by substituting
Eqs. (3.1) and (3.3) into Eqs. (2.41) and (2.42):

and

~~ A ~(»t &)= [y„~—i(co~ —to I)]A,(x, t, Q)

+[no(x, t, &)—n (x, t, fl )]

XL'p~((Q)[p~((Q) E, (x, t)]/2ih. ',
(3.14)

8, A (x, t, Q)= —[y i(to —co )] A —(x, t, Q)

—[no(x, t, II)—n ' (x, t, II )]

XL p* (A)[p ~(Q).E„( tx)]/2iA,

(3.12)

B,B (x, t, Q)= —[y +i(to +co p)]B (x, t, Q)

—[no(x, t, Q) —n„'(x, t, Q)]

XL p* (A)[p (Q) E*(x,t)]/2ih,

(3.13)

r), B ((x, t, O)= —[y I+i(to(+co I)]B ( xt, fl)

+[no(x, t, Q) n(x, t,—A)]

XL'p*,(Q)[p, (Q) E,*(x,t )]/2iA .

(3.15)

In experiments' " reported to date, measurements are
typically made with a time resolution that is much longer
than an optical period. If Eqs. (3.1) and (3.3) are substi-
tuted into the medium response Eqs. (2.49) —(2.53) and
the resulting equations are time-averaged over an optical
period, then
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B,no(x, t, Q)= f dap'yI, (a, O)n'(x, t, Q)+yzo[&no(x, t)& —no(x, t, Q)] —yFno(x, t, Q)
S)

+f dap I[ A i( x t Q) —B*I(x,t, Q)] E&( xt) —[ A*i(x, t Q) —8 i(x t, Q)] El( xt)]/2iiii .
So

B,no(x, t, Q)= f dap yi, (a, O)n (x, t, Q)+y~o[&no(x, t)& —no(x, t, Q)]
So

+ f dap'[[3 *~(x,t, Q) —8 ( xt, Q)]. E~( xt) —[ A (x, t, Q) —8* (x, t, Q)].E*(x,t)J/2ifi,
S)

B,n ' (x, t, Q) = —yi, (a, O)n ' (x, t, Q)

+ [[A „(x,t, Q) —8* (x, t, Q)] E'(x, t, Q) —[A* (x, t, Q) —8 (x, t, Q)] E ( xt)I /2ih',

(3.16)

(3.17)

(3.18)

B,n (x, t, Q) = y i,(a,—O)n (x, t, Q)+y~ no(x, t, Q)

+ [[A*i(x, t, Q) —8 i(x, t, Q)].Ei(x, t) —[ A i(x, t, Q) —B*i(x,t, Q)] E ('( xt) I /2iiri . (3.19)

+y~io[&noi(»t)& —no'(x t Q)] . (3.20)

Averaging this equation over a11 solid angles A, all dye-
molecule orientations, yields 8, &n(x, t)&='d, XI4vr=O.
The coupled equations, Eqs. (3.8)—(3.19), (2.36) and (2.37)
together with suitable boundary and initial conditions
provide a complete self-consistent description of laser-
pumped, dye-laser dynamics when the pump-laser and
dye-laser beams are partially polarized, quasimono-
chromatic plane waves. They are applicable to a wide
range of physically interesting situations; including
coherent and partially coherent light pulses and ul-
trashort pulses. In the following the utility and some of
the novel physical features of this model are illustrated by
considering the ampli5. cation of pulses that for typical
dye media (Table I) would be in the 10 —10 ns regime.

B. Fast dye-molecule vibrational
and induced-polarization relaxation

For many situations of practical interest' " the pump-
and dye-laser-pulse lengths are long compared to the
dye-molecule vibrational relaxation and induced polariza-
tion dephasing times yet greater than or comparable to
the dye-molecule fIuorescence and rotational relaxation
times, Table I, i.e.,

and

B,P, (x, t, Q) «y, P, (x, t, Q) (3.21)

B,n" (x, t, Q) «y vn" (x, t, Q) . (3.22)

These conditions easily hold for pulse lengths in excess of
a few picoseconds. Furthermore, in general, the dye-

Equations (2.36) and (2.37) are unchanged by the time
averaging because the level populations change
significantly on a time scale that is long compared to an
optical period. It is interesting to note that Eqs.
(3.16)—(3.19) are compatible with Eqs. (2.36) and (2.37).
Taking the partial time derivative of Eq. (2.36) and sub-
stituting Eqs. (3.16)—(3.19) into the result produces

B,n(x, t, Q)= y~o[ &n o( xt) & no(x, t—, Q)]

n" )) dczp"n~ .
S (3.23)

Essentially all of the dye molecules are in either of two
vibronic levels; the lowest vibronic levels of the So or S,
electronic states. Consequently, for a wide range of in-
teresting conditions, Eqs. (3.12)—(3.15) may be solved for
the complex polarization amplitudes:

A ~( tx, Q)= no(x, t, Q—)L p* (Q)

X [p (Q).E (x, t)]/2'
(3.24)X [(co —co )+iy ],

8 (x, t, Q)=no(x, t, Q)L p* (Q)[p (Q) Ep(x, t)]/2A'

(3.25)X [(co~+co ~ ) iy ], —

A, (x, t, Q)=no(x, t, Q)L p~, (Q)[p«(Q) E,(x, t)]/2A'

and

X[(coi—co i)+iy, ], (3.26)

8«(x, t, Q)= —no(x, t, Q)L p"i(Q)[p«(Q) El*(x,t)]/2A'

X[(m, + «o) i y«] . — (3.27)

I

molecule vibrational relaxation rates yv(a, O) for the
So(a)~So(0) vibrational sublevel relaxation are much
faster than the Si(0)~So(a) laser light stimulated emis-
sion rate, i.e., yi, (a,0)))o,(vI .

)II/hvar,

where cr, is the
stimulated emission cross section for the S,~So transi-
tion and II is the dye-laser radiation intensity. For typi-
cal dye-laser medium conditions, Table I, this requires
II «h vIy i, /o. , —10 GW/cm, which is easily satisfied in
applications. ' " Similarly, the dye-molecule vibrational
relaxation rate yi, (a, O) for the S,(a)~S, (0) vibrational
relaxation is much faster than the So(0)~S,(a) pump
light absorption rate, i.e., yi, (a, O) ))a, (v )I lh v~,
where o, is the absorption cross section for the So~St
transition and I is the pump radiation intensity. For
typical dye-laser-medium conditions, Table I, this re-
quires I «hv yi, /o, -10 GW/cm, which is easily
satisfied in applications. Under these circumstances
it follows that
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It is clear from Eqs. (3.24) —(3.27) that A ~(x, t, Q)
represents the resonant and 8 (x, t, Q) represents the
nonresonant part of the light —dye-molecule coupling
since, typically, co -co »y . Thus A (x, t, Q) is gen-
erally much greater than 8 (x, t, Q).

Retaining only the resonant parts of the dye-molecule ra-
diation interaction in Eqs. (3.16) and (3.17) results in an
error, for typical dye-laser media (Table I), of less than
1%. Using Eqs. (3.28) and (3.29), then Eqs. (3.16) and
(3.17) may be written

1. Dye-molecule population dynamics

and
(3.28)

y~(a, O)n (x, t, Q)=yF no(x, t, Q)

+ [ A'((x, t, Q).Ei(x, t )

—A, (x, t, Q ) E (*(x, t ) ]/2i fi .

(3.29)

Retaining only the resonant parts of the light —dye-
molecule coupling, Eqs. (3.24) and (3.26), and using the
fast vibrational relaxation approximation, Eq. (3.22), the
vibrational sublevels populations, Eqs. (3.18) and (3.19),
are determined by

y~(a, O)n'(x, t, Q)=[A p(x, t, Q) E*(x,t)
—A" ( x, t, Q ) E ( x, t ) ] /2i A'

B,n o( x, t, Q)=n 0( x, t, Q)y (x, t, Q)

+y~o[(no(x, t) ) n—
o( x, t, Q)]

yFn—o(x, t, Q) —no(x, t, Q)y, (x, t, Q)

(3.30)

and

B,n (oxt, Q)= no(—x, t, Q)y (x, t, Q)

+y ~[o(n (oxt)) —n(ox, t, Q)]

+yFno(x, t, Q)+nII(x, t, Q)y, (x, t, Q),
(3.31)

where the pump-laser absorption and dye-laser simulated
emission rates are

and

y (x, t, Q)= f dap'L Ip (Q) E (x, t)I y p/2A [(cop co p) +y—
p]Si

(3.32)

y, (x, t, Q)= f dap L Ip, (Q) Et(x, t)I y~I/2& [(~t —~ I) +y~t],
So

(3.33)

B,[(n (x, t))+(n'(x, t))]=0 . (3.35)

respectively. From Eq. (3.23) it follows that Eq. (2.36) be-
comes

no(x, t, Q)+no(x, t, Q)=n(x, t, Q) . (3.34)

The dye-molecule population continuity Eqs. (3.30) and
(3.31) may be shown to be compatible with Eqs. (2.37)
and (3.34) in the following way. If Eqs. (3.30) and (3.31)
are added together and the result is averaged over solid
angle, then

n~o(x, t, Q) = ( n~o(x, t) ) =NPO(x, t)/4~, (3.36)

where No(x, t ) is the total number density of dye mole-
cules in the lowest vibrational level of electronic state S„,
p=(0, 1). Therefore the level populations ng(x, t, Q) are
isotropically distributed over all orientations. This con-
dition depends strongly on the solvent. Under these cir-
cumstances Eqs. (3.30), (3.31), and (3.34) may be integrat-
ed over solid angle, all dye-molecule orientations, to ob-
tain equations for the total dye-molecule population den-
sities N(~)(x, t ):

Substituting Eq. (3.34) into Eq. (3.35) yields N is a con-
stant as required by Eq. (2.37).

When the rate of dye-molecule rotational relaxation
exceeds the fluorescence, pump-laser absorption and
dye-laser stimulated emission rates, namely,
y~~o &&(yF, yp, y, ), where y cr, (v )I„-lh v and
y, -cr, (v()I, /h v, , then, from Eqs. (3.30) and (3.31), the
level populations will be approximately equal to their
average values

, t)I (x, t)/hv ypN—
a, (v, )No(x,—t )I,(x, t )/'hv,

and

No(x, t )+No(x, t ) =N,
where

(3.37)

(3.38)

a~(vp ) —f da p L Ip~p I copy' /I 3~cnfe2[oy~+p(cop co~p ) ]]s,
is the total absorption cross section for the transition So~S& evaluated at the pump-laser frequency v and

0 (vt ) f da p L Ip I I coty t/I 3cn E'O'It[y (+(cot co I ) ] jSo

(3.39)

(3.40)
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is the total stimulated emission cross section for the
broadband laser transition S, —+So evaluated at the dye-
laser frequency v, . Equations (3.37) and (3.38) are the
rate equation description used previously. ' " For
pulsed-dye lasers, this description is typically restricted
to dye-laser media with Auorescence lifetimes much
longer than the dye-molecule rotational relaxation time,
'e. Xzo++'Vz-P

2. Dye-molecu1e absorption
and stimulated emission cross sections

The total absorption cross section, Eq. (3.39) can be ex-
pressed in terms of the Einstein 3 coe%cient
A(S&(a),So(0)) for a given vibronic sublevel electronic
transition So(0)~S&(a)

cr, (v~)=(A. /B~n, )f dap'A(S, (a),SO(0))g (v„)
Sl

(3.41)

where

A(S)(0),S 0(a))=co(n, L ~p (~ /3rreofic (3.45)

is the Einstein 3 coefticient for a given vibronic-sublevel
electronic transition S

&
(0)~So ( cc ) and

gal(vl ) ) al/~) al (~l al ) (3.46)

is the corresponding normalized line-shape function for
the transition.

Equations (3.41)—(3.46) show that the absorption and
stimulated emission cross sections depend on the radia-
tive transition probabilities and collisional dephasing
rates for each vibronic sublevel that participates in the
process. This result, Eq. (3.44), for the stimulated emis-
sion cross section can be cast in the conventional form

(3.40), may be written

cr, (vl )=(AI/8mn, )f dap A(S, (0), So(a))g I(vi),
So

(3.44)

where

A(S, (cc),SO(0))=co n, L ~p „~ /3vreohc (3.42) (3.47)

(3.43)

is the normalized line-shape function for the transition.
Similarly, the total stimulated emission cross section, Eq.

I

where ~„ is the radiative lifetime, given by

f des p A (S,(0),SO(a) )
So

(3.48)

and the normalized Auorescence line-shape function is

g(v&)= f dap A(S, (0),SO(a))g 1(v&) f dap A(S, (0),So(cc)) .I S a 1 & 0 al l S
(3.49)

Furthermore, if Q is the fluorescence quantum yield,
Table I, then y~= 1/Qr„and ) F = A(S&(0),SO(cc))/Q,
provided intersystem crossing is unimportant as assumed
in the present formulation.

In Fig. 4 the measured ' absorption cr, (A, ) and

stimulated emission cr, (A, I ) cross sections for the dye-
laser media rhodamine 6G Auoroborate in 9S% ethanol
and DCM in dimethyl sulfoxide (DMSO) are presented.
In the following, for simplicity rhodamine 6G in ethanol
stands for rhodamine 6G Auoroborate in 95% ethanol.
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The absorption spectrum is typically measured by deter-
mining the decadic molar extinction coefficient c with a
spectrophotometer. If c is expressed in liter/molcm
and C is the dye concentration in mol/liter then

No, ( v~ ) = E( v~ )C ln 10 . (3.50)

From Eq. (3.47) the stimulated emission cross section
may be determined by measuring the fluorescence line-
shape function g(v&) and the radiative lifetime r, . Since
7„7 FQ = 1, the determination of r„requires measurement
of the fiuorescence lifetime yF

' and the quantum yield Q.
Lifetimes may be determined by phase shift ' or Aash
(e.g. , short-pulse pump-laser ) techniques. Quantum
yields have been measured using both photometric and
calorimetric techniques. Measured values of these
quantities for rhodamine 6G in ethanol and DCM in
DMSO are listed in Table II.

In general, since measurement of the quantum yield re-
quires special equipment, it is useful to have approximate
methods for estimating the radiative lifetime. If the
S i ~SO emission is strong and the nuclear configurations
of the So and S, electronic states are "sufficient1y simi-
1-,- th.n---
I /„r=2. 8 80X1 0 n, c ( & v),, ' f dv E(v~)/v~, (3.51)

~here

estimate the dye-molecule radiative lifetimes for the dye-
laser-media rhodamine 6G in ethanol and DCM in
DMSO. The results of these calculations are presented in
Table II. The corresponding mirror symmetry plots for
these dye laser media are presented in Fig. 5. It should
be noted that in Eqs. (3.51) and (3.53) the frequency ex-
tends over only the So~S, absorption band. Other ab-
sorption processes So—+S„must not be included. As
shown in Fig. 5, in the case of DCM the So~S, absorp-
tion band was approximately established by extrapolating

cr(A~ ) to zero with a dash-dotted ( —~ —.—~ ) line on the
short-wavelength side of the absorption band. From
Table II, Eq. (3.51) yields an excellent estimate of r„ for
rhodamine 6G in ethanol. This is supported by the mir-
ror symmetry plot, Fig. 5, for this dye-laser medium.
However, from Table II, Eq. (3.51) does not yield a very
good estimate of ~, for DCM in DMSO. This result is
also supported by the mirror symmetry plot, Fig. 5, for
this dye-laser medium. For DCM it appears that the
configuration of the S& state di6'ers significantly from that
of the So state. These results together with those in the
literature indicate that Eq. (3.51) can be useful in es-
timating w„. However, as evidenced by the mirror sym-

metry plot, for good results the configurations of the So
and S& states must be sufficiently similar.

~vl ~av= t dvlg(vl)/vl . (3.52) 3. Dye-molecule electric susceptibility tensors

When Eq. (3.51) is a good approximation it has been
found that the fluorescence and absorption spectra
of the dye molecule satisfy the mirror symmetry relation

e(v )/v ccg(2vo —v~)/(2vo —v~) (3.53)

where vo is the frequency that gives the best fit of e(v)/v
to the fiuorescence spectrum g ( v) /v mirror image. The
theoretica1 grounds ' for this relation have been estab-
lished and it has been found empirically to hold for
many dyes. Using their measured ' absorption cross
sections and fiuorescence spectra Eq. (3.51) was used to

I

If Eqs. (3.24) —(3.27) for the complex polarization am-
plitudes A (x, t, Q) and 8 .(x, t, 0 ) are substituted into
Eqs. (3.4) and (3.5) it can be shown that

P, (x, t)=FO[y, (x, t, coj )+y, (co. )1] E (x, t), (3.54)

where 1 is the unit tensor. The quantity y, (x, t, co ) is the
complex dye-molecule electric susceptibility tensor that
characterizes the interaction between the pump-laser
(j =p) and dye-laser (j = l) radiation electric field with the
dye molecules. The pump-laser susceptibility tensor

y (x, t, co~)= f dunno(x, t, A) f dap'(L /co%')tp*~(A)p (0)/[(co ~ co~) —E'y ]-
s,

+)M (Q)p* (II)/[(co +co )+iy ]] (3.55)

describes the absorption of pump-laser radiation by the dye-molecule So—+S, electronic transition. The dye-laser sus-
ceptibility tensor that describes the stimulated emission of radiation produced by the dye-molecule S& ~SO electronic
transition is

TABLE II. Typical dye-laser media S& ~So radiative relaxation properties.

Dye laser rnediurn

Rhodamine 6G in ethanol
DCM in DMSO

'Reference 34.
Reference 31 ~

'Estimate based on Eq. (3.51) in text.

0 93'
071

VF
(ns)

3 5'

(ns)

3.8'
2.7"

3.8'
4 8c
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y, (x, t, ~, )= —f dflno(x t II)f dap (I, /eo&)Ip t(~&)p«(&)/[(~ t ~i) iy«1
477. So

(3.56)

If the induced dipole moments )u (0) are expressed in
spherical coordinates as shown in Fig. 3, then Eqs. (3.55)
and (3.56) may be written in the form

y~(x, t, co~)=3y„(co ) f dP f dH no(x, t, Q)O(Q)
0 0

ji(co&)= f dap (L lp tl /3~o+)

X I [(co (
—co, ) iy I]—

(3.66)

and

(3.57)

( ttx, c)o=t3X ( t&c)of dP f d9no(x t & )O(~I)
0 0

When Eq. (3.36) holds, dye-molecule population densi-
ties n~o are isotropic and the dye-molecule susceptibility
tensors, Eqs. (3.57) and (3.58), are diagonal:

y ( tx, oc)=y (co ) N(oxt)1 (3.67)
(3.58)

and
where O(A) is the symmetric real tensor whose elements
are yI(x, t, co()=yI(cot)No(x, t)1 . (3.68)

O~x(II ) =sin (9 cos P

0 (II)=0 (0)=(sin 8 sin2$)/2,

O„,(O) =O„(Q)=sin 0 cos9 cosP,

O~~(Q)=sin csin P,

O~, (0)=O,~ (II ) = sin 8 cos8 sing,

O„(Q)=sin(9cos 8,
with

Xp(cop ) f da p (I lp l
/3E'o'It)

&& I[(co ~
—co ) iy ]—

+[(co +co )+iy „] 'I

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

Consequently, g~ is the dye-molecule electric susceptibili-
ty per dye molecule per unit volume or the specific dye-
molecule electric susceptibility when dye-molecule rota-
tional relaxation is very fast.

The previous results indicate that the dye-laser medi-
um is optically isotropic in the limit that dye-molecule
rotational relaxation is very fast. However, when dye-
molecule rotational relaxation is slow the dye-laser medi-
um will be optically anisotropic for propagation of both
the pump- and dye-laser light. The amplitudes and polar-
ization states of the pump laser and dye laser will change
as they propagate. Since the dye-molecule susceptibility

tensor y~(x, t, co&) [7i&(x, t, cot)] in the pump-laser absorp-
tion [dye-laser emission] band is complex, there are gen-
erally two distinct physical phenomena that alter the
pump-laser [dye-laser] radiation state. In general, the
pump-laser [dye-laser] amplitude and polarization state
are altered because the absorption [amplification] and
phase shift of the light will depend on the amplitude and



1588 ROGER A. HAAS AND MARK D. ROTTER 43

and

y" (co ) = Pf— dcoy'(co)/rr(co —co ), (3.70)

where g'(co ) represents g '(x, t, co ) or y'(co ), and
y"(co ) represents y "(x,t, co ) or y"(co ), respectively,
and P denotes the Cauchy principal value. Furthermore,
from Eqs. (3.55), (3.56), (3.65) and (3.66) it follows that
y'(co, )=g'( —co ) and y"(coj)= —y"( —co, ). Thus Eqs.
(3.69) and (3.70) can be transformed to integrals over pos-
itive frequencies, namely,

y'(co, ) =2P f dco coy" (co)/rr(co' —co,') (3.71)

y"(co) ) = —2P f dco cyo'( )c/o~( co co, ) . —(3.72)

The utility of these results will now be den1onstrated.
In general, y. (co ) may be accurately approximated for

polarization state and relative direction of propagation of
the pump- and dye-laser beams. However, it will be
shown later that there are physical conditions of interest
where the polarization states of the pump-laser and dye-
laser beams are preserved during their propagation
through the dye-laser medium. These conditions include
circumstances where the dye-molecule rotational relaxa-
tion rate is slow.

%'hen the dye-molecule electric susceptibilities

P~(x, t, co ) and y, (co ), j=(l p), are viewed as functions
in the complex co plane they are analytic in the upper
half plane and possess simple poles in the lower half plane
at co =+co —iy . Consequently, their real and imagi-
nary parts satisfy the well-known Kramers-Kronig or
Hilbert transform relations. For example, if y(co, )

represents y (x, t, co~ ) or y~(co& ), and g(co~ )=g'(co~. )
+iy"(co ), then

y'(co, ) =Pf "
d coy" ( co) /7r( co co, ), — (3.69)

positive real frequencies by keeping only the resonant
parts of Eqs. (3.65) and (3.66), i.e. ,

j (co )= f dcxp'L ~p „~ /3eofi[(co ~
—

cop)
—iy p]

(3.73)

If Eqs. (3.73) and (3.74) are partitioned into their real and
imaginary parts, it can be shown that the absorption, Eq.
(3.39), and stimulated emission, Eq. (3.40), cross sections
can be written as

cr, (co~)=co~g~(co )/cn, (3.75)

cr, (co()= co(y,"(co—
t )/cn, . (3.76)

Consequently, if the dye-molecule absorption and stimu-
lated emission cross sections are known, say from experi-
ment, then the imaginary parts of gj(co~ ) and g~( xt, co)
can be calculated from Eqs. (3.75) and (3.76). Further-
more, using Eqs. (3.75), (3.76), and (3.71) it follows that

and

y'(co )=2cn, Pf dcocr, (co)/rr(co —co )
0

+I(co~)— 2cn Pf dco cr (co)lrr(co co~ ),

(3.77)

(3.78)

where as before co ranges over the dye molecule's
Sp ~S~ absorption band and ~& ranges over the dye
molecule's S, ~So emission band. Equations (3.77) and
(3.78) permit the calculation of the real parts of y (co )

and g (x, t, co ). Therefore, if through experiment the
dye-molecule absorption and stimulated emission cross

and

y&(col)= —f dap L ~p t~ /3eofi((co ~

—coI) —i7' ~] .
So

(3.74)
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sections are known then the dye-molecule pump-laser
and dye-laser electric susceptibility tensors y~(x, t, cui)
can be determined in their respective wavelength bands

In Fig. 4 the measured ' absorption cr, (A)an, d
stimulated emission o, (A&) cro,ss sections for the dye-
laser-media rhodamine 6Ci in ethanol and DCM in
DMSO are presented. Using the methodology described
above the real and imaginary parts of the dye-molecule
electric susceptibilities per dye molecule per unit volume

g~ are calculated, in the Appendix, for the pump-laser ab-
sorption k and dye-laser emission A. l bands of these dyes.
The refractive indices n,, of the solvents ethanol and
DMSO were taken to be 1.36 and 1.48, respectively.
The results of these calculations for rhodamine 6G in eth-
anol and DCM in DMSO are presented in Figs. 6 and 7,
respectively.

4. Pump- and dye-laser-light propagation

In general, the dye concentration is such that the dye-
molecule density N is much less than the solvent-
molecule density and

y, (co, )1 E (x, t) ))y, (x, t, to, ) E, (x, t) .

The optical anisotropy introduced by the dye molecules
may be treated as a perturbation. If Eqs. (3.24) —(3.27)
are substituted into the paraxial field wave equations,
Eqs. (3.9) and (3.11), it can be shown that the complex
electric field amplitudes of the pump- and dye-laser
beams must satisfy

(n, /c)B, E (x, t)+(k /kj ) VEJ(x, t)

=i(to, /2cn, )y, (x, t, co ).E (x, t) —a, E, (x, t) .

(3.79)

To first order the pump- and dye-laser radiation beams
propagate as transverse electromagnetic waves. Howev-

er, Eqs. (3.79) show that, in general, as these beams prop-
agate through the dye medium, their polarization state
changes. The coupled Eqs. (3.30)—(3.34), (2.37),
(3.57) —(3.66), (3.8), (3.10), and (3.79) together with suit-
able boundary and initial conditions provide a complete
description of quasimonochromatic laser-pumped dye-
laser dynamics when the physical circumstances required
by Eqs. (3.21) and (3.22) hold. Further insight into the
implications and utility of these results requires con-
sideration of particular pump-laser and dye-laser
geometries. In the following, the often-used transverse
pump geometry is considered in detail.

5. Transversely laser-pumped pulsed dye lasers

(a) General description The two m.ost popular pump-
ing arrangements' for laser-pumped dye lasers are
called coaxial and transverse because of the relative
orientation of the pump- and dye-laser beams. In the co-
axial (transverse) approach the pump-laser and dye-
laser-light beams are aligned (perpendicular) as they
propagate through the dye-laser medium. Consider a
transverse laser-pumped dye-laser amplifier. Suppose the
dye-laser medium is oriented along the z axis and is thin
in the x-y plane so that the pump light electric field is
unaffected during propagation along the y axis through
the dye medium. Thus from Eq. (3.8) the complex
electric-field amplitude of the pump-laser beam is polar-
ized in the x-z plane,

E, (t) =E„(t)e„+E„(t)e,, (3.80)

is known and only time dependent. The quantity e„ is a
unit vector in the n direction. Since arbitrary pump po-
larization states are of interest, it is useful to introduce
the coherency matrix of the pump

[J (t)]„,=(cn, eo/2)E„„(t)E*,(t), (3.81)

where r=(x, z) and s=(x,z). The pump coherency ma-
trix is Hermitian and has the units of radiation intensity.
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In addition, the intensity of the pump radiation is given
by the trace of J (t), i.e.,

I (t) =Tr[J (t)] . (3.82)

where

n„„=f dP f d9n'(z, t, A)O„„(A),
0 0

(3.86)

=[3cr,(vI )/2][1 iX—&(co&)IX& (cpI )]

X(P,„n„„+E»n„«/2)—a,E /2 (3.84)

The dye-laser radiation propagates along the positive z
axis and consequently from Eq. (3.10) its complex
electric-field amplitude is polarized in the x-y plane:

E,(z, t) =E.(z, t )e„+E, (z, t)e, . (3.83)

If Eqs. (3.80) and (3.83) are substituted into Eq. (3.79), it
can be shown that

(n, /c)B, E +B,E

[J(z, t)]„=(cn, ep/2)E„(z, t)P * (z, t), (3.88)

where m =(x,y). The coherency matrix J(z, t) is Hermi-
tian and its trace is the dye-laser-light intensity, i.e.,

n, =2f

deaf

d9np(z, t, Q)O„(Q), (3.87)
0 0

where the components of O(Q) are given by Eqs.
(3.59)—(3.64) and the subscript n =(x,y) here and in the
following. The form of Eqs. (3.84) and (3.85) indicates
that, in general, as the dye-laser light propagates through
the dye-laser amplifier medium its polarization state will
change. To describe this phenomenon it is useful to
represent the polarization state of the dye-laser light by
the coherency matrix

(n, Ic )B,X'»+ B,E» I, (z, t ) =Tr[J(z, t )] . (3.89)
= [3o', (v~ )/2][1 i XI (cp~)—IXI'(cpI )]

X(E„n /2+E n ) —a,E /2, (3.85)

Equations (3.84) and (3.85) and their complex conjugates
may be used to derive the following equations that govern
the evolution of the components of J(z, t):

(n, /c)B,J „+B,J „=3o,( ~v) Jn„„—a,J +[3cT,(v&)/2][Re(J„) X&(cp—&)Im(J «)/XI'(cpI)]n

(n, /c )B,J +B,J =3a., (v& )J n —a,J + [3cT,(v&)/2][Re( J, )+X'I(cpI )Im( J„)/XI'(co& )]n

(3.90)

(3.91)

(n, /c )c),J„+B,J = [3cr, (vI )/2]J„ In +n i [XI(co—r )/XI'(cpI )](n n) —
I

—a,J„+[3c»,(v&)/4][J +J +iXI(co&)(J —J )IXI'(cpI)]n (3.92)

Furthermore, Eqs. (3.30)—(3.33) for the dye-molecule level populations ng may be rewritten in terms of the pump- and
dye-laser coherency matrices by using Eqs. (3.81) and (3.88):

np pn7' +»l'g ((pn) pnp ) l Fnp npl (3.93)

8 np= nyp»+y ~(p(np) np)+y~np+npy (3.94)

where

y (t, Q)=[3o,(v )/hv»][J (t)sin 9cos P+J»„(t)cos 9+Re[J&,(t)]sin29cosgj,

y, (z, t, A)=[3o, (v&)/hv. &]IJ„„(z,t)sin 9cos P+J (z, t)sin 9sin P+Re[J, (z, t)]sin 9sin2$],

(3.95)

(3.96)

n p(z, t, Q)+n p(z, t, Q)=n(z, t, Q),
where

(3.97)

n Ip = n ~p(z, t, Q ) and ( n p" ) = (, n g (z, t) ); p = (0, 1). The set
of Eqs. (3.84) —(3.96) is completed by requiring

When dye-molecule rotational relaxation is very fast,
i.e., Eqs. (3.36) hold, then Eqs. (3.84) and (3.85) for the
dye-laser-light complex electric-field amplitudes and Eqs.
(3.90)—(3.92) for the coherency matrix elements become

(n, Ic )B,EI (z, t )+B,Ei(z, t )
X=f dQn(z, t, Q)4'

is the constant total dye-molecule number density.

(3.98)
[ [ 1 iXI(cpl ) IXI (~l )]

X cr, (vI )Xp(z, t) —a, ] EI(z, t) l2 (3.99)
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and

(n, /c )BIJ(z, t )+B,J(z, t)

=[o,(vi)NO(z, t) —a, ]J(z, t) . (3.100)

The dye-laser radiation propagates through the laser-
pumped dye-laser medium without change in its state of
polarization. The trace of Eq. (3.100) yields the radiation
transport equation' "for the dye-laser-light intensity:

(n, /c )BII&(z, t )+B,I&(z, t )

To study the role of dye-molecule rotational relaxation in
dye-laser-light amplification, suppose the laser-pulse
lengths are comparable to the fluorescence lifetime and
the pump-laser intensity I is much less than the pump
saturation intensity I „namely, I «I,=yFh v /
o, (v ). In this regime there is negligible dye-molecule
ground-state or So-state population depletion,
no «no =N/4n, an. d Eq. (3.93) becomes

8 nQ N} /47I+} go((nQ ) nQ} QFno nQQ
= [o,(v( )No(z, t ) —a, ]I((z, t ), (3.101) (3.102)

which when combined with Eqs. (3.37)—(3.40) provides
the conventional description' " of quasimonochromatic
light amplification by transversely pumped dye-laser
media. The polarization state of the dye-laser radiation is
unchanged during amplification. It is clear, however,
that this description is valid only when the time scale of
dye-molecule rotational relaxation is much shorter than
the dye-molecule fluorescence, pump absorption, and
dye-laser stimulated emission times.

(b) Small signa-l amplification The g. eneral description
of transversely pumped dye lasers given above is valid for
both small- and large-pump and dye-laser intensity levels.

I

where the pump and stimulated emission rates are given
by Eqs. (3.95) and (3.96), respectively. This equation to-
gether with Eqs. (3.90)—(3.92) for the coherency matrix J
elements and suitable boundary and initial conditions
provide a complete description of dye-laser-light propa-
gation in this regime.

In the small-signal regime the stimulated emission term
in Eq. (3.102) is relatively small and may be neglected,
i.e., I& « I, =yFhv&/cr, (v, ), where I, is the dye laser-
light saturation intensity. In this regime Eq. (3.102) be-
comes

B,no(t, A)=[3o, (v )N/4nhv ][J „(t)sin 8cos P+J „(t)cos 8+Re[J „,(t)]sin28cosg]

+ygo[(no(t) }—no(t, Q)] @~no(t—, Q) . (3.103)

Equations (3.90)—(3.92) and (3.103) can be solved for the pulse problem by first averaging Eq. (3.103) over orientation,
solid angle, to obtain an equation for (no(t) ), namely,

B, (no(t)) =[cr, (v )N/4mhv~]I~(t) yF(no(t) }—. (3.104)

If before pumping is initiated, all dye molecules are in the lowest vibrational level of the So electronic state, then the ap-
propriate solutions to Eqs. (3.103) and (3.104) are

(no(t)) =[a,(v~)N/4mhv ]f dt'I (t')e (3.105)

and

It

no(t, Q)=[o, (v )N/hv ]f dt' yzoe
' f dt"I (t")e

+3[J„,(t'}sin 8cos P+J „(t')cos 8+Re[J „,(t')]si 2n8co Pse]

(3.106)

When Eq. (3.106) is substituted into Eqs. (3.86) and (3.87) it can be shown that n (t) =0,

n „(t)=[o,(v )N/3hv ]f dt' yzoe f dt "I (t")e " +—', e [J„(t')+J„(t')/3]
QO oo

(3.107)

It

n (t)=[o,(v )N/3hv ]f dt' yzoe " f dt "I (t")e +—', e " Iz(t')
oo

(3.108)

Using these results, Eqs. (3.90)—(3.92) for the dye-laser-light coherency matrix may be integrated using the method of
characteristics. The results are



1592 ROGER A. HAAS AND MARK D. ROTTER 43

and

J„„(z,t) =J„„(0,t —n, z /c )exp [3cr, (vI )c /n, ] dt'n„„(t') —a,z
t —n, z/c

(3.109)

J„(z,t ) =J (0, t n,—z /c )

Xexp [3o., (v&)c/2n, ]I dt'[n, „(t')+n (t') i —[y&(coI )/yI'(co&)][n„(t') —n (t')]I —a,z
S

(3.110)

where J(0, t) is the dye-laser-light coherency matrix at the
input to the amplifier located at z =0. These results are
applicable to general pulse shapes whose duration is
much greater than the dye-molecule vibrational relaxa-
tion and polarization dephasing times. For example, sup-
pose that the pump-laser and dye-laser-light pulses are
turned on to a constant value in the distant past. Then
J (t)-Jp, J(O, t)-J(0), and J(z, t)-J(z), and Eqs.
(3.105)—(3.110) reduce to the steady-state solution of Eqs.
(3.90)—(3.92), (3.103), and (3.104), namely,

J„(z)=J„(0)exp [ [go(v& )R„—a, ]z ], (3.111)

where go(v& ) =o, (v& )%g is the small-signal gain
coefficient when dye-molecule rotational relaxation is
fast, q=I /I, is the normalized pump-laser intensity,
and y = yF /yzo is the ratio of the dye molecule's fluores-
cence rate to the rotational relaxation rate of the lowest
vibronic level of its S& state. The quantities R„are
given by

R (y,J „ /I )=[1+(3y/5)(1+2J „„/I„)]/(I+y),
(3.112)

I

rate, the excited dye-molecules fiuoresce before they ro-
tate significantly. Consequently, only excited dye mole-
cules with induced dipole moments nearly aligned with
the pump-laser-light electric field are present in the medi-
um. In general, this situation leads to changes in polar-
ization state and enhanced (reduced) gain for x (y)-
polarized components of the dye-laser radiation. The ex-
ception to this occurs when the dye-laser light is linearly
polarized along either the x or y axis. Since the pump-
laser light is polarized in the x-z plane, the x and y axes
are symmetry axes for the dye-laser radiation polariza-
tion. In this case the x or y polarization state of the dye-
laser light does not change. However, x-polarized light
will experience more gain than y-polarized light. For ex-
ample, consider two amplifiers each pumped with linearly
polarized laser light. Suppose the pump radiation elec-
tric field is aligned along the x axis, i.e., J„=I and
J„=0. If two dye-laser-light pulses of equal intensity,
one x polarized and the other y polarized, are each inject-
ed into a different amplifier of normalized gain length
goL, then, from Eqs. (3.111)—(3.113), the ratio of the in-
tensities of the two amplified pulses will be

R (y)=(1+3y/5)/(1+y) (3.113)
J „/J =exp[6ygoL /5(y+ I ) ] . (3.116)

The functions R„register the effect of finite dye-
molecule rotational relaxation on the coherency matrix
elements J„of the dye-laser-light during quasi-steady-
state light pulse arnplification in the small signal regime.
If dye-molecule rotational relaxation is fast, i.e.,
y~o&&yz, then y &&1 and all R„=1.The polarization
state of the dye-laser light is unchanged during
amplification. This situation also holds if the pump radi-
ation is linearly polarized along the z axis, i.e., if J„=I
and J„=0, for then

R Rpp R (1+3y/5)/(1+y) (3.115)

However, in this case, since R„&1 for finite y, the spa-
tial rate of amplification of the dye-laser light is reduced
due to the finite dye-molecule rotational relaxation rate.

When the dye-molecule rotational relaxation rate is
comparable to or slower than the S&~SO fILuorescence

R (y, J „/I, col)

= [1+(3y/5)(1+J „ /I )

i[&l(~l )/X—l'(~l )](3yJpx. /5Ip ) l /(I+y) .

(3.114)

The strong dependence of Jz /Jyy on y is clearly evident.
The x-polarized radiation generally experiences much
more gain in the regime where dye-molecule rotational
relaxation is important, i.e., finite y.

The magnitude of y, i.e., the importance of dye-
molecule rotational relaxation, depends strongly on the
solvent. For example, for rhodamine 6G in ethanol the
rotational relaxation time ~~ =310 ps and consequently
from Table II, y=y„/yzo-yFrz -0.09. However, for
rhodamine 6G in ethylene glycol, a highly viscous sol-
vent, the rotational relaxation time ~~ =3 ns. Assum-
ing that the Auorescence lifetime of rhodamine 6G de-
pends weakly on the solvent then, in this case, y -0.9.

(c) Large signal amplifi-cation The resu. lts derived in
Sec. III B 5 (b) indicate that optimal performance (largest
gain and no dye-laser-light depolarization) of a trans-
versely laser-pumped dye-laser-light amplifier occurs
when the pump- and dye-laser light electric fields are
parallel. This regime of pulsed-dye-laser operation is
considered in more detail in this section. Suppose that
the pump-laser and dye-laser-light beams are both polar-
ized along the x axis, i.e., I =J „„and I&=J . Assum-

ing, for simplicity, that y„=y~o=yzo and the solvent is
lossless (a, =0), then dye-laser-light amplification is

governed by the appropriate form of Eqs. (3.90)—(3.96)„
namely,
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(n, /c )B,Ii(z, t )+B,I&(z, t)

=3o., (v&)I&(z, t) f dP f dunno(z, t, O)sin gcos P,
0 0

"o
= n o y p +y ii ( ( n o ) no—) —y Fn o no—y, ,

and

(3.117)

(3.118)

~ no n01 p+yR((no) n—o)+yFno+" oy. (3 119)

where

and

yp
= [3o., (vp )Ip (t)/h v ]sin 0 cos P,

y, =[3o., (v, )I, (z, t)/hv, ]sin Hcos P,
(3.120)

(3.121)

(n~o(z, t)) =(1/4') f dP f dgsin&nio(z, t, A)
0 0

(3.122)

together with Eqs. (3.97) and (3.98). These equations may
be greatly simplified by noting that the x axis is an axis of
symmetry. Transforming from spherical polar coordi-
nates (0, $) about the z axis to spherical polar coordinates
(a,P) about the x axis, integrating over the azimuthal an-
gle P and transforming the polar angle a by letting
/=cosa yields

Frantz and Nodvik. A treatment of the short-pulse dye
laser, including ASE depumping but neglecting dye-
molecule orientation and rotational relaxation effects, has
been given by Migus et al. ' '"

Suppose that prior to dye-laser-light pulse
amplification the dye molecules are pumped separately by
x-polarized laser light with initial conditions
n o(z, O, ()=0 and no(z, 0,$) =No/4n=N/4w. All the
dye molecules are initially in the ground state So(0). In
addition, the pump-laser intensity and dye-molecule con-
centration are such that no dye-molecule ground-state de-
pletion occurs during the pumping pulse, i.e.,
noo(z, t, g) =N/4~))no(z, t, g). Then during PumPing,
from Eqs. (3.118), (3.124), and (3.125), the dye-molecule
Si (0) excited-state density per unit solid angle n o is
governed by

B,n' =[3o,(v )NI /4irhv ]g

+yg((no)nQ)yFno (3.127)

B, (no ) =[o,(v )NI /4irhv ]—yF(no ) . (3.128)

Averaging this equation over g, using Eq. (3.126), yields
an equation for the orientationally averaged dye-molecule
S, (0) excited-state population density per unit solid angle
(no ), namely,

(n, /c )B,I, ( zt)+ B,I, (z, t)
1

=6m-o-, (v, )I, (z, t)

ding'no(z,

t, g)

together with Eqs. (3.118)—(3.119) where

(3.123)

The appropriate self-consistent solution of Eqs. (3.127)
and (3.128) that satisfies the initial conditions set forth
earlier gives the population densities at the end of the
pump pulse:

yp=[3o, (v )I (t)/hv„]g'

y, = [3o., ( vi )Ii ( z, t ) /h vi ]g

and Eq. (3.122) becomes

(neo(z, t)) =
—,
' f dgnio(z, t, g) .

(3.124)

(3.125) and

(3.126)

(n ( or)) =(No/4ir)(1 —e ')

no(rp, g)=(No/4')I [(3yg +1)/(y+1)]

(3.129)

These equations describe light amplification in pulsed-
laser transversely pumped dye-laser media when the
pump- and dye-laser-light electric fields are parallel. The
appropriate boundary and initial conditions for an
amplifier whose input is at z =0 are I&(O, t), n o(z, 0$),
and no(z, 0, $). To examine the characteristics of the
solutions to these equations consider two important re-
gimes of operation: short-pulse and quasi-steady-state
pulse amplification.

(i) Short pulse amplification -Consider .a dye-laser
amplifier that is transversely pumped with a laser light
pulse of constant intensity I and duration ~ . The pump
time is greater than or comparable to the dye-molecule
Auorescence lifetime, i.e., w yz ~ 1. During laser pump-
ing the excited dye molecules Auoresce and rotationally
relax. For simplicity, depumping of excited dye mole-
cules by amplified spontaneous emission (ASE) is neglect-
ed, although under high-gain conditions' '" it is impor-
tant. Immediately after the pump-laser pulse terminates
a short dye-laser pulse is amplified by passing it through
the excited dye-laser medium. This situation is analogous
to the conventional short-pulse amplifier containing a
homogeneously broadened medium, first treated by

1ppXYRp)]
(3.130)

where

No =o, (v )NI /yFhv (3.131)

is the total dye-molecule S, (0) excited-state density that
would be produced if, during pumping, dye-molecule ro-
tational relaxation was very fast, i.e., y « 1 and
y~~ ))1. If the pump pulse duration is chosen such
that exp( —yz r„)(( 1 and y is finite then the dye-
molecule S, (0) excited-state density per unit solid angle
approaches the steady-state value

n o(~p, g) =(No /4~)(3yg + 1)/(y+ 1) (3.132)

at the end of the pump pulse.
The polar angle a distribution of no(r, cosa) given by

Eq. (3.132) is plotted in Fig. 8 for several values of y.
Due to symmetry considerations only one quadrant is
plotted. The angle o. is measured from the vertical or x
axis (a =0). Also it should be noted that n o is rotational-
ly symmetric about the x axis, i.e., independent of P.
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Solution of these two coupled partial differential equa-
tions generally requires numerical integration. However,
in many applications the dye-laser pulse energy fluence

r, (z)= f dtI (z, t) (3.135)

is of interest. In this case the treatment may be
simplified. At the input to the amplifier the pulse energy
fluence is known and given by

r, (0)=f" dt I,(o, t) . (3.136)

An equation governing the axial spatial evolution of I I

can be obtained by first formally integrating Eq. (3.134)
to obtain

no(z, t, g)=n o( r, g)exp —3g j dt'It(z, t')/I,

0.5

I & &» I i s & i I

1.5 2 2.5

4zn '/N '

FIG. 8. Polar angle a dependence of the dye-molecule S, (0)
excited-state density per unit solid angle no produced by trans-
verse laser pumping with constant-intensity x-polarized radia-
tion, Eq. (3.132). The angle a is measured from the vertical x
axis. The pumping duration 7p is such that v~y& &)1. The
curves are parametric in y =yF /y&.

This is because the pump and laser-light beams are polar-
ized along the x axis. From Eq. (3.132) all the curves in

Fig. 8 pass through the polar angle determined by
3 cos o, = 1. Figure 8 shows that when dye-molecule rota-
tional relaxation is fast, y ((1, the dye-molecule S, (0)
excited-state density per unit solid angle n p, is isotropi-
cally distributed; i.e., all excited dye-molecule orienta-
tions are equally probable. However, as y is increased
from 0.1 to 10 the dye-molecule S, (0) excited-state densi-

ty per unit solid angle becomes more and more strongly
peaked about the x axis. This asymmetric population dis-
tribution in polar angle a occurs when y is finite because
in this regime S, (0) excited dye rnolecules relax by
Auorescence or nonradiative internal processes before ro-
tating significantly.

Now suppose that immediately prior to short dye-
laser-light pulse injection into the dye amplifier the Si(0)
excited dye-molecule population density per unit solid an-
gle is uniform along the length of the amplifier and given
by the steady-state value, Eq. (3.132). If the duration r&

of the x-polarized dye-laser pulse is such that yF~I &&1
and y+~I &&1, then amplification of the pulse is deter-
mined by a simplified version of Eqs. (3.118), (3.119), and
(3.123)—(3.126), namely,

(n, /c )B,Ii(z, t )+B,II (z, t )
1

=6rtcr, (v& )Ii(z, t ) d g g no(z, t, g) (3.133)—1

and

B,n (z, to, g) = no(z, t, g)[—3o(v )Ii)(z, t )/h vi]g

(3.134)

(3.137)

where I,=h vi /o, ( vi ) is the conventional' ' "o dye-
laser pulse saturation fluence and no(r„, g) is given by Eq.
(3.132). If Eq. (3.137) is substituted into the radiation
transport Eq. (3.133) and the resulting equation is in-
tegrated over all time, it can be shown that

8~1 (g) = 1 —[2(y+ 1)]

X j dg(3yg +1)exp[ —3g I (g)], (3.138)

where g=goz is the dimensionless amplifier gain length
and I = I"& /I, is the normalized laser-pulse energy
ffuence. The quantity go=o, (vi)NO is the small-signal
gain coefficient when dye-molecule rotational relaxation
is very fast during pumping, i.e., when y « 1 and
y~r ))1. Equation (3.138) together with the initial or
boundary condition I (0 ) = I 0

= I i (0)/I, describes the
amplification of short pulses. In general, the perfor-
mance of a short-pulse dye-laser amplifier of length L, de-
scribed by Eq. (3.138), depends on three dimensionless
variables: y, gpL, and I p. After the dye-laser pulse has
passed a given axial location g in the amplifier, from Eq.
(3.137), the dye-molecule S,(0) excited-state density per
unit solid angle will be

no(g, g)=no(r, g)exp[ —3g I (g)] . (3.139)

In Fig. 9, numerical solutions of Eq. (3.138) are
presented for an amplifier with gain length gpL =4. In
this figure the light pulse energy gain 6 = I /I p

=G(I o, y, goL) and extraction efficiency e, =(r —r, )/
goL =e, (I 0, y, goL ) are plotted as a function of normal-
ized light pulse input energy ffuence I 0=I i(0)/I, . In
the figure, as noted, the curves are parametric in
y=yF/yz, which is the ratio of the dye molecule's
fluorescence to rotational relaxation rates. In parts (a)
and (b) of the figure the energy gain and efficiency for
finite y are normalized to the corresponding energy gain
and efficiency for y=0. In part (c) the energy gain and
efficiency are plotted for the y=O case. This approach
exhibits the importance of dye-molecule rotational relax-
ation for a wide range of I p. Also, for comparison pur-
poses the light pulse energy gain and extraction efficiency
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derived by Frantz and Nodvik are also plotted as
dashed lines. Strictly speaking, this solution is valid for
short-pulse dye-laser amplifiers only then yF~I &&1 and
z& yz &) 1. In this regime, negligible dye-molecule
Quorescence relaxation but very fast dye-molecule rota-
tional relaxation occurs during the light pulse. Conse-
quently, during the pulse dye-molecule rotational relaxa-
tion maintains an isotropic S, (0) excited dye-molecule
orientation distribution, i.e., no&no(g).

Figure 10 shows the S, (0) excited dye-molecule popu-
lation density per unit solid angle no after passage of the
light pulse, Eq. (3.139), as a function of polar angle a for
several values of y. The curves are parametric in the nor-
malized light pulse energy fluence V=I I/I, . Figure 9
shows a strong dependence of amplifier energy gain and
extraction e%ciency on y. In general, dye-molecule rota-
tional relaxation has the largest effect on amplifier perfor-
mance when the light pulse normalized input energy
fluence is in the small or intermediate signal regime, i.e.,
I 0& 1. The enhanced amplifier energy gain and extrac-
tion efFiciency for finite y can be explained by the aniso-
tropic dye-molecule S, (0) excited-state population densi-

ty per unit solid angle distributions plotted in Figs. 8 and
10. As y increases the initial dye-molecule orientation
distribution, Fig. 8, becomes peaked about the x axis,
producing greater light pulse energy gain and conse-
quently larger extraction e%ciency.

Equation (3.138) may be used to derive approximate
analytic solutions for light pulse amplification in the
small and large signal regimes. In the small-signal regime
I « 1 and the exponential factor in the integrand may be
expanded yielding an approximation to Eq. (3.138):

3

Q

0.6

0
Q

~ t+I0

o.4 A

i3~I (g)=[(9y/5+1)/(y+1)]r(g) .

The solution of this equation is

r =r,exp[(9y /5+1)g, I./(y+1) ] .

(3.141)

(3.142)

0.2

0
0.001 0.01 0.1

0.0
1

r,
FIG. 9. The short-pulse normalized (a) energy gain

G(I p, y, gpL )/G(I p, O, gpL ) and (b) extraction efficiency
6 ( I p, p, gpL ) /e, ( I p, 0,gpL ) characteristics for a transverse-
laser-pumped dye-laser amplifier of normalized gain length

gpL =4. Both the pump- and dye-laser-light beams are x polar-
ized. Before passage of the dye-laser pulse the initial dye mole-
cule S&(0) excited-state density per unit solid angle n p is given

by Eq. (3.132) and plotted in Fig. 8. In (a) and (b) the curves are
parametric in y =y F /y & . In (c) the pulse energy gain
G(I p, O, gpL ) and extraction efficiency e, (I p, O, gpL ) of the
amplifier are plotted for the normalization case y=O. The
dashed lines give the amplifier performance predicted by the
Frantz and Nodvik (Ref. 60) theory of homogeneously
broadened short-pulse amplifiers, Eq. (3.140).

or

X Il+[y/21 (g)][ . (3.144)

Since (9y/5+1)/(y+1) ) 1, this result is consistent with
results presented in Fig. 9 and discussed earlier. Equa-
tion (3.142) indicates that in the small-signal regime slow
dye-molecule rotational relaxation yields a gain enhance-
ment G(y)/G(0)=exp[4ygoL/5(y+1)], which can be
large, i.e., [G(y)/G(0)], „=exp(4goL/5). For example,
if goL =8 then [G(y)/G(0)], „=600. In the large signal
regime I ))1. Due to the exponential factor in the in-
tegrand, in this case the principal contribution to the in-
tegral comes from the vicinity of /=0. Consequently,
Eq. (3.138) may be approximated by

a&r(g) =1—[2(y+1)] ' I dP3yg'2+1)

Xexp[ —3g I (g)] (3.143)
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Provided the second term on the right-hand side of Eq.
(3.144) is small compared to 1, Eq. (3.144) may be in-
tegrated to obtain the transcendental equation

I =I +g L —(y+1) '(~/3)'

~ [1 1/2 1 1/2
( y2)(1

—I/2 r —i/2)]

(3.145)

The first iterative solution to this equation, namely,

1 =1 +g L —(y+1) '(m/3)'

/ I(1 +g L)i/2 —1 i/2

—( y/2)[(1 +g L) '/ —1 '/ ]I

(3.146)

provides a good approximation to the large-signal solu-
tions of Eq. (3.138) presented in Fig. 9.

(ii) Quasi ste-ady sta-te pulse
amplification

Consider a
dye-laser amplifier that is transversely laser pumped and
operates in the quasi-steady-state regime. The pump- and
dye-laser-pulse lengths are long compared to the dye-
molecule fluorescence and rotational relaxation times,
i.e., yFr)) I and yttr))1, where r=(r~, r&). However,
the ratio y is finite. In addition, the pump- and dye-laser
beams are polarized with their electric fields aligned
along the x axis. Under these conditions the
amplification of a dye-laser-light pulse is determined by a
simplified version of Eqs. (3.118), (3.119), and (3.123),
namely,

1

B,Ii(z)=6vrcr, (vi)Ii(z) I dg g no(z, g),
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FIG. 10. Polar angle a dependence of the dye-molecule S&(0) excited-state density per unit solid angle no after passage of a short
dye-laser pulse of normalized fluence I = I"I/I, for several values of y =y+/y&, namely (a) 0, (b) 0.2, (c) 1, and (d) 5. The normaliza-
tion tota1 number density Xo is given by Eq. (3.131). The angle cx is measured from the vertica1 x axis.
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In the limit of very rapid dye-molecule rotational relaxa-
tion y (( 1, Eq. (3.155) reduces to the conventional form

1.8

1.7

I I I I I I I I

y= 10

8~I(g) =(1+q)I(g)/[1+r)+I(g)] . (3.158)
1.6

(1+g)goL = (1+q)lnG+Io(G —1 ) . (3.159)

In this limit the amplifier efficiency, Eq. (3.157) becomes

The solution of this equation yields the @=0 curves
displayed in Fig. 11. Integration of Eq. (3.158) yields the
transcendental relation

1.5

PC 14

1.3 0.5

e, =(I Io)/—[(1+g)goL —g lnG] . (3.160) 1.2
0.2

Figure 12 shows the S, (0) excited dye-molecule popu-
lation density per unit solid angle n0 as a function of po-
lar angle a for several values of y. The curves are para-
metric in the normalized light intensity I=II /I, for
g = 1. Figure 11 shows a significant dependence of
amplifier intensity gain and efficiency on y. In general,
dye-molecule rotational relaxation has the largest effect
on amplifier performance when the light pulse normal-
ized input intensity is in the sma11 or intermediate signal
regime, i.e., I0 1. The enhanced amplifier intensity gain
and efficiency for finite y can be explained by the aniso-
tropic dye-molecule Si(0) excited-state population densi-
ty per unit solid angle distributions plotted in Fig. 12. As
y increases the dye-molecule S, (0) excited-state orienta-
tion distribution becomes peaked about the x axis, pro-
ducing greater light pulse intensity gain and consequently
larger amplifier efficiency.

Equation (3.155) may be used to derive approximate
analytic solutions for quasi-steady-state dye-laser-light
pulse amplification in the small- and large-signal regimes.
In the small-signal regime I ((1 Eq. (3.155) may be ap-
proximated by

B(I(g)=(1+g)I(g) I 1 —[(y+1)F/g(y+F)]] /r),

(3.161)

where

F(g, y)=1 —[(1+y)/3yi)]' tan 'I [3yg/(1+y)]'
(3.162)

I=Ioexp(RgoL ) I (3.163)

where

R =R (g, y) =(1—[(y+1)F(g,y )/g[y+F(g, y )]] )

X (1+q) /r) . (3.164)

Equation (3.163) holds in the small-signal regime for arbi-
trary y and q. This result gives a good approximation to
the numerical results in the small-signal regime. In Fig.
13 the function R is plotted as a function of g for several
values of y. Since R appears as a factor of g01. in an ex-
ponential, its magnitude and functional dependence on g
and y leads to significant variations in amplifier behavior.
For weak pumping g « 1, Eq. (3.163) reduces to

The appropriate solution to Eq. (3.161) for an amplifier of
length I. is

1.0
0.0001 0.001 0.01 0.1 10

FIG. 13. Plot of the quasi-steady-state small-signal gain pa-
rameter R, Eq. (3.164), as a function of q=I~/I~, for several
values of y =y~/y~.

I=Ioexp[(9y /5+ 1)goL /(1+ y )], (3.165)

in agreement with Eq. (3.111) when J~„„=I. Equation
(3.165) indicates that in the small-signal regime slow
dye-molecule rotation relaxation yields a gain enhance-
ment G(y)/G(0)=exp[4ygoL/5(y+1)] which can be
large, i.e., [G(y)/G(0)], „=exp[4goL/5]. For example,
if goL=8, then [G(y)/G(0)], „=600. If ground-state
depletion is included and g= 1, then from Eqs. (3.163)
and (3.164) [G ( y) /G (0)],„=exp(0. 2goL ) and the
enhancement is much smaller. For example, if g0L =8,
then [G(y)/G(0)], „=5. These results reveal the very
sensitive dependence of amplifier performance on both q
and y. This behavior is explained as follows. Figure 14
shows the S,(0) excited dye-molecule population density
per unit solid angle, n 0, as a function of polar angle a for
g=0.01 and 1 and two values of y, namely, 1 and 10.
These plots indicate that for both values of y as g is in-
creased, corresponding to harder pumping, the dye-
molecule S, (0) excited-state orientation distribution n 0
becomes less peaked about the x axis, producing smaller
light pulse intensity gain. In the large-signal regime
I ))1, Eq. (3.155) reduces essentially to Eq. (3.158),
which is independent of y. This is consistent with the
numerical results displayed in Fig. 11.

In general, the previous results indicate that when the
dye-molecule fluorescence rate yF becomes comparable
to or greater than the dye-molecule rotational relaxation
rate yz, i.e., y ~1, transversely pumped dye-laser light
amplifier characteristics will depart significantly from the
characteristics of conventional homogeneously broadened
amplifiers. Also, under these circumstances amplifier
measurements of stimulated emission cross sections must
account for dye-molecule rotation relaxation or they may
be significantly in error.
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i(t, v;r) =4ce,r V(t, v; r) V"(t, v; I ),
where

(4.3) dependent physical spectrum or measured spectral in-
tensity, Eq. (4.3), of the light pulse if only the
spectrometer-photodetector optical system is employed in
the meausrements, i.e.,

V(t, '1 )= f dt'V(t') (r+(~)(t (—)' (4.4) i (t, v; I ) =Tr[j(t, v; I )] . (4.10)

In the following these results are generalized to the case
of partially polarized quasimonochromatic light by using
the measurement technique proposed by Wolf. '

Suppose the partially polarized light pulses emitted by
the dye laser are examined with an optical detection sys-
tem consisting of a compensator, polarizer, spectrometer,
and a fast photodetector aligned in sequence. ' The
spectrometer-photodetector subsystem is a multichannel
device in which each optical filter channel acts as a
Fabry-Perot interferometer-photodetector combination.
The optical detection system is oriented so that the enter-
ing laser light pulse is partially polarized in the x-y plane.
Due to the compensator ' the y component of the radi-
ation electric field is retarded by an amount e relative to
the x component. It then passes through a polarizer, '
which makes an angle 0 with the positive x direction. If
the radiation electric field at the entrance of the optical
detection system is

E(t) =V(t)+V *(t), (4.5)

where V(t) is the positive frequency part of the radiation
electric field, then following the polarizer the component
of the complex electric field vector V(t) in the direction
of g is2i.

V(t;O, e) = V„(t)cosO+ V (t)e "sinO, (4.6)

where V„(t) is the component of V(t) in the n direction,
n = (x,y). The time-dependent physical spectrum or
measured spectral intensity of this radiation, as deter-
mined by the spectrometer photodetector system, is given
by

i(t, v;I, O, e)=j (t, v;I )cos O+jyy(t, v;I )sin O

+j,~(t, v;I )e "sinOcosO

+j~„(t,v;I )e"sinOcosO, (4.7)

where j(t, v; I ) is the time-dependent physical spectrum
of the coherency matrix or simply the measured time-
dependent spectral coherency matrix of the light pulse.
Both the measured spectral intensity i ( t, v; I,O, e) and
spectral coherency matrix j(t, v; I ) have the units of in-
tensity per unit frequency interval. Each of the measured
spectral coherency matrix components are given by

Now the measured intensity of the partially polarized
light examined by the complete optical detection system
described earlier,

I(t;I, O, e)= f dvi(t, v;I, O, e),
is obtained from Eq. (4.7):

I(t;I, O, e)=J„„(t;I)cos O+J (t;I )sin O

+J (t; I )e "sinO cosO

+J (t;I )e "sinOcosO .

(4.13)

(4.14)

In general, these results may be used to relate laser-light
pulse properties predicted by the pulsed-dye-laser model
described in Sec. II to measured values. To illustrate how
this may be done the case of nearly monochromatic light
is now considered.

If the dye-laser-light pulses are quasimonochromatic as
assumed in Sec. III, then from Eq. (3.1)

V„(t)= [E„(t)/2]e (4.15)

Substituting Eq. (4. 15) into Eq. (4.9) it can be shown that

V„(t,v; I ) =(e ' /2) f dr E„(t—r)e
0

(4.16)

Suppose the dye-laser light is nearly monochromatic and
the spectrometer parameters are such that

~a, E„(t)/E„(t)
~

«I «co, (4.17)

then the principal contribution to the integral in Eq.
(4.16) comes from r & 0( I ') and thus

V„(t,v;I )=E„(t)e ' /2[1 +i(co co()] . —(4.18)

The corresponding measured time-dependent coherency
matrix J(t;I ) of the partially polarized light pulse is
given by

J(t;r)= f dvj(t, v;1 ) . (4.1 1)

This coherency matrix is also Hermitian and its trace is
the measured intensity of the light as determined by the
spectrometer-photodetector system, i.e.,

I(t;1 )=Tr[J(t;1 )] . (4.12)

I „(t,v;r)=4ce, rV (t, v;r)V„*(t,v;r),
where

(4.8)
For these circumstances the measured spectral coherency
matrix of the radiation,

V (t I )= f dt'V (t')e (4.9) j (t, v;r)=ce E„(t)E* (t)I /[I +(co—co ) ] (4.19)

and v and I are the center frequency and pass band-
width, respectively, of a given spectrometer channel. The
overbar denotes ensemble average. The measured spec-
tral coherency matrix is Hermitian. Its trace is the time- J„(t)=ceoE„(t)E * (t) /2, (4.20)

is obtained by substituting Eq. (4.18) into Eq. (4.8). Sub-
stituting Eq. (4.19) into Eq. (4.11) gives the measured
coherency matrix of the light pulse:
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which is the ensemble average of the coherency matrix
calculated in the theory developed in Sec. III. Equations
(4.14) and (4.20) lead to the conventional measurement
methodology ' for the coherency matrix of quasimono-
chromatic light pulses.

V. SUMMARY AND CONCLUSIONS

In this paper a phenomenolgical semiclassical theory of
pulsed-laser-pumped dye-laser amplifiers is presented.
The theory accounts for the novel spectroscopic and re-
laxation properties of dye molecules in liquid solvents. It
is applicable to pulse durations 10—100 ns including
the ultrashort pulse regime. Due to dye-molecule rota-
tional relaxation the medium is optically anisotropic.
This anisotropy is significant if the dye-laser medium has
a fluorescence lifetime less than or comparable to the
dye-molecule rotational relaxation time. Under this con-
dition the arnplification of dye-laser radiation depends on
the directions of propagation and the polarization states
of the pump- and dye-laser light beams and the dye-
molecule fluorescence and rotational relaxation dynam-
ics.

For light pulses of duration ~ 1 ps, the optical anisot-
ropy of the dye medium can be represented by dye-
molecule electric susceptibility tensors. These suscepti-
bility tensors characterize the polarization-dependent
pump- and dye-laser radiation coupling to the dye mole-
cules. Using Kramers-Kronig or Hilbert transform rela-
tions these tensors can be calculated from experimentally
determined absorption and emission cross sections. In
this regime, the coherency matrices of Wiener and
Wolf ' conveniently characterize the time- and space-
dependent polarization states of the pump- and dye-laser
radiation. Rate equations describe the excited-state dy-
namics for dye molecules of a given orientation. Overall,
the theory provides a self-consistent description that is
applicable to both small- and large-signal regimes of
amplification. All the physical parameters in the theory
may be determined by conventional experimental tech-
niques.

The theory presented here clarifies approaches used to
date and provides a more complete description of previ-
ous experiments. In general, it should provide a
significant improvement over conventional theories'
of pulsed dye lasers which are based on a radiation
transport-rate equation formalism that neglects dye-
molecule rotational relaxation. In addition, it should be
a useful point of departure for the analysis of dye-laser

I

amplifiers that operate in the high-intensity and/or
ultrashort-pulse length regimes. The purpose of using a
phenomenological semiclassical approach was to develop
a theory of pulsed dye lasers that accounts for the dye-
molecule structure and its interaction with the radiation
field and liquid solvent with physical parameters that are
easily accessible to experimental measurement. Only a
detailed comparison between the theory presented here
with dye-laser experiments will determine if this objective
has been successfully met. It seems clear that further
progress will require better models of the dye-molecule
structure and relaxation processes, particularly vibration-
al relaxation, and inclusion of nonlinear optical effects.
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APPENDIX

y~(co~)=2cn, f dcocr, (co)/~(co —co )
0

+ f dco o, (co)/~(co co~ )—
j+1

+Pf dco o, (co)/vr(o& —co ) . (Al)
J

The first two integrals may be computed by conventional
numerical techniques.

Over the interval m ~ co ~ co. +& the absorption cross
section can be approximately written

cr, (co) =o., (co, )+m (co —co, ),
where

(A2)

m =[o., ( , co) +cr, (co )]/(co)+, —co, —) . (A3)

Using Eq. (A2) the Cauchy-principal-value integral in Eq.
(Al) may be evaluated and the result is

Consider the Cauchy-principal-value integrals Eqs.
(3.77) and (3.78) when the absorption and stimulated
emission cross sections are known at discrete radian fre-
quency points co=co . For example, consider Eq. (3.77)
and suppose that co (co (co +&. To evaluate Eq. (3.77)
under this circumstance it is useful to express Eq. (3.77)
A%

co. +1
Pf dcoo, ( co) /~( co co~)=[[cr,(co)—) mco]i/2trc—o]in[(co +co )(coi+, —co„)/(co~ —co )(co)+, +co )]

J

+(m /2~)in[(co +, —co )/(co —co, )] . (A4)

This approach to the numerical integration of Eqs. (3.77) and (3.78) is useful when the cross sections o., (co) and cr, (co)
are known from experimental measurements.
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