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In this paper a phenomenological semiclassical theory of pulsed-laser-pumped dye-laser light
amplifiers is presented. The theory accounts for the broadband radiation absorption and emission
characteristics of dye molecules in liquid solvents. Dye-molecule fluorescence, vibrational, rotation-
al, and electric polarization relaxation processes are represented by phenomenological relaxation
rates. In general, it is found that due to dye-molecule rotational relaxation the laser-pumped dye
medium is optically anisotropic. The pump- and dye-laser beams propagate through the dye medi-
um as essentially transverse electromagnetic waves whose amplitude and polarization state changes.
The theory is applicable to pulse durations 7<10-100 ns including the ultrashort pulse regime.
The regime 7% 1 ps in which the pump- and dye-laser pulse lengths are long compared to the dye-
molecule vibrational and electric polarization relaxation times is considered in detail. Amplification
of partially polarized quasimonochromatic light is described by a self-consistent set of equations for
the components of the pump- and dye-laser light coherency matrices and the orientation popula-
tions of the lowest vibronic levels of the dye molecule’s S and S electronic states. The interaction
of the pump- and dye-laser beams with the dye molecules is characterized by complex electric sus-
ceptibility tensors. Kramers-Kronig or Hilbert transform relations are found that permit dye-
molecule absorption and emission cross sections to be used to calculate the pump- and dye-laser sus-
ceptibility tensors. All the physical parameters in the theory may be determined by conventional
experimental techniques. When the dye-molecule rotational relaxation rate y » is much larger than
the fluorescence rate ¥, 7~ ', and the pump-laser absorption and dye-laser stimulated emission
rates, then the dye-molecule electric susceptibility tensors are diagonal. The laser-pumped dye-laser
medium is optically isotropic. When these conditions do not hold the medium is optically aniso-
tropic and coherency matrices may be used to describe the propagation of the pump- and dye-laser
beams. This procedure is illustrated for the case of transversely pumped dye lasers. In the small-
signal regime analytic solutions for the dye-laser-light coherency matrix components are developed
for arbitrary initial polarization state, pulse duration, and ¥ /¥ . In the large-signal regime nu-
merical solutions are obtained for the amplification of short, (7Y r,7y g ) << 1, and quasi-steady-state
(7y g, 7Y r)>>1, pulses for arbitrary values of y/yx when the pump- and dye-laser polarizations
are parallel. In general, it is found that for a wide range of physical conditions of interest dye-
molecule rotational relaxation is important, and significant changes in the amplification characteris-
tics of the medium, i.e., the rate of amplification, amplification efficiency, and polarization state of
the light, will occur.
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I. INTRODUCTION

For several years there has been considerable interest
in the use of pulsed dye-laser media to generate and am-
plify light pulses.! ~3 Specific studies* ™ !! have addressed a
wide range of laser-pumped, dye-laser radiation and
medium physical conditions. The characteristics of
amplified spontaneous emission and mirrorless dye lasers
have been explored.* ® Laser-pumped dye media have
been used to generate and amplify high-power subpi-
cosecond pulses.!®!! In all of these studies a radiation-
transport, rate-equation formulation was used to theoreti-
cally describe the coupled radiation-field, dye-medium
dynamics. Rotational relaxation of the dye molecules
was not included. However, dye-molecule rotational re-
laxation can be important because it makes the dye-laser
medium optically anisotropic. This can significantly alter

43

the amplification characteristics of the dye medium. Pre-
vious theoretical investigations of this behavior have been
restricted to either the small-signal regime'>!3 or the lim-
it of frozen or fixed dye-molecule orientation.'*™!® Build-
ing on these earlier investigations, a phenomenological
semiclassical model of pulsed-dye-laser amplifiers has
evolved. The model provides a self-consistent elec-
tromagnetic field treatment that accounts for the broad-
band emission and absorption of the dye medium, > 1°
the polarization state of the pump and laser radia-
tion;?° 22 collisional relaxation of the induced dye-
molecule electric polarization; and the fluorescence, vi-
brational, and rotational relaxation of the dye molecules.
It is valid for both small- and large-signal amplification
regimes. This paper presents the essential elements of
this theoretical model of pulsed dye lasers. The regime in
which the pump- and dye-laser-light pulse lengths are
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long compared to the dye-molecule vibrational and elec-
tric polarization relaxation times is considered in some
detail. Application of the theory is illustrated by treating
the amplification of partially polarized, quasimono-
chromatic light pulses in transversely laser-pumped dye
media. Both small- and large-signal regimes of
amplification of short and quasi-steady-state light pulses
are considered in detail. The methodology described here
may be readily extended to treat tunable solid-state
lasers.”> 27 The principal limitations of the present semi-
classical approach are that spontaneous emission and
nonradiative dye-molecule relaxation processes are de-
scribed phenomenologically. However, in the applica-
tions considered all of the physical parameters in the
theory may be determined by conventional measurement
techniques. The inclusion of amplified spontaneous emis-
sion requires a complete quantum theory approach.?®?°

This paper is divided into several sections. In Sec. II
the characteristics of laser-pumped pulsed-dye-laser
media are described. A phenomenological semiclassical
theory of laser-pumped dye-laser amplifiers, including
dye-molecule rotational relaxation, is presented. In Sec.
III the amplification of pulsed, quasimonochromatic par-
tially polarized radiation is considered in both the large-
and small-signal regimes. The regime in which the
pump- and dye-laser-light pulse lengths are long com-
pared to the dye-molecule vibrational and electric polar-
ization relaxation times is considered in some detail. Ap-
plication of the theory is illustrated by treating trans-
versely laser-pumped dye lasers. The polarization states
of the pump- and dye-laser radiation are described by the
coherency matrices of Wiener?® and Wolf.2"?? In Sec. IV
the relationship between the theoretically calculated
dye-laser radiation coherency matrix and its experimen-
tally measured values is established by generalizing the
concept of the time-dependent physical spectrum of light
introduced by Eberly and Wodkiewicz.® Section V in-
cludes a summary and conclusions.

II. SEMICLASSICAL THEORY
OF PULSED DYE LASERS

A. Physical characteristics of dye-laser media

The dye-laser medium consists of dye molecules such
as DCM (Ref. 31) or rhodamine 6G (Refs. 32-34) dilute-
ly dissolved in a liquid solvent. Table I summarizes the
important physical characteristics of several organic dyes
along with the solvents methyl alcohol (MeOH) and etha-
nol (EtOH). The broad emission and absorption proper-
ties of a dye molecule such as DCM or rhodamine 6G
may be explained"? by the electronic band-structure
model sketched in Fig. 1. The dye molecule is typically a
large, complex molecule with an electronic structure that
is richly broadened by an almost continuous distribution
of vibration-rotation substates. As shown in Fig. 1, the
electronic structure consists of a ladder of singlet states
S; (i=0,1,2,3, . ..) containing the ground state S, and a
ladder of triplet states T; (=1,2,3,...), which are dis-
placed toward lower energy. Each electronic state has a
number of vibrational levels superimposed on it, with an
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average separation’? between vibrational levels of

1200-1600 cm~!. In large dye molecules, many vibra-
tional modes of differing frequencies are coupled to the
electronic transition. Collisional and electrostatic pertur-
bations due to the solvent molecules broaden these vibra-
tional states.? Interaction with solvent molecules and in-
tramolecular coupling leads to vibrational relaxation on a
subpicosecond time scale.’®3° The relative importance of
intramolecular and intermolecular vibrational relaxation
processes is not presently well understood. Each vibronic
level has closely spaced rotational levels superimposed on
it. These rotational levels are broadened by frequent col-
lisions with solvent molecules and thus form a near con-
tinuum between each vibrational level. Rotational relax-
ation of the dye molecules takes much longer than vibra-
tional relaxation. It occurs on a time scale®> of 100500
ps for the solvents methyl alcohol and ethanol. However,
for highly viscous solvents, it can exceed a nanosecond.®
The longest-wavelength light absorption is from S, to
S;. The absorption from S, to T; is spin forbidden.
Nonradiative coupling of the singlet and triplet manifolds
is also weak with a time scale typically greater than 100
ns. Since the laser-pulse lengths and stimulated emission
times of interest in the applications! !! are much less
than this time, excitation of triplet states may be neglect-
ed. Consequently, when the dye molecule is optically ex-
cited to the S, state it then decays rapidly by vibrational
relaxation to the lowest vibronic sublevel of the S, state.
Spontaneous (fluorescence) and stimulated emission occur
between this level and a vibronic sublevel of S;. These
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FIG. 1. Energy level diagram (Ref. 1) of a typical dye mole-
cule with radiative (——) and nonradiative (— — —) transi-
tions indicated.
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vibronic sublevels then rapidly relax by another nonradi-
ative decay to the lowest vibronic sublevel of S,. The
wide distribution of available vibronic sublevels of S,
gives the observed broadband fluorescence and gain. The
strength of the interaction of light with a dye molecule
depends on the orientation of the dye molecule relative to
the polarization direction of the electric field of the light.
Consequently, the orientation distribution of the dye
molecule’s S, and S, states during the lasing process is
determined by the relative magnitudes of the laser-pulse
length, absorption, stimulated emission, fluorescence, and
rotational relaxation time scales. When the orientation
distribution of the dye molecules is not completely ran-
dom or isotropic the dye-laser medium becomes optically
anisotropic.!271® In this paper, the effect of dye-molecule
rotational relaxation on pulsed-dye-laser dynamics is

induced dipole moments of the dye molecule’s S, —S,
transition is denoted by spherical polar angles 6 and ¢.
Euler angles®> may also be used to specify the orientation
of the dye molecule. The energy-level structure and the
vibrational and rotational relaxation behavior of the dye
molecule described here depends on the solvent. In addi-
tion, many solvents are available with a wide range of op-
tical and fluid properties (Table I). In general, the dye-
laser medium is a nonmagnetic dielectric.

The excited-state absorption process S; —.S, followed
by rapid internal conversion S, — .S, is a potentially seri-
ous loss process. However, experimental data have
shown that the absorption cross section for this process is
small compared to the stimulated emission cross section
for the dyes considered.’>”3* In general, in addition to
fluorescence as shown in Fig. 1, the S| band may also re-

treated in some detail. The orientation of the radiation-

lax by internal conversion and intersystem crossing.

TABLE I. Typical physical parameters of organic dyes and solvents; dye-molecule photochemical properties refer to rhodamine

6G except where noted otherwise.

Quantity Numerical value Reference
Dye-molecule properties
Fluorescence lifetime? 1-5 nsec 35,33
Intersystem crossing lifetime 290 nsec 36
S,—S; lifetime® 30-50 psec 37
Vibrational relaxation lifetime>® 190-500 fsec 38,39
within S
Rotational relaxation time? 100-500 psec 35
Dephasing time® 75 fsec 40
Excited-state-absorption 4X10717 cm? 34
cross section
Peak emission cross section 1.8-4X 107! cm? 1,32-34
Peak absorption cross section 2.7-4.2X1071% cm? 1,32-34
Quantum yield 0.8-0.86 (MeOH) 41
0.982 (MeOH) 42
0.93 (EtOH) 34
0.88 (EtOH) 41
0.95 (EtOH) 43
0.96+0.02 (H,0) 44
0.76—0.81 (H,0) 41
0.45+0.05 Qpon (H,0) 45
Methanol (M) and ethanol (E) properties
Refractive index 1.3288 (M); 1.3611 (E) at Na D line 46
Loss coefficient 0.0031 cm™! (M); 0.01 cm™' (E) at 570 nm
Nonlinear index n, 2.2X107" esu (M); 2.5X 1073 esu (E) at 10 ps 47,48
Raman gain 55X1071% cm/W (M) 49
5.1X107'° cm/W (E) 49
Raman Stokes shift 2831 cm™! (M); 2921 cm ™! (E) 49
Density 0.7914 g/cm?® (M); 0.7893 g/cm’ (E) 46
Viscosity 0.547 cP (M); 1.2 cP (E) at 25°C 46
Boiling point 65°C (M); 78.5°C (E) 46
Thermal conductivity 2.02X1073 W/cm°K (M) 46
1.67X1073 W/cm°K (E) 46
Specific heat 0.609 cal/g°K (M); 0.586 cal/g°K (E) 46

#Typical range.

YCresyl violet.

°‘Rhodamine 640.

9Typical range in the solvents methanol and ethanol.
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Thus the observed lifetime of the S, state is less than the
radiative lifetime. The ratio of the observed lifetime to
the radiative lifetime is known as the quantum yield
(Table I). For good laser dyes, such a rhodamine 6G, the
quantum yield approaches unity.

B. Propagation of electromagnetic radiation

Consider a dye-laser medium that is optically pumped
with a separate laser. The propagation of pump laser
(j =p) light and dye-laser (j =) light through a dye-laser
medium is described by the field equations>®~ >3

VX[VXE;(x,1)]+c 23E;(x,1)=—udP;(x,1)  (2.1)
and
V-[€E;(x,¢)+P;(x,¢)]=0, (2.2)
where E; is the electric-field intensity and
Pi(x,0)=¢ [ di'x,(t —1"E;(x,1")
+f4dePj(x,t,Q) (2.3)

is the medium electric polarization associated with the
light at location x and time ¢. The quantities ¢, €y, and y,
are the speed of light, permittivity, and permeability of
free space, respectively. Unless otherwise specified,
throughout this paper the subscript j=(/,p). The first
term on the right-hand side of Eq. (2.3) is the electric po-
larization due to the interaction of the light with the sol-
vent molecules. The quantity Y, is the electric suscepti-
bility response function of the solvent. The solvent elec-
tric susceptibility ¥, is given by the Fourier transform
(@)= [ drx (e’ .

(2.4)

In general, Y, is complex and may be written as
Xs=X.+ix.. Since the solvent is generally nearly trans-
parent in the dye-molecule absorption and fluorescence
wavelength bands, y; >> . there. In this region, the sol-
vent refractive index and absorption coefficient are given
by n?=1+x. and a;, =wy, /cn,, respectively.

The second term on the right-hand side of Eq. (2.3) is
the electric polarization due to the interaction of the
pump laser (j =p) light and dye laser (j =1/) light with the
dye molecules of all orientations. The quantity Pj(x,t,Q)
is the induced electric polarization per unit solid angle
due to dye molecules whose orientation Q=(60,¢) is in
the solid angle range Q to Q+dQ where
dQ=sinfd0d¢. Equations (2.1) and (2.2) are coupled by
the electric polarization produced by the dye- and
solvent-molecule response to the pump and laser electric
fields. In each case this polarization P;(x,¢,(2) due to the
dye molecules depends on the details of the pump and
laser light fields and the dye-molecule dynamics discussed
in Sec. IT A. The determination of the Pj(x,t,Q) for the
pump and laser radiations is taken up in Sec. II C by con-
sidering only the dye-molecule—-radiation interaction.
Relaxation processes are included in Sec. II D, using a
phenomenological methodology.!® 3033
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C. Macroscopic dye-molecule —radiation interaction

Consider a group of dye molecules whose orientation is
the same. At a given location x in the dye-laser medium,
in the semiclassical and electric dipole approximations,
the interaction of a dye molecule with electromagnetic
radiation is described by the Schrodinger equation

i#0,|W)=[H,;+ex,-6(1)]|V) , 2.5)

where |W) is the state vector of the optically active elec-
tron in the dye molecule. The time-independent quantity
H, is the Hamiltonian operator associated with the dy-
namics of this electron in the coupled dye-
molecule—-solvent environment. The time-dependent re-
laxation dynamics due to the dye-molecule—solvent in-
teraction are treated phenomenologically in Sec. IID.
The vector x, in Eq. (2.5) denotes the electron position
with respect to the dye-molecule center in a coordinate
system fixed relative to the dye molecule. The local mac-
roscopic electric-field intensity at the dye molecule, uni-
form over the molecule, is &(2)=6,(¢)+ &,(t). The local
pump laser and dye-laser electric-field intensities are
6p(t) and &,(t), respectively. In this section, for nota-
tional simplicity, the parametric dependence of physical
quantities, such as &, on location of x of the dye mole-
cule is suppressed, i.e., &;(z)=6&;(x,¢). The physical
constants e and # are the charge on an electron and
Planck’s constant divided by 27, respectively.

It should be noted that in a dielectric medium, the lo-
cal macroscopic electric field & and corresponding in-
duced polarization  are not equal to the total macro-
scopic electric field E and polarization P in the medium
that appears in the field equations, Eqgs. (2.1)-(2.3). In
the dye-laser medium, these differences are due to the
influence of the polarizable solvent molecules on the local
electric field seen by each dye molecule. The prescription
for relating the total and local fields depends on the sym-
metry properties of the medium and the characteristics of
the field and is known as the Lorentz local-field correc-
tion.”>>* For an isotropic medium, such as the dye-laser
medium, and a monochromatic high frequency v, field
&6=LE and P=L?P, where L(v)=[nXv)+2]/3 is the
Lorentz correction factor. If the fields are nonmono-
chromatic, these relations may be applied to each high-
frequency component. Generally, the solvent refractive
index is essentially constant over the dye-molecule ab-
sorption and emission bands and the frequency depen-
dence of the Lorentz correction factor can be neglected.
In the following the Lorentz correction factor will be
used to express equations in terms of the total macro-
scopic fields used in Egs. (2.1)-(2.3).

Based on the discussion of Sec. IT A, the dye-molecule
energy-level structure may be represented by the
simplified model shown in Fig. 2. The time-independent
eigenvectors |49) and |¢}) represent the lowest vibronic
states of S, and §,, respectively, and satisfy
Hy ) =WwWH|yh), where u=(0,1) and W} is the energy
of the corresponding state. In the following the super-
script O or 1 relates to the electronic state S, or S, re-
spectively. The band of substates of energy WX, other
than the lowest, composing S, are described by the time-
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FIG. 2. Simplified dye-molecule energy-level model for a
pulsed dye laser. Radiative ( ) and nonradiative (— — —)
transitions are indicated. The quantities [¢¥3), {[¥5)}, |#)), and
{lpL)} are the time-independent state vectors of the vibronic
sublevels of the singlet S, and S, electronic states of the dye
molecule.

independent eigenvector sets {|¢*)}, which satisfy
Hyly~)=WH|¢#). Each band of substates is taken to be
a continuum!® and denoted by the quantum-number pa-
rameter a. Physically the O and o subscripts represent
the set of quantum numbers required to specify the elec-
tronic substate of the dye molecule in the solvent envi-
ronment. Since the surrounding solvent is uniform and
isotropic, the time-independent state vectors {|¢% )} are
taken to form a complete, orthogonal basis independent
of Q, namely, (y§lyy)=3,,,(PlYy) =0, all u, v, and
(tbﬁltﬁ;):S#VS(a—B)/p’;, where £=(0,1) and v=(0,1).
The identity operator is

1
1= [I6)Cot1+ [, dapslpid) (@il | . @6
n=0 "

The quantity pf; is the density of states of the S, electron-
ic band. The sign f s denotes summation over band S s
"

but not including the lowest state. Consequently, the
state vector of the dye molecule may be written

Wo)= i

u=0

—iWht/f

lv6)

al(t,Q)e

‘iWﬁt/ﬁ|

+fsudapﬁa‘;(t,ﬂ)e ¢¢;>] .o

The normalization condition {W,|¥,) =1 yields

1
> [|ag(t,m|2+ I, dapf;[a';(t,mﬂ:l RNCX)
u=0 L

The quantity |af( t,Q)|? is the probability that a dye mol-
ecule with orientation Q is in the kth vibrational sublevel
of the S . €lectronic state.

Suppose the electronic states of the dye molecule in the
solvent do not possess permanent dipole moments.
Furthermore, from the discussion of Sec. II A, the pump
electric field E,(¢) induces transitions between the lowest

vibronic level of S, and the a vibronic sublevels of S,.
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Likewise, the laser field E,(¢) induces transitions between
the lowest vibronic level of S| and the a vibronic sublev-
els of Sy. For ultrashort pulses this assumption may not
be entirely satisfactory. Radiative coupling between the
lowest vibronic levels of S, and S; is not considered here
although it occurs in some dyes. Radiation-induced in-
traband transitions are generally unimportant. Under
these circumstances, in terms of the probability ampli-
tudes {af(t,Q)}, the Schrodinger equation takes the form

i#0,ad(t,Q)= fsldapéa(‘l(t,ﬂ)e‘iw“PtLyZp(Q).Ep(t) ,
2.9)
i#0,a%(6, Q) =al(t,Q)e ““'Lu* (Q)E,t), (2.10)

iﬁa,a(l)(t,ﬂ)=fs dapgag(t,ﬂ)e+"m“’tLya,(Q).El(,) ,
0
(2.11)
and

ifd,al(,)=ad(1,Q)e *Lp, Q) B, (0. (212

Here and in the following the superscript * denotes com-
plex conjugate. The induced dipole moments p,;(2) and
coupling frequencies w,; are p,,(Q)=( YL f/exe 1),
(@)= (Yhlex, [3), 0, =(WL—W8) /A  and
0y =(W5—W2%)/#%. In the following the orientation Q
of the dye molecule is specified by the direction of the in-
duced dipole moments p,;(Q) as shown in Fig. 3. It is
assumed that all the pump-laser and dye-laser-induced di-
pole moments are parallel'”!®3* and therefore the direc-
tion of all u,;(Q) are specified by the same spherical po-
lar angles 6 and ¢.

The local macroscopic equations governing the dye-
molecule-radiation coupling can be obtained in the fol-
lowing way. Since Egs. (2.9)-(2.12) do not include rota-
tional relaxation, the local number density n(Q) of dye
molecules per unit solid angle whose orientation is in the
solid angle range Q to +d ) must be time independent.
Furthermore,

X

FIG. 3. Orientation of the induced dye-molecule dipole mo-
ments @,;(Q).
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N=[ danQ) (2.13)
47

is the total number density of dye molecules in the sol-
vent. In general, N is a constant determined by the dye-
molecule concentration in the solvent. It is typically
51074 times the solvent molecule number density. In
addition, if nf(z,Q) is the local number density per unit
solid angle of dye molecules with orientation ( in the kth
vibrational sublevel of the .S u electronic state, then

nf(t,Q)=n(Q)|af(t,Q)|*, (2.14)

where the overbar denotes ensemble average. Taking the
ensemble average of Eq. (2.8) and then multiplying the re-
sult by n () yields the conservation relation

1

2

pu=0

nf(t, Q)+ [ dapint(nQ) [=n(Q). @19

The macroscopic electric polarization per unit solid an-
gle generated by the dye molecules with orientation
due to their interaction with the combined pump- and
dye-laser electromagnetic field is

P (1,Q)=n(Q)L{Vy[(—ex,)[¥y) (2.16)
Substituting Eq. (2.7) into Eq. (2.16) it can be shown that

P,(1,Q)=P,(1,Q)+P,(1,Q) , (2.17)
where

P,,(t,m=fsldapg,[Pa,,(z,m+1>;,,(t,m] (2.18)
and

P,(t,m=fsodapg[Pa,(t,n>+P;,(t,m] (2.19)

are the dye-molecule macroscopic electric polarizations
per unit solid angle generated by the pump-laser and
dye-laser fields, respectively. The induced macroscopic
polarization per unit solid angle depends on the level
probability amplitudes, induced dipole moments, and
coupling frequencies through the complex quantities

P, (1,Q)= n(Q)ad* (t,Q)al(t,Q)e G Lp* (Q)

(2.20)

and
P, (1,0)=—n(Q)a% (5, Q)ad(, Qe ““'Lp*(Q) .
2.21)

Equations for the kth vibrational sublevel populations
nf(t,Q) of the S# electronic state may be obtained by

]

3, A, Q) =i Q05K (1, Q) + L2 (% (Q) 1y (Q
and

3,B4(1,Q)=

)-E,(2)]Pg(1,Q)—

— QLB (1, Q)+ L2{P,, (1, Dpg, ([ ph, (Q)E, ()] —pd, (), (Q)-E, (1) IPh, (£,Q)} /i .

first using Egs. (2.9)-(2.12) to derive equations for the
ensemble-average sublevel occupation probabilities
{laf(t,Q)|?}. These equations may then be multiplied by
n(Q) to obtain, after using Egs. (2.20) and (2.21) the con-
tinuity equations,

dnb(t,0)= [ dapa[PaI(t Q)—P%(t,0)]-E (1) /i# ,

(2.22)
3ni(t,Q)=[P,,(t,0)—P%,(t,)]-E,(1)/i#i , (2.23)
3,n%(t,Q)=[P%(1,Q)—P_(t,Q)1-E, (1) /i# , (2.24)
and
3,nd(t,0)= [ dapa[P Q)
o (LQ)E, (1) /ifh . (2.25)

Differentiating Egs. (2.20) and (2.21) with respect to time
and using Egs. (2.9)-(2.12), it follows that

P, (,Q)=—iw,,P,,(,Q)
—[n3(,Q)—nl(£,Q)]
X L%, (Q)[p,, (Q)-E,(2)]/i#h
+ [, dBpBBaB(t Q)-E, (1) /it (2.26)
and
a,Pal(t,Q)z—*iwa,Pal(t,Q)
+[n(1)(t Q)—n(t,Q)]
p‘al(Q)[p‘al(‘Q E[(t)]/lﬁ
- f SodﬁpﬁAaB(t,Q)-E,(t)/iﬁ. 2.27)

The dyadic tensor quantities K,,,;( t,Q) and ﬁaﬁ( t,Q) are
defined by

Aoplt, Q)= n(Q)ad* (1, D)aj(1,Q)
x e 1y 2 2 (Qpg (Q) (2.28)
and
Bos(t,0)=n(Q)al(1,Q)a}* (1, Q)
xe M LIr (Q)pg Q) (2.29)
with A.(1,0)=B,,(1,0)=0 for all a« and Q%
=(WHt—Wh)/%.

The set of equations, Eq. (2.22)-(2.27), can be closed
by differentiating Egs. (2.28) and (2.29) with respect to
time and using Egs. (2.9)-(2.21) to obtain

P (1, Q)ug (Q)[ph(Q)-E()]}) /it (2.30)

(2.31)
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The above equations, a generalization of those derived by
Fu and Haken,' include only radiative processes and to
this level of approximation form a complete set of equa-
tions that describe the response of a dye molecule of fixed
orientation () to the macroscopic radiation field.

Due to collisions with the solvent molecules the dye-
molecule sublevel amplitudes a% and al are randomly

phased relative to each other and, in general,

n%(t, Q)L (Q) [y (Q)-E;(2)]
>>fSOdBp%AaB(t,Q)-E,(t) (2.32)

and

n(ll(t,Q)sz;p(ﬂ)[pap(ﬂ)-Ep(t)]

P
>> fsldﬁpﬁBaﬁ(t,Q)-Ep(t) . (2.33)
Under these circumstances Egs. (2.30) and (2.31) may be
neglected and Egs. (2.26) and (2.27) become

3P, (1, Q)= —iw,,P,,(1,Q)
—[n8(6,Q)—nl(t,Q)IL 2%, (Q)
X [Bep(Q)-E,(2)]/i#h (2.34)

and

3, P (1,Q)=—iw P y(1,Q)
+{n(t,Q)—nd(£,Q)]L%u*,(Q)

X[po (Q)-E\(2)] /it . (2.35)
Equations (2.22)-(2.25), (2.34) and (2.35) describe the
light—dye-molecule dynamics for dye molecules of
specific orientation.

D. Macroscopic dye-medium —radiation interaction
with phenomenological relaxation

From Eqgs (2.22)-(2.25), (2.34) and (2.35) it can be seen
that the strength of the dye-molecule interaction with the
electromagnetic field depends on the orientation of its in-
duced dipole moment u,,(Q) or p,(Q) relative to the
direction or polarization of the exciting electric field
E,(x,t) or E;(x,t), respectively. Therefore the orienta-
tional or rotational dynamics of the dye molecule is im-
portant as regards its coupling to the light field.!2~ 1835
It should be noted that orientational effects are also ex-
pected and observed in amorphous solid-state laser media
such as Nd:Glass.>’

The macroscopic response of the dye molecules, in-
cluding relaxation processes, to the macroscopic electric
field E at location x and time ¢ may be obtained as fol-
lows. Since the dye molecules are distributed dilutely
throughout the solvent, they have collisions predom-
inantly with solvent molecules. These elastic and inelas-
tic collision events cause various relaxation processes
(Table I) to occur. In addition, spontaneous emission of
radiation may occur on the laser transition. These pro-
cesses may be treated phenomenologically by introducing
relaxation rate constants into Egs. (2.22)-(2.25), and
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(2.34), and (2.35) at location x, hereafter indicated explic-
itly for macroscopic physical quantities. When dye-
molecule rotation occurs the local number density n of
dye molecules with orientation  is no longer time in-
dependent as in Sec. II C, i.e., n(x,Q)—n(x,t,Q). Under
these circumstances the conservation condition Eq. (2.15)
becomes
1
>, {n‘é(x,t,QH- fs dapbnt(x,t,Q) |=n(x,t,Q) .
n=0 3

(2.36)

However, for a uniform dye-molecule doping density or
concentration, the total number density of dye molecules
remains a constant, i.e., Eq. (2.13) becomes

N={ dQn(x1,Q). 2.37)
4

The total vibrational level populations of the S, electron-
ic states are

N,g(x,t)=f4 dQnf(x,1,Q) , (2.38)

where the quantities nf(x,z,) are the dye-molecule vib-
ronic sublevel number densities per unit solid angle with
orientation (. In addition, in Eq. (2.3), the total macro-
scopic polarization per unit solid angle, P j(x, t,Q), due to
dye molecules of orientation Q that is induced by the
pump laser and dye-laser electric fields is given by Egs.
(2.18) and (2.19), namely,

P,(x,1,Q)= fsldap;[Papcx,t,m+P:;,,(x,t,m] (2.39)

and
P,(x,t,Q)=fS dapd[P,(x,t,Q)+P¥(x,:,Q)] . (2.40)
0

The complex polarization components P,; are deter-
mined by Egs. (2.34) and (2.35) modified to include relax-
ation, i.e.,

9,P,,(x,t,Q)= “(Vop Tiwg, P, (x,1,Q)
—[nd(x,1,Q)—nl(x,1,Q)]
XL2us, (Q) [0, (Q)-E, (x,1)] /it
(2.41)
and
O, P, (x,8,Q0)=—(yy+iwy )Py(x,t,Q)
+nd(x,t,Q)—n%x,2,Q)]
XLk () po(Q)-E)(x,)]/it ,
(2.42)

where v,, and v, are dye-molecule phenomenological
relaxation rates for the pump-laser and dye-laser-field-
induced polarizations, respectively. They are due pri-
marily to elastic dye-molecule collisions with solvent mol-
ecules. The induced polarizations P;(x,7,() are parallel
to the dye-molecule-induced dipole moments pu,;({),
which specify the orientation of the dye molecule as
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shown in Fig. 3. As noted earlier the pump-laser and
dye-laser-induced dipole moments are assumed to be
parallel.!7 1834

When dye-molecule relaxation processes are included,
J
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Eq. (2.22) then becomes the continuity rate equation for
the number density per unit solid angle n}(x,¢,Q) of the
dye molecules with orientation  in the lowest vibronic
level of the S, electronic band, namely,

a,ng)(x,t,mzfs daply(a,0nl(x,1,Q)+ f4 dQyiQ,Q)nl(x,t,Q")
1 T

—y b @Ind(x,1,Q)—y prb(x,1,Q)+ fsodapg[Pa,(x,t,Q)— *(x,1,0)]-By(x,1)/i#i ,

where for the S| band of states ¥ },(a,0) is the vibrational
relaxation rate from the vibrational sublevel « to sublevel
0, y(l,(Q’,Q) is the rotational relaxation rate from orienta-
tion Q' — Q for the lowest vibrational sublevel,

7ho(Q)= f%dﬂ'}/(‘)(ﬂ’,ﬂ) (2.44)
is the corresponding total rotational relaxation rate, and
v F is the total fluorescence rate for the S| to S, transi-
tion.

The first term in Eq. (2.43) represents the vibrational
relaxation of all  sublevels of .S} into the lowest sublevel
of §;. Since the solvent is an isotropic amorphous medi-
um, it is reasonable to expect the vibrational relaxation
rates ¥ ,(a,0) to be independent of dye-molecule orienta-
tion. It is assumed that vibrational relaxation is a one-
step process S;(a)—S;(0) and does not involve inter-
mediate sublevels.’®3® The second term represents the
rotational relaxation of all orientations €’ into orienta-
tion Q. The third term represents rotational relaxation
from orientation Q to all other orientations. The fourth
term is due to spontaneous emission and internal conver-
sion. The fifth term in Eq. (2.43) is due to radiative cou-
pling of all laser transitions S (0)«<>Sy(a).

If yp, is the fluorescence relaxation rate for the
S1(0)—Sy(a) transition, then

yp=fsodap2‘yFa . (2.45)
Since it is assumed that the relaxation rate y g, is due to
spontaneous emission and internal conversion, ¥, is
essentially independent of dye-molecule orientation.
Consequently, Yy is also independent of dye-molecule
orientation.

The dye-molecule orientation or rotational relaxation
is essentially a random-walk process involving many
small rotational increments.® Since the solvent is an iso-
tropic, amorphous medium, the total dye-molecule rota-
tional relaxation rate must be independent of the initial
orientation of the dye molecule. Therefore yko(Q) is
|

(2.43)

equal to yko and, consequently, yi(Q’,Q)=7iQ’).
Furthermore, the rate of rotational relaxation must be
essentially the same for each orientation. Therefore
y&Q') is equal to y). Consequently, from Eq. (2.44),
y4=7vko/4m. Therefore the phenomenological rotational
relaxation terms in Eq. (2.43) may be approximated by

f4 Ay, Qnb(x,1,Q)—y ko QInd(x,1,Q)

J
~YRo

f4 dQ’n(l,(x,t,Q')/47r—né(x,t,Q)] . (2.46)

Furthermore, if the orientational distribution gradients
are not too large, then the local diffusion approximation®
yields

¥ ko [f%dﬂ’n(1)(x,t,Q')/41r—n(1)(x,t,Q) ]

~D}oVini(x,t,Q), (2.47)
where D}, is the isotropic rotational diffusion
coefficient’® for the lowest vibrational sublevel. The

uantity V3 is the Laplacian operator in spherical coordi-
q Q p P P
nates:

V2,=(1/sin0)[4(sin6d,) +(1/5in6)d3] . (2.48)

The diffusion coefficient D}, and the total rotational re-
laxation rate y %, are related by* yk,=6D},. The mag-
nitude of the rotational relaxation rate and diffusion
coefficient depends strongly on the solvent.*

The assumption of isotropic rotational relaxation is a
good approximation for many dye molecules, but is not
essential to the semiclassical methodology developed
here. More sophisticated models®® that exhibit the aniso-
tropic nature of dye-molecule rotational relaxation can be
readily incorporated into the level population equations,
e.g., Eq. (2.43). In this case, Q may be interpreted as
specifying the Euler angles for the dye-molecule orienta-
tion. For the isotropic rotational relaxation diffusion
model,'?>35 in the following assumed to hold for all vib-
ronic substates of Sy and S, Eq. (2.43) becomes

a,n})(x,t,mzfsldap;yly(a,om},<x,t,m+y}m[<n3<x,t)>—n(‘,(x,t,m]—ypn(g(x,t,m

+ [ dapdlPu(x,t,0) =Pl (x,1,0)]-E (x,1)/ifi ,
0

where

(nd(x,1))= f4 dQnl(x,t,Q) /47 (2.50)

is the orientation-averaged density per unit solid angle of

(2.49)

ldye molecules in S (0).

From Table I, for typical dye-laser media the dye-
molecule vibrational relaxation rates are much larger
than the corresponding rotational relaxation rates, i.e.,
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Y5 (a,0)>>yk,. Consequently, Egs. (2.23) and (2.24) be-
come the continuity equations for the number densities
nl(x,1,Q) and n%(x,t,Q) of dye molecules with orienta-
tion Q in the a vibronic sublevels of S; and S, respec-
tively,

d,nlixt,Q)
=—yL{a,0)n!(x,1,Q)
[Py, (x,2,Q)— P} (x,6,Q)]-E »(X,2) /i (2.51)

and
J

9,n%(x,2,Q)=—y%(a,00n%(x,t,Q)+y pnd(x,1,Q)

+[ ;l(X,t,Q)_POd(X,t,Q)]‘EI(X,t)/i’ﬁ .

(2.52)

In Egs. (2.51) and (2.52) for the S, band of states,
7% (a,0) is the vibrational relaxation rate from vibronic
sublevel a to sublevel 0. The last term in Eq. (2.51)
represents coupling of pump-laser radiation to the transi-
tions Sy(0)«>S,(a). Likewise, the last term in Eq. (2.52)
accounts for radiative coupling of the dye-laser transi-
tions S;(0)—>Sy(a).

The equations for the level populations are completed
by the relaxation form of Eq. (2.25), namely,

9,nd(x,t,Q)= f dapayy(a 0)n%(x,2,Q)+ 1% [{nd(x,2)) —nd(x,1,Q)]

+fsldaptlz[P;p(x,t,Q)—Pap(

where {(n(x,¢)) is the orientation-averaged density per
unit solid angle of dye molecules in the S,(0) level.
Equation (2.53) is the continuity rate equation for the
number density per unit solid angle n(x,z,Q) of the dye
molecules with orientation ) in the lowest vibronic level
of the S, electronic band. The quantity ¥%, is the rota-
tional relaxation rate for this level. It is related to the
isotropic rotational diffusion coefficient D2, of this level
by*> D3o=7%0/6. The first term in Eq. (2.53) represents
vibrational relaxation of all a sublevels of S, into the
lowest level of S,. The second term represents the rota-
tional relaxation of the lowest vibrational level of S,.
The third term is due to laser-pump radiation coupling of
all the transitions S,(0)<>S; ().

In constructing the continuity equations, Egs. (2.49),
(2.51), and (2.52), for the dye-molecule excited-state level
populations it is assumed that, due to the nonequilibrium
laser dynamics and (W}, W")>>kT the level population
densities are much larger than their thermal equilibrium
values. In addition, the phenomenological vibration re-
laxation rates ¢4 represent the one-step vibrational relax-
ation S, (a)—S,(0). This approximation is motivated by
the limited current understanding of the vibronic mode
structure and relaxation dynamics of dye molecules in
liquid solvents. It could be tested by comparisons be-
tween the theory presented here and the results from
ultrashort-pulse dye-laser experiments.

The self-consistent Egs. (2.1)-(2.3) and (2.36)-(2.53)
developed in Sec. II, together with suitable boundary and
initial conditions for the electromagnetic field and dye-
medium properties, describe the macroscopic dynamics
of pulsed-dye-laser media including rotational relaxation
of the dye molecules. These equations are applicable to
radiation pulse lengths much less than the nonradiative
coupling time of the singlet-triplet manifolds of the dye
molecule. They also form a foundation for inclusion of
nonlinear processes such as self-focusing®® and Raman
scattering*>** that are known to be important at high
light intensities, i.e., =100 MW/cm?. In the following,

X,I,Q)]‘Ep(x,t)/iﬁ ,

(2.53)

[

the utility of this theoretical formalism is illustrated by
application to several situations of practical interest.

III. AMPLIFICATION
OF QUASIMONOCHROMATIC LIGHT PULSES

Consider a laser-pumped dye-laser medium in which
the pump laser and dye-laser-light beams are quasimono-
chromatic plane waves:

E;(x,t)= Re{E (x,t)expli(k; x—w;1)]} , (3.1)

where Re denotes the real part. The complex electric-
field amplitudes E;(x,?) are slowly varying in space and
time compared to the field wavelength A;=2m/k; and
period 27 /w;, respectively. The pump-laser frequency
v, =w, /27 ranges over the dye molecule S, — S, absorp-
tion band. Similarly, the dye-laser frequency v, =w, /27
ranges over the dye molecule S;—S, emission band.
The durations of the pump- and dye-laser pulses are
much greater than an optical period.

A. General description

Due to the linearity of the field equations, Egs. (2.1)
and (2.2), the pump-laser and dye-laser-induced polariza-
tions are of the form

P;(x,1)=Re{P(x,0)expli(k; x—w;1)]} , (3.2)

where P ;(x,1) is the slowly varying complex polarization
amplitude. In general, the complex polarization ampli-
tudes Paj(x,t,Q) produced by the interaction of the
pump-laser and dye-laser electric fields with the dye mol-

ecules of the orientation () may be written
P,(x,t,Q0)= A,;(x,1,Q)exp[i i(k;'x—w;t)]
+B,;(x,7,Q)exp[ —i(k;-x—w;t)], (3.3)

where A,;(x,7,Q2) and B,;(x,£,Q) are slowly varying
complex amplitudes. Using Egs. (2.3), (2.39), (2.40), (3.1),
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and (3.3), it can be shown that the complex polarization
amplitudes in Eq. (3.2) are given by

f»p(x,z):zf%dafsldap;[ A, (x,1,Q)+B%,(x,1,0)]

+eoXs (@, B, (x,1) (3.4)

and
P,(x,t)=2f4ﬂdﬂfsodapg[ A (x,0,Q)+B%(x,1,Q)]

+ € (0 B, (x,1) . (3.5)
In general, the dye concentration in the solvent is such
that the dye-molecule number density N is much less
than the solvent-molecule number density. Consequent-
ly, the induced electric polarization contribution from
the dye molecules is much less than the contribution
from the solvent molecules:
eoj(\s(cap )ﬁp(x,t)
1
>>2f4wdﬂfsldapa[

A, (x,1,0)+B%,(x,1,Q)]

(3.6)
J

(n,/c)3,E,(x,0)+(k, /k,)-VE,(x,1)=

and for the dye-laser beam
k,-E,(x,1)=0

and

(n, /c )B,fi‘,,(x,t)-i-(k,/k,)-Vﬁ,(x,t)=i(uow%/k,)f4 do [ dapl A
a 0

Equations (3.8) and (3.10) indicate that to first order the
pump-laser and dye-laser beams propagate through the
dye medium as transverse electromagnetic waves. How-
ever, Egs. (3.9) and (3.11) suggest that the polarization
states of the pump-laser and dye-laser beams may change
as they propagate through the dye medium.

Equations governing the complex polarization com-
ponents A,; and B,; may be obtained by substituting
Egs. (3.1) and (3.3) into Egs. (2.41) and (2.42):

3, AL, (x,1,Q)=—[y,, —ilw, —0,,)] A, (x,,Q)
—[nd(x,t,Q)—nl(x,1,Q)]
XLk, (D), (Q)-E,(x,1)]/2i#
(3.12)
ap (X1, Q)= = [y 4, Hilw, t©,,)]B,,(x,1,0)

—[n8(x,,Q)—nL(x,1,Q)]
(Hap (Q)-EX(x,1)] /2%,

(3.13)

XLuk,(Q)

oy /ky) [ A [ dapil
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and

€o¥ () )E)(x,1)
>>2f47dﬂfsodapg[ Aal(x’t>9)+B;1(X,t,Q)] .

(3.7

In the field equations the induced electric polarization
due to the dye molecules may be treated as a perturba-
tion. If Egs. (3.1), (3.2), (3.4), and (3.5) are substituted
into the field equations, Eqgs. (2.1) and (2.2), and the slow-
ly varying plane-wave approximation is employed, it can
be shown that the complex electric-field amplitudes of the
pump-laser and dye-laser beams must satisfy the follow-
ing: for the pump-laser beam

k, E,(x,1)=0 (3.8)
and
A, (x,1,0)+B%(x,60)]—aE,(x,1), (3.9
(3.10)
(%50 +B(x,1,0)]—a, B (x,0) . (3.11)
[
at Aal(xrtaﬂ)z—[yal—i(wl_a)al)]Aa](x,t,Q)

+[n§(x,2,Q)—n%(x,5,Q)]
XL () [ (Q)-B(x,0)]2i%

(3.14)

and

0,B(%,1,Q)=—[y, +i(w,+wy) By (x,1,Q)

+[nh(x,1, Q)—nl(x,1,Q)]
L2 () [y (Q)-BF (x,0)]/2i .
(3.15)

In experiments! ~!! reported to date, measurements are

typically made with a time resolution that is much longer
than an optical period. If Egs. (3.1) and (3.3) are substi-
tuted into the medium response Egs. (2.49)—(2.53) and
the resulting equations are time-averaged over an optical
period, then
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d,nh(x,t,Q)= fs daplyL(a,00n ) (x,6,Q)+ykol{nd(x,1)) —nl(x,6,Q)]—ypnj(x,t,Q)
1

+ fSOdapg{[ A (x,60)—BY(x,,0) - EF(x,0)—[ A%(x,5,Q)— B, (x,5,Q)]-B (x,0)} /2i# .

(3.16)

3,nd(x,t,Q)= fsodapgy(;’/(a,o)n?l(x,t,ﬂ)+y%o[(ng(x,t))—ng(x,t,())]

+fsldap(lx{[A;p(x,t,Q)—Bap(x,t,Q)]-ﬁp(x,t)—[Aap(x,t,Q)—B;p(x,t,ﬂ)]-ﬁ;(x,t)}/Ziﬁ ,

a,nl(x,t,0)=—yL(a,00n)(x,1,Q)

F{[ Agy(x,1,2)—BL, (x,1, ) E X(x,6,0)— [ A%, (x,6,2)—B,,(x,t, ) ]-E ,(x,1)} /2i#,

and

3,n%(x,,2)=—y%(a,00n%(x,1,Q)+y pnb(x,,Q)

+{[AL(x,60)— B, (x,60)]-B (x,1)— [ Ay (x,,Q)—B(x,1,0) - Ef(x,1)} /2i# .

Equations (2.36) and (2.37) are unchanged by the time
averaging because the level populations change
significantly on a time scale that is long compared to an
optical period. It is interesting to note that Egs.
(3.16)—(3.19) are compatible with Egs. (2.36) and (2.37).
Taking the partial time derivative of Eq. (2.36) and sub-
stituting Egs. (3.16)—(3.19) into the result produces

3,n(x,5,Q)=7%[{nd(x,t)) —nd(x,¢,Q)]

+yhol{nd(x,2)) —ni(x,2,Q)] . (3.20)

Averaging this equation over all solid angles €, all dye-
molecule orientations, yields 9,{n(x,¢))=3,N /4r=0.
The coupled equations, Eqs. (3.8)—(3.19), (2.36) and (2.37)
together with suitable boundary and initial conditions
provide a complete self-consistent description of laser-
pumped, dye-laser dynamics when the pump-laser and
dye-laser beams are partially polarized, quasimono-
chromatic plane waves. They are applicable to a wide
range of physically interesting situations; including
coherent and partially coherent light pulses and ul-
trashort pulses. In the following the utility and some of
the novel physical features of this model are illustrated by
considering the amplification of pulses that for typical
dye media (Table I) would be in the 1073~ 10 ns regime.

B. Fast dye-molecule vibrational
and induced-polarization relaxation

For many situations of practical interest! ~!! the pump-
and dye-laser-pulse lengths are long compared to the
dye-molecule vibrational relaxation and induced polariza-
tion dephasing times yet greater than or comparable to
the dye-molecule fluorescence and rotational relaxation
times, Table I, i.e.,

3,P,(x,1,Q) <<y, P,(x,1,Q) (3.21)
and
0,nk(x,1,Q) <<yhnt(x,t,Q) . (3.22)

These conditions easily hold for pulse lengths in excess of
a few picoseconds. Furthermore, in general, the dye-

(3.17)

(3.18)

(3.19)

[

molecule vibrational relaxation rates y?,( a,0) for the
Sola)—S,(0) vibrational sublevel relaxation are much
faster than the §,(0)—Sy(a) laser light stimulated emis-
sion rate, i.e., ¥y%(a,0)>>0,(v,)I,/hv,, where o, is the
stimulated emission cross section for the S;—.S transi-
tion and I; is the dye-laser radiation intensity. For typi-
cal dye-laser medium conditions, Table I, this requires
I, <<hwv;y% /o, ~10 GW/cm?, which is easily satisfied in
applications.! ~!! Similarly, the dye-molecule vibrational
relaxation rate y}(,0) for the S;(a)—S;(0) vibrational
relaxation is much faster than the S,(0)—S,(a) pump
light absorption rate, i.e., yly(a,O)>>aa(vp M, /hv,,
where o, is the absorption cross section for the Sy—S,
transition and I, is the pump radiation intensity. For
typical dye-laser-medium conditions, Table I, this re-
quires I, <<hv,yy/0,~10 GW/cm? which is easily
satisfied in applications.! ”!! Under these circumstances

it follows that
nf>> [ dapint . (3.23)
I

Essentially all of the dye molecules are in either of two
vibronic levels; the lowest vibronic levels of the S, or S,
electronic states. Consequently, for a wide range of in-
teresting conditions, Eqgs. (3.12)-(3.15) may be solved for
the complex polarization amplitudes:

A, (x,1,Q)=—nd(x,t,Q)Lp},(Q)

X[y (Q)-E, (x,0)] /27

X[(@, =@g,) Tiv4,] (3.24)
B, (x,1,2)=nd(x,1,Q) L%, (Q)[p,, (Q)E*(x,0]/2%

X[(wp +@q,) =iV ] s (3.25)
Aa,(x,t,Q)=n(l)(x,t,Q)Lzy:,,(ﬂ)[y.a,(ﬂ)‘ﬁ1(x,t)]/2h

Xw;—w4)+ivyl s (3.26)

and
B (x,1,Q)=—nb(x,t,Q)L2pu* (Q)[p,(Q)-E ¥ (x,1)] /2%
X[+ wu)—=ivy] - (3.27)
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It is clear from Eqgs. (3.24)-(3.27) that A,;(x,t,Q)
represents the resonant and B,;(x,f,{1) represents the
nonresonant part of the light—dye-molecule coupling
since, typically, ®; ~@,; >>v,;. Thus A,;(x,2,Q) is gen-
erally much greater than B,;(x,,Q).

1. Dye-molecule population dynamics

Retaining only the resonant parts of the light—dye-
molecule coupling, Eqs. (3.24) and (3.26), and using the
fast vibrational relaxation approximation, Eq. (3.22), the
vibrational sublevels populations, Egs. (3.18) and (3.19),
are determined by

Y, 0nl(x,6,0)=[ A, (x,1,0)E *(x,1)

*

p

— A* (x,t,Q)E (x,0)]/2i%
ap P

(3.28)
and

Y9 (a,00nd(x,t,Q)=y pnd(x,t,Q)
+[ A (x,1,Q)-E (x,1)
— Ay(x,t,Q)E¥(x,1)]/2i# .

(3.29)
|

VYo%t )= [ daplL?lp,, (Q) B, (x,0)% o /28 (0, =, +72, ]
1

and

velxt,00= [ dapdL?p,(0)-E (x,0)y /27 (0, —
0

respectively. From Eq. (3.23) it follows that Eq. (2.36) be-
comes

nd(x,t,Q)+nb(x,2,Q)=n(x,1,Q) . (3.34)

The dye-molecule population continuity Egs. (3.30) and
(3.31) may be shown to be compatible with Egs. (2.37)
and (3.34) in the following way. If Egs. (3.30) and (3.31)
are added together and the result is averaged over solid
angle, then

3, [{nd(x,))+{nl(x,£))]=0. (3.35)

Substituting Eq. (3.34) into Eq. (3.35) yields N is a con-
stant as required by Eq. (2.37).

When the rate of dye-molecule rotational relaxation
exceeds the fluorescence, pump-laser absorption and
dye-laser stimulated emission rates, namely,
Y%o>WV gV v.), where y,~0,(v,)I,/hv, and
Ye~0s(v))I;/hv,, then, from Egs. (3.30) and (3.31), the
level populations will be approximately equal to their
average values

o,(v,)= fsldap}xthp,ap!zwpyap/{3cnseoﬁ[yip o, —0,,)]}
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Retaining only the resonant parts of the dye-molecule ra-
diation interaction in Egs. (3.16) and (3.17) results in an
error, for typical dye-laser media (Table I), of less than
1%. Using Eqgs. (3.28) and (3.29), then Egs. (3.16) and
(3.17) may be written
3,no(x,1,Q)=nf(x,1,Q)y,(x,1,Q)
+yrol{nd(x,6)) —nl(x,1,Q)]
—ypnd(x,1,Q)—nl(x,1,Q)y,(x,1,Q)

(3.30)

and

3, ng(x,1,Q)=—ng(x,,Q)y,(x,1,0)
+y%ol {nd(x,2)) —n(x,t,Q)]
Fypno(x, Q) +no(x,1,Q)y,(x,6,Q) ,
(3.31)

where the pump-laser absorption and dye-laser simulated
emission rates are

(3.32)

0 +ril, (3.33)
[

nb(x,t,Q)={nk(x,1)) =NE(x,t) /4 (3.36)

where N{(x,t) is the total number density of dye mole-
cules in the lowest vibrational level of electronic state S s
©=(0,1). Therefore the level populations nf(x,t,€Q) are
isotropically distributed over all orientations. This con-
dition depends strongly on the solvent.>> Under these cir-
cumstances Eqgs. (3.30), (3.31), and (3.34) may be integrat-
ed over solid angle, all dye-molecule orientations, to ob-
tain equations for the total dye-molecule population den-
sities N (x,1):

O, No(x,1)=0, (v, INJ(X,)I,(x,8) /hv,—y N} (x,1)

is the total absorption cross section for the transition S,— S, evaluated at the pump-laser frequency v, and

os(v))= fS dapoL? g Pory o /{3ensedil v 2 + (o, — w4}
0

— o (v )N(x,0)I(x,t)/hv, (3.37)
and
NJ(x,t)+Ni(x,t)=N , (3.38)
where
(3.39)
(3.40)
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is the total stimulated emission cross section for the
broadband laser transition S, —S evaluated at the dye-
laser frequency v;. Equations (3.37) and (3.38) are the
rate equation description used previously.!”!' For
pulsed-dye lasers, this description is typically restricted
to dye-laser media with fluorescence lifetimes much
longer than the dye-molecule rotational relaxation time,
i.e, Y%o>7vp-
2. Dye-molecule absorption
and stimulated emission cross sections

The total absorption cross section, Eq. (3.39) can be ex-
pressed in terms of the Einstein A4 coefficient
A(S(a),S,(0)) for a given vibronic sublevel electronic
transition S4(0)—S(a)

Ua(vp)=(k2/87rnx2)fsldaptle(Sl(a),SO(O))gap(vp)

(3.41)
where
A(S)(a),So(0)=w)n,L?|p,, > /3meshc’ (3.42)
and
8ap (Vo) =2V op /[¥2p (0, —,,)?] (3.43)

is the normalized line-shape function for the transition.
Similarly, the total stimulated emission cross section, Eq.
J

glv))= fsodapgA(S1<0>,So(a))gal(v,)/fsodapgA(sl(O),s()(a)) .

Furthermore, if Q is the fluorescence quantum yield,
Table I, then y=1/Q7, and yp,= A(S,(0),Sy(a))/Q,
provided intersystem crossing is unimportant as assumed
in the present formulation.

In Fig. 4 the measured3' ~** absorption o,(A,) and

2.0 et

04

0.0 L aa a4 FURTE ST BT R S S 'Y “r 0
350 400 450 500 550 600
Xp (nm)

(3.40), may be written
o, (v))=(A}/8mn?) [ dapd A(S,(0),S4(a))g (V) ,
0

(3.44)
where

A(S1(0),Sy(a))=win,L?*|p,, |?/3metic? (3.45)

is the Einstein A4 coefficient for a given vibronic-sublevel
electronic transition S,(0)—S,(a) and

8 (V) =271 /[Ve (0, —wy)*] (3.46)

is the corresponding normalized line-shape function for
the transition.

Equations (3.41)-(3.46) show that the absorption and
stimulated emission cross sections depend on the radia-
tive transition probabilities and collisional dephasing
rates for each vibronic sublevel that participates in the
process. This result, Eq. (3.44), for the stimulated emis-

sion cross section can be cast in the conventional form>®
o,(v))=MAg(v,)/8mnliT, , (3.47)
where 7, is the radiative lifetime, given by
7= [fsodapgA(Sl(O),So(a)) o (3.48)

and the normalized fluorescence line-shape function is

(3.49)

r

stimulated emission o (A;) cross sections for the dye-
laser media rhodamine 6G fluoroborate in 95% ethanol
and DCM in dimethyl sulfoxide (DMSOQO) are presented.
In the following, for simplicity rhodamine 6G in ethanol
stands for rhodamine 6G fluoroborate in 95% ethanol.
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FIG. 4. Wavelength dependence of the (a) absorption cross section o,(A,) and (b) stimulated emission cross section o(A,) for the

dye-laser media rhodamine 6G fluoroborate (Refs. 32-34) dissolved in 95% ethanol (

(—— -

) and DCM (Ref. 31) dissolved in DMSO
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The absorption spectrum is typically measured by deter-
mining the decadic molar extinction coefficient ¢ with a
spectrophotometer.’® If e is expressed in liter/molcm
and C is the dye concentration in mol/liter then

No,(v,)=¢e(v,)C1nl0 . (3.50)

From Eq. (3.47) the stimulated emission cross section
may be determined by measuring the fluorescence line-
shape function g(v,;) and the radiative lifetime 7,. Since
7,7 pQ =1, the determination of 7, requires measurement
of the fluorescence lifetime 7z ! and the quantum yield Q.
Lifetimes may be determined by phase shift>”>® or flash
(e.g., short-pulse pump-laser’®) techniques. Quantum
yields have been measured using both photometric®® and
calorimetric®® techniques. Measured values of these
quantities for rhodamine 6G in ethanol and DCM in
DMSO are listed in Table II.

In general, since measurement of the quantum yield re-
quires special equipment, it is useful to have approximate
methods for estimating the radiative lifetime. If the
S| — S, emission is strong and the nuclear configurations
of the S, and S, electronic states are “sufficiently simi-
lar,” then®® 8

1/7,=2.880X10°n2e vy ) ! [dv,e(v,) /v, , (.51
where

(v o=[dviglv)/vi. (3.52)
When Eq. (3.51) is a good approximation it has been
found>®~>% that the fluorescence and absorption spectra
of the dye molecule satisfy the mirror symmetry relation

e(v,) /v, <g(2vy—v,)/(2vo—v,)* , (3.53)

where v is the frequency that gives the best fit of e(v)/v
to the fluorescence spectrum g(v)/+v* mirror image. The
theoretical grounds>®>® for this relation have been estab-
lished and it has been found empirically*®~>® to hold for
many dyes. Using their measured®' ~3* absorption cross
sections and fluorescence spectra Eq. (3.51) was used to

|

A

e ()5, (Q) /[(0g, +@,)Fivy, ]
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estimate the dye-molecule radiative lifetimes for the dye-
laser-media rhodamine 6G in ethanol and DCM in
DMSO. The results of these calculations are presented in
Table II. The corresponding mirror symmetry plots for
these dye laser media are presented in Fig. 5. It should
be noted that in Egs. (3.51) and (3.53) the frequency ex-
tends over only the S,—.S; absorption band. Other ab-
sorption processes S,— S, must not be included. As
shown in Fig. S, in the case of DCM the S;—S; absorp-
tion band was approximately established by extrapolating
0,(1,) to zero with a dash-dotted (—-—-—-) line on the
short-wavelength side of the absorption band. From
Table II, Eq. (3.51) yields an excellent estimate of 7, for
rhodamine 6G in ethanol. This is supported by the mir-
ror symmetry plot, Fig. 5, for this dye-laser medium.
However, from Table II, Eq. (3.51) does not yield a very
good estimate of 7, for DCM in DMSO. This result is
also supported by the mirror symmetry plot, Fig. 5, for
this dye-laser medium. For DCM it appears that the
configuration of the S state differs significantly from that
of the S, state. These results together with those in the
literature®® % indicate that Eq. (3.51) can be useful in es-
timating 7,. However, as evidenced by the mirror sym-
metry plot, for good results the configurations of the S
and S, states must be sufficiently similar.>¢

3. Dye-molecule electric susceptibility tensors

If Egs. (3.24)-(3.27) for the complex polarization am-
plitudes A,;(x,7,Q) and B,;(x,,{) are substituted into
Egs. (3.4) and (3.5) it can be shown that

Pix,0)=€lX;(x,1,0)+ %5 (0 )T]-Bj(x,0) ,  (3.54)
where 1 is the unit tensor. The quantity ()'('j(x,t, ;) is the
complex dye-molecule electric susceptibility tensor that
characterizes the interaction between the pump-laser
(j =p) and dye-laser (j =) radiation electric field with the
dye molecules. The pump-laser susceptibility tensor

Xp (%, 1,0,)= fwdQng(x,t,ﬂ)fsldap},(Lz/eoﬁ){yzp(ﬂ)pap(ﬂ)/[(a)ap—cop ) =iV gy ]

(3.55)

describes the absorption of pump-laser radiation by the dye-molecule S;— S, electronic transition. The dye-laser sus-
ceptibility tensor that describes the stimulated emission of radiation produced by the dye-molecule S|, —S, electronic

transition is

TABLE II. Typical dye-laser media S, — S, radiative relaxation properties.

7/F Tr (Tr )est

Dye laser medium Q (ns) (ns) (ns)
Rhodamine 6G in ethanol 0.93* 3.5% 3.82 3.8°
DCM in DMSO 0.71° 1.9° 2.7° 4.8°

*Reference 34.
"Reference 31.
“Estimate based on Eq. (3.51) in text.
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Xixtop=— [, danixQ) [ dapl(L/e){nl Qpa(Q)/M0q=0) =iV q]

If the induced dipole moments p,;(€}) are expressed in
spherical coordinates as shown in Fig. 3, then Egs. (3.55)
and (3.56) may be written in the form

Fp (i (Q)/ [(wyto)+ivy ]l . (3.56)
.
)?1(0’1):_fsodapg(Lz|#a1|2/360ﬁ)
X {([(0g—@)=iYe]™"
+wy+o)+ivyl . (3.66)

X (x1,0,)=3%,(0,) [ a4 [ d0 nd(x,1,0)5(0)
(3.57)
and
‘fg,(x,t,w,)=3)?,(w,)f02”d¢fo”den(‘)(x,t,m&m ,
(3.58)

where O(Q) is the symmetric real tensor whose elements
are

0,.(Q)=sin’0 cos’¢ , (3.59)
0,,(Q)=0,.(Q)=(sin’sin24)/2 , (3.60)
0,,(Q)=0,,(Q)=sin’6 cosO cos¢ , (3.61)
0,,(Q)=sin’0sin’¢ , (3.62)
Oyz(Q)=Ozy(Q)=sin29 cosfsing , (3.63)
0,,(Q)=sinf cos’0 , (3.64)
with
)?p(cop)z fsldap}z(Lz\yapP/Seoﬁ)
X{[(@gp =) =iV ]
+ (@ t®,)Five, 1"} (3.65)

and

When Eq. (3.36) holds, dye-molecule population densi-
ties nf are isotropic and the dye-molecule susceptibility
tensors, Egs. (3.57) and (3.58), are diagonal:

A P

Xp(%,8,0,) =X, (0, NJ(x,1)1 (3.67)
and
X(x,1,0)=3,(0))N(x,0)T . (3.68)

Consequently, ¥ ; is the dye-molecule electric susceptibili-
ty per dye molecule per unit volume or the specific dye-
molecule electric susceptibility when dye-molecule rota-
tional relaxation is very fast.

The previous results indicate that the dye-laser medi-
um is optically isotropic in the limit that dye-molecule
rotational relaxation is very fast. However, when dye-
molecule rotational relaxation is slow the dye-laser medi-
um will be optically anisotropic for propagation of both
the pump- and dye-laser light. The amplitudes and polar-
ization states of the pump laser and dye laser will change
as they propagate. Since the dye-molecule susceptibility
tensor Yp(x,t,wp) [X;(x,t,;)] in the pump-laser absorp-
tion [dye-laser emission] band is complex, there are gen-
erally two distinct physical phenomena that alter the
pump-laser [dye-laser] radiation state. In general, the
pump-laser [dye-laser] amplitude and polarization state
are altered because the absorption [amplification] and
phase shift of the light will depend on the amplitude and
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polarization state and relative direction of propagation of
the pump- and dye-laser beams. However, it will be
shown later that there are physical conditions of interest
where the polarization states of the pump-laser and dye-
laser beams are preserved during their propagation
through the dye-laser medium. These conditions include
circumstances where the dye-molecule rotational relaxa-
tion rate is slow.

. When the electric  susceptibilities
X,(x,t,0;) and )?j(a)j), j=(Lp), are viewed as functions
in the complex w; plane they are analytic in the upper
half plane and possess simple poles in the lower half plane
at w; =*w,; —iYy;. Consequently, their real and imagi-
nary parts satisfy the well-known Kramers-Kronig or
Hilbert transform relations. For example, if X ;)
represents Yj(x,t,a)j) or )?j(wj ), and j(\(caj)z)('(coj)
+ix"(w;), then

dye-molecule

X(@)=P [~ dox"(@)/mo=a,), (3.69)

and

X'(@)==P [ dox'(o)/m0=0,), (3.70)
where x'(w;) represents Y (x,t,0;) or Xj(w;), and
X"(w;) represents ¥ /(x,t,0;) or X} (w;), respectively,
and P denotes the Cauchy principal value. Furthermore,
from Egs. (3.55), (3.56), (3.65) and (3.66) it follows that
X'(w;)=x'(—~wo;) and x¥"(0;)=—x"(—w;). Thus Egs.
(3.69) and (3.70) can be transformed to integrals over pos-
itive frequencies, namely,

)(’(coj)=2Pfowda) a))("(a))/ﬂ'(a)zﬁwjz-)

(3.71)
and
X"(wj)=—2Pf0wdwc0j)(’(m)/7r(a)2——wf) . (3.72)

The utility of tAhese results will now be demonstrated.
In general, ¥;(w;) may be accurately approximated for
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positive real frequencies by keeping only the resonant
parts of Egs. (3.65) and (3.66), i.e.,

Rpl@p)= [ dapiL?\pe, I /36t (00 =0,) =17 4y
(3.73)

and
Xilo)=— fsodangzl,u.a,|2/360h’[(a>a, —o)"ivg] .
(3.74)

If Egs. (3.73) and (3.74) are partitioned into their real and
imaginary parts, it can be shown that the absorption, Eq.
(3.39), and stimulated emission, Eq. (3.40), cross sections
can be written as

o,(0,)=w,x,(w,)/cn, (3.75)

and

olw))=—wx](0;)/cn, . (3.76)

Consequently, if the dye-molecule absorption and stimu-
lated emission cross sections are known, say fr(lm experi-
ment, then the imaginary parts of fj(wj) and Yj(x,t,wj)
can be calculated from Egs. (3.75) and (3.76). Further-
more, using Eqgs. (3.75), (3.76), and (3.71) it follows that

X;,(a)p)=2cnst0wdcoaa(w)/ﬂ'(wz—-wf,) (3.77)

and

X)w)= —2cnst0wda) o o) /m?—w?), (3.78)

where as before w, ranges over the dye molecule’s
Sy— S, absorption band and ; ranges over the dye
molecule’s S| —S, emission band. Equations (3.77) and
(3.78) permit the calculation of the real parts of )’Ej(a)j)
and Yj(x,t,wj ). Therefore, if through experiment the

dye-molecule absorption and stimulated emission cross

Susceptibility (10! cm®/ molecule)

[ENEE TN ST U U AT T GRS TR

700

FIG. 6. Wavelength dependence of the real y; and imaginary Y parts of the specific dye-molecule electric susceptibilities that
characterize the (a) pump-laser (j =p) and (b) dye-laser (j =) radiation interaction with the rhodamine 6G fluoroborate dye molecule
dissolved in 95% ethanol.
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FIG. 7. Wavelength dependence of the real X and imaginary Y parts of the specific dye-molecule electric susceptibilities that
characterize the (a) pump-laser (j =p) and (b) dye-laser (j =/) radiation interaction with the DCM dye molecule dissolved in DMSO.

sections are known then the dye-molecule pump-laser

and dye-laser electric susceptibility tensors Yj(x,t,a)j)
can be determined in their respective wavelength bands
A

jIn Fig. 4 the measured’ ~3* absorption o,(A,) and
stimulated emission o (A;) cross sections for the dye-
laser-media rhodamine 6G in ethanol and DCM in
DMSO are presented. Using the methodology described
above the real and imaginary parts of the dye-molecule
electric susceptibilities per dye molecule per unit volume
X ; are calculated, in the Appendix, for the pump-laser ab-
sorption A, and dye-laser emission A; bands of these dyes.
The refractive indices n; of the solvents ethanol and
DMSO were taken to be*® 1.36 and 1.48, respectively.
The results of these calculations for rhodamine 6G in eth-
anol and DCM in DMSO are presented in Figs. 6 and 7,
respectively.

4. Pump- and dye-laser-light propagation

In general, the dye concentration is such that the dye-
molecule density N is much less than the solvent-
molecule density and

(@) T-B(x,0) 5>, (x,1,0,)-B,(x,1) .

The optical anisotropy introduced by the dye molecules
may be treated as a perturbation. If Egs. (3.24)-(3.27)
are substituted into the paraxial field wave equations,
Egs. (3.9) and (3.11), it can be shown that the complex
electric field amplitudes of the pump- and dye-laser
beams must satisfy

(ny/¢)d,B;(x,0)+(k; /k;)-VE,(x,1)

=i(w;/2cn )X, (x,t,0,)E;(x,1)—a,B,(x,1) .
(3.79)

To first order the pump- and dye-laser radiation beams
propagate as transverse electromagnetic waves. Howev-

er, Egs. (3.79) show that, in general, as these beams prop-
agate through the dye medium, their polarization state
changes. The coupled Egs. (3.30)-(3.34), (2.37),
(3.57)-(3.66), (3.8), (3.10), and (3.79) together with suit-
able boundary and initial conditions provide a complete
description of quasimonochromatic laser-pumped dye-
laser dynamics when the physical circumstances required
by Egs. (3.21) and (3.22) hold. Further insight into the
implications and utility of these results requires con-
sideration of particular pump-laser and dye-laser
geometries. In the following, the often-used transverse
pump geometry is considered in detail.

5. Transversely laser-pumped pulsed dye lasers

(a) General description. The two most popular pump-
ing arrangements"? for laser-pumped dye lasers are
called coaxial and transverse because of the relative
orientation of the pump- and dye-laser beams. In the co-
axial (transverse) approach the pump-laser and dye-
laser-light beams are aligned (perpendicular) as they
propagate through the dye-laser medium. Consider a
transverse laser-pumped dye-laser amplifier. Suppose the
dye-laser medium is oriented along the z axis and is thin
in the x-y plane so that the pump light electric field is
unaffected during propagation along the y axis through
the dye medium. Thus from Eq. (3.8) the complex
electric-field amplitude of the pump-laser beam is polar-
ized in the x-z plane,

E,()=E, (t)e, +E,(t)e, , (3.80)

is known and only time dependent. The quantity e, is a
unit vector in the n direction. Since arbitrary pump po-
larization states are of interest, it is useful to introduce

the coherency matrix?**~?2 of the pump
(T,(0],=(cnyeg/2)E, (DEE (1) , (3.81)

where r=(x,z) and s =(x,z). The pump coherency ma-
trix is Hermitian and has the units of radiation intensity.
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In addition, the intensity of the pump radiation is given
by the trace of J,(2), i,

>

IL()=Tr[J,(1)] . (3.82)

The dye-laser radiation propagates along the positive z
axis and consequently from Eq. (3.10) its complex
electric-field amplitude is polarized in the x -y plane:

B/(z,0=E,(z,t)e, +E,(z,1)e, (3.83)

If Egs. (3.80) and (3.83) are substituted into Eq. (3.79), it
can be shown that

(n,/c)d,E, +3,E,
=[3o,(v))2][1—ix(w;)/x}) (w;)]

X(E,ny+En,,/2)—a,E, /2 (3.84)
and
(n,/c)d,E,+3,E,
=[30,(v))/2][1—ix}(@))/X} ()]
X(E,ny, /2+E,n,)—a,E, /2, (3.85)

|
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where
2
nnn=f0 "d¢f0”d0n5(z,z,m0,,,,<m , (3.86)
and
2 T
nxy=2f0 d¢f0 dOni(z,1,2)0,,(Q), (3.87)

where the components of O(Q) are given by Egs.
(3.59)-(3.64) and the subscript # =(x,y) here and in the
following. The form of Egs. (3.84) and (3.85) indicates
that, in general, as the dye-laser light propagates through
the dye-laser amplifier medium its polarization state will
change. To describe this phenomenon it is useful to
represent the polarization state of the dye-laser light by
the coherency matrix?°~2?

(32,01, =(cn,eg/2)E, (z,) EX (2,1) (3.88)

where m =(x,y). The coherency matrix T(z,t) is Hermi-
tian and its trace is the dye-laser-light intensity, i.e.,

I(z,t)=Tr[J(z,1)] . (3.89)

Equations (3.84) and (3.85) and their complex conjugates
may be used to derive the following equations that govern
the evolution of the components of J(z,1):

(ng/€)3,J i +0,J,y =30 (v Wy nyy — o +[30,(v)) /2][Re(J,, ) —x}(0; Im(J,,) /X (@) ]n,, , (3.90)
(ns/c)B,Jyy-H)ZJW=3crs(v,)Jyynyy—asJyy+[303(v,)/2][Re(ny)+X}(a)1 NIm(J,,) /X (@))]n,, , (3.91)
and
(ns/¢)0,J 5, +8,0,, =[30,(v;) /210, {ny +n,, —i[Xi(@0))/X) (@) — 1)}
—aJ,, H[30,(v) /4] T, Fixi(w) T —J,,) /X0 (o) 0, . (3.92)

Furthermore, Egs. (3.30)-(3.33) for the dye-molecule level populations n/ may be rewritten in terms of the pump- and

dye-laser coherency matrices by using Egs. (3.81) and (3.88):

d,no=ndy, trro({ny)—nh)—ypnl—nily,

and

A ng=—ndy,+yro{nd)—nd)+yeni+nly,,

where

Y (6, Q)=[30,(v,)/hv, |{J 0 (1)sin’6 cos’d +J ,,, ()cos* 0+ Re[ ], (1) ]sin26 cosd} ,

Ve(2,6,)=[30,(v;)/hv,1{J (2,1)sin°0 cos’p +J,, (z,1)sin’0 sin’p + Re[J, (z,1)]sin?6 sin24} ,

nf=nf(z,t,Q) and (n§)=<(nk(z,¢)); u=(0,1). The set
of Eqgs. (3.84)-(3.96) is completed by requiring

nd(z,t,Q)+nb(z,5,Q)=n(z,1,Q) , (3.97)
where
N={[ dQn(z1Q) (3.98)
47

is the constant total dye-molecule number density.

(3.93)

(3.94)

(3.95)

(3.96)

When dye-molecule rotational relaxation is very fast,
i.e., Egs. (3.36) hold, then Egs. (3.84) and (3.85) for the
dye-laser-light complex electric-field amplitudes and Egs.
(3.90)-(3.92) for the coherency matrix elements become

(n,/c)3,B,(z,1)+3,8,(z,1)
={[1—ix)(w;)/x]'(w;)]

X o, (v )Ny z,t)—a,}E,(z,1) /2 (3.99)
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and
(n, /¢)d,3(z,t)+9,3(z,1)

=[0,(v))N)z,t)—a,T(z,t) .  (3.100)

The dye-laser radiation propagates through the laser-
pumped dye-laser medium without change in its state of
polarization. The trace of Eq. (3.100) yields the radiation
transport equation' ~!! for the dye-laser-light intensity:

(ng/c)9,I,(z,t)+0,1,(z,t)

=[o,(v,)Ni(z,t)—a,1(z,t), (3.101)

which when combined with Egs. (3.37)-(3.40) provides
the conventional description' ~!! of quasimonochromatic
light amplification by transversely pumped dye-laser
media. The polarization state of the dye-laser radiation is
unchanged during amplification. It is clear, however,
that this description is valid only when the time scale of
dye-molecule rotational relaxation is much shorter than
the dye-molecule fluorescence, pump absorption, and
dye-laser stimulated emission times.

(b) Small-signal amplification. The general description
of transversely pumped dye lasers given above is valid for

both small- and large-pump and dye-laser intensity levels.
J
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To study the role of dye-molecule rotational relaxation in
dye-laser-light amplification, suppose the -laser-pulse
lengths are comparable to the fluorescence lifetime and

the pump-laser intensity I, is much less than the pump

saturation intensity I,, namely, I, <<I, =ygphv,/
0,(v,). In this regime there is negligible dye-molecule

ground-state or  S,-state- population depletion,

nd <<nd=N /4=, and Eq. (3.93) becomes

3,no=Ny,/4m+yirol{ns)—ng)—vens—ngy, ,
(3.102)

where the pump and stimulated emission rates are given
by Eqgs. (3.95) and (3.96), respectively. This equation to-
gether with Egs. (3.90)-(3.92) for the coherency matrix J
elements and suitable boundary and initial conditions
provide a complete description of dye-laser-light propa-
gation in this regime.

In the small-signal regime the stimulated emission term
in Eq. (3.102) is relatively small and may be neglected,
ie., I} <<I;=yrphv,/o,(v;), where I is the dye-laser-
light saturation intensity. In this regime Eq. (3.102) be-
comes

3,nd(1,Q)= [30,(v,)N /4mhv,] {Jpxx(t)sinze cosz¢+Jpzz(t)cos20+Re[Jpxz(t)]sin26 cos¢}

+ykol{nd()) —nd(t,Q)]1—ypni(£,Q) .

(3.103)

Equations (3.90)-(3.92) and (3.103) can be solved for the pulse problem by first averaging Eq. (3.103) over orientation,

solid angle, to obtain an equation for {n}(z)), namely,

3,{ny(1))=[0,(v,)N /4whv, (1) =y p{n§(1)) .

(3.104)

If before pumping is initiated, all dye molecules are in the lowest vibrational level of the S electronic state, then the ap-

propriate solutions to Egs. (3.103) and (3.104) are
<”<1)(t)>=[0a(vp)N/41Thvp]f_twdt'jp(t')e‘VF(’—f')

and

ny(t,Q)=[o,(v, )N/hv[,]f_twdt’

1 ’ ’ "
1 —yRo(t—t)ft " y TYEt—t
Y Ro€ *wdt I,(t")e

(3.105)

)

— 1 gt
+3{J,, (¢')sin?0 cos’¢p+J,,, (¢ )cos’0+Re[ ], (') ]sin26 cosg } e TE TR0 ”] .

(3.106)

When Eq. (3.106) is substituted into Egs. (3.86) and (3.87) it can be shown that nxy(t)=0,

| —_t ’ — g — 1 g
nxx(t)z[ga(vp )N/3h'Vp]f_t°odt' [V}{oe YRo'? t)f:wdtulp(t”)e yplt—t )+%e (yptvRolt—t )[Jpxx(t')+Jpzz(t’)/3]] ,

and

. | ) ' _ g _ 1 Y
”yy(t)=[0a(1’p )N/3h"p]f_lwdt' [Y}me YRolt t)f:wdt"fp(t”)e yplt—t )+%e (Yt Y Rot ”Ip(t')] .

(3.107)

(3.108)

Using these results, Egs. (3.90)-(3.92) for the dye-laser-light coherency matrix may be integrated using the method of

characteristics. The results are
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Jun(2,8)=J,,(0,t —n.z /c)exp [[30S(v1)c/ns]ftt_n z/cdt'n,,,,(t’)—asz ,

and
Jy(2,80)=J,,(0,t —n.z /c)

Xexp |[30,(v, )c/2ns]ftt

—ngz/c

where ?(0, t) is the dye-laser-light coherency matrix at the
input to the amplifier located at z =0. These results are
applicable to general pulse shapes whose duration is
much greater than the dye-molecule vibrational relaxa-
tion and polarization dephasing times. For example, sup-
pose that the pump-laser and dye-laser-light pulses are
turned on to a constant value in the distant past. Then
Jp(t)~Jp, J(0,t)~J(0), and J(z,t)~J(z), and Egs.
(3.105)-(3.110) reduce to the steady-state solution of Egs.
(3.90)-(3.92), (3.103), and (3.104), namely,

Jom(2)=J,,,(0)exp{[go(Vv;)R,,,, (3.111)

—a,lz},

where gq(v,)=o,(v;,)Nn is the small-signal gain
coefficient when dye-molecule rotational relaxation is
fast, n=1,/I, is the normalized pump-laser intensity,
and ¥ =y /7 ko is the ratio of the dye molecule’s fluores-
cence rate to the rotational relaxation rate of the lowest
vibronic level of its S, state. The quantities R,,, are
given by

R (Vs /T)=[1+(3y /5)(1+2J . /1)1 /(1 +7) ,
(3.112)

R, (y)=(1+3y/5)/(1+y) (3.113)

and

Ry, (¥, pux /1, 00p)

= {1+ 3y /5)1+J,p /1,)
—i[x)(@) /X (@) 13T e /5I,)} /(1+7)
(3.114)

The functions R,, register the effect of finite dye-
molecule rotational relaxation on the coherency matrix
elements J,,, of the dye-laser-light during quasi-steady-
state light pulse amplification in the small signal regime.
If dye-molecule rotational relaxation is fast, i.e.,
¥ ko>>7F, then ¥ <<1 and all R,,, =1. The polarization
state of the dye-laser light is unchanged during
amplification. This situation also holds if the pump radi-
ation is linearly polarized along the z axis, i.e., if J,,, =1,
and J,,., =0, for then

=R,,=R,,=(1+3y/5)/(1+y) .

R XX yy

(3.115)

However, in this case, since R,,, <1 for finite ¥, the spa-
tial rate of amplification of the dye-laser light is reduced
due to the finite dye-molecule rotational relaxation rate.
When the dye-molecule rotational relaxation rate is
comparable to or slower than the S;—S, fluorescence

dt'{n, (t')+n,(t")=i[x)(0) /X (0)][ny (t)—n,, (t)]} —az |,

(3.109)

(3.110)

[
rate, the excited dye-molecules fluoresce before they ro-
tate significantly. Consequently, only excited dye mole-
cules with induced dipole moments nearly aligned with
the pump-laser-light electric field are present in the medi-
um. In general, this situation leads to changes in polar-
ization state and enhanced (reduced) gain for x(y)-
polarized components of the dye-laser radiation. The ex-
ception to this occurs when the dye-laser light is linearly
polarized along either the x or y axis. Since the pump-
laser light is polarized in the x-z plane, the x and y axes
are symmetry axes for the dye-laser radiation polariza-
tion. In this case the x or y polarization state of the dye-
laser light does not change. However, x-polarized light
will experience more gain than y-polarized light. For ex-
ample, consider two amplifiers each pumped with linearly
polarized laser light. Suppose the pump radiation elec-
tric field is aligned along the x axis, i.e., Jpxx:Ip and
Jy,; =0. If two dye-laser-light pulses of equal intensity,
one x polarized and the other y polarized, are each inject-
ed into a different amplifier of normalized gain length
goL, then, from Eqgs. (3.111)-(3.113), the ratio of the in-
tensities of the two amplified pulses will be

Jux /Ty, =exp[6ygoL /5(y +1)] . (3.116)

The strong dependence of J, /J,, on v is clearly evident.
The x-polarized radiation generally experiences much
more gain in the regime where dye-molecule rotational
relaxation is important, i.e., finite y.

The magnitude of y, i.e., the importance of dye-
molecule rotational relaxation, depends strongly on the
solvent. For example, for rhodamine 6G in ethanol the
rotational relaxation time3® 75 =~310 ps and consequently
from Table I, y =y /Y ko~7r7r ~0.09. However, for
rhodamine 6G in ethylene glycol, a highly viscous sol-
vent, the rotational relaxation time®> 74 ~3 ns. Assum-
ing that the fluorescence lifetime of rhodamine 6G de-
pends weakly on the solvent then, in this case, ¥ ~0.9.

(c) Large-signal amplification. The results derived in
Sec. III B 5 (b) indicate that optimal performance (largest
gain and no dye-laser-light depolarization) of a trans-
versely laser-pumped dye-laser-light amplifier occurs
when the pump- and dye-laser light electric fields are
parallel. This regime of pulsed-dye-laser operation is
considered in more detail in this section. Suppose that
the pump-laser and dye-laser-light beams are both polar-
ized along the x axis, i.e., [,=J,, . and I;=J,,. Assum-
ing, for simplicity, that ¥ x =¥%,=7 ko and the solvent is
lossless (a,=0), then dye-laser-light amplification is
governed by the appropriate form of Egs. (3.90)-(3.96),
namely,
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(ng/¢)9,1/(z,t)+0,I),(z,1)
_ 27 T 1 .3 2
=30,(v, )I,(z,t)fo d¢f0 dOn(z,t,Q)sin’0 cos?¢ ,
(3.117)
dny=ndy,+yr({nd)—nd)—ypni—nly,, (3.118)
and

d,ng=—ngy,+yr({ng)—nd)+ypni+ny, , (3.119)

where
Yy =[30,(v,)I,(1)/hv, |sin*60 cos’¢ , (3.120)
ve.=[30,(v))I,(z,t)/hv,]sin’0 cos’¢ , (3.121)
and
2w T .
(nf(z0)=(1/4m) [ 7d¢ [ "dOsinonf(z,6,0)  (3.122)

together with Egs. (3.97) and (3.98). These equations may
be greatly simplified by noting that the x axis is an axis of
symmetry. Transforming from spherical polar coordi-
nates (0, $) about the z axis to spherical polar coordinates
(a,B) about the x axis, integrating over the azimuthal an-
gle B and transforming the polar angle a by letting
&=cosa yields

(ng/c)o,1)(z,t)+9,1,(z,1t)

=670, (v, )1,<z,z)f_‘1d§§2ng,(z,t,g> (3.123)
together with Egs. (3.118)-(3.119) where
v, =[30,(v,)L,(t)/hv,]E*, (3.124)
ve=[30,(v) I (z,t)/hv,]E, (3.125)
and Eq. (3.122) becomes
(n(z,1) =gfjld§ng(z,t,g> . (3.126)

These equations describe light amplification in pulsed-
laser transversely pumped dye-laser media when the
pump- and dye-laser-light electric fields are parallel. The
appropriate boundary and initial conditions for an
amplifier whose input is at z =0 are I,(0,1), n}(z,0,&),
and n8(z,0,§ ). To examine the characteristics of the
solutions to these equations consider two important re-
gimes of operation: short-pulse and quasi-steady-state
pulse amplification.

(i) Short-pulse amplification. Consider a dye-laser
amplifier that is transversely pumped with a laser light
pulse of constant intensity I, and duration 7,. The pump
time is greater than or comparable to the dye-molecule
fluorescence lifetime, i.e., 7, X 1. During laser pump-
ing the excited dye molecules fluoresce and rotationally
relax. For simplicity, depumping of excited dye mole-
cules by amplified spontaneous emission (ASE) is neglect-
ed, although under high-gain conditions'®!! it is impor-
tant. Immediately after the pump-laser pulse terminates
a short dye-laser pulse is amplified by passing it through
the excited dye-laser medium. This situation is analogous
to the conventional short-pulse amplifier containing a
homogeneously broadened medium, first treated by

Frantz and Nodvik.®® A treatment of the short-pulse dye
laser, including ASE depumping but neglecting dye-
molecule orientation and rotational relaxation effects, has
been given by Migus et al.1%!!

Suppose that prior to dye-laser-light pulse
amplification the dye molecules are pumped separately by
x-polarized laser light with initial conditions
n4(z,0,6)=0 and nd(z,0,£)=N{/47r=N /4mw. All the
dye molecules are initially in the ground state S,(0). In
addition, the pump-laser intensity and dye-molecule con-
centration are such that no dye-molecule ground-state de-
pletion occurs during the pumping pulse, i.e.,
nd(z,t,E)~N /4m>>nl(z,t,£). Then during pumping,
from Egs. (3.118), (3.124), and (3.125), the dye-molecule
S,(0) excited-state density per unit solid angle n} is
governed by

d,ny=[30,(v,)NI, /4mwhv,]E*

+yr(nd)—nd)—ypnl . (3.127)

Averaging this equation over &, using Eq. (3.126), yields
an equation for the orientationally averaged dye-molecule
S,(0) excited-state population density per unit solid angle
( n(l, ), namely,

3,{ny)=[0,v,)NI, /4whv,]—vp{ny) .  (3.128)

The appropriate self-consistent solution of Egs. (3.127)
and (3.128) that satisfies the initial conditions set forth
earlier gives the population densities at the end of the
pump pulse:

(nb(r,))=(N}/4m)(1—e "*77) (3.129)
and

ng(7,,6)=(Ng/4m){[ByE+1)/(y +1)]

X(l_'e"(7+l)YRTp)
_(e—yprp_ef(1/+l)1/R‘rp)} ,
(3.130)
where
No=0,(v,)NI,/y phv, (3.131)

is the total dye-molecule S,(0) excited-state density that
would be produced if, during pumping, dye-molecule ro-
tational relaxation was very fast, i.e., y <<1 and
YrTp>>1. If the pump pulse duration is chosen such
that exp(—yg7,)<<1 and y is finite then the dye-
molecule S(0) excited-state density per unit solid angle
approaches the steady-state value

ny(r,,E)=(N§/4m)3yE2+1)/(y +1) (3.132)

at the end of the pump pulse.

The polar angle a distribution of n4(7,,cosa) given by
Eq. (3.132) is plotted in Fig. 8 for several values of y.
Due to symmetry considerations only one quadrant is
plotted. The angle a is measured from the vertical or x
axis (@=0). Also it should be noted that n}, is rotational-

ly symmetric about the x axis, i.e., independent of f3.
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FIG. 8. Polar angle a dependence of the dye-molecule S;(0)
excited-state density per unit solid angle n} produced by trans-
verse laser pumping with constant-intensity x-polarized radia-
tion, Eq. (3.132). The angle a is measured from the vertical x
axis. The pumping duration 7, is such that 7,yg >>1. The
curves are parametric in ¥y =y g /Y.

This is because the pump and laser-light beams are polar-
ized along the x axis. From Eq. (3.132) all the curves in
Fig. 8 pass through the polar angle determined by
3 cos’a=1. Figure 8 shows that when dye-molecule rota-
tional relaxation is fast, y <<1, the dye-molecule S,(0)
excited-state density per unit solid angle n}, is isotropi-
cally distributed; i.e., all excited dye-molecule orienta-
tions are equally probable. However, as ¥ is increased
from 0.1 to 10 the dye-molecule S,(0) excited-state densi-
ty per unit solid angle becomes more and more strongly
peaked about the x axis. This asymmetric population dis-
tribution in polar angle a occurs when ¥ is finite because
in this regime S,(0) excited dye molecules relax by
fluorescence or nonradiative internal processes before ro-
tating significantly.

Now suppose that immediately prior to short dye-
laser-light pulse injection into the dye amplifier the S,;(0)
excited dye-molecule population density per unit solid an-
gle is uniform along the length of the amplifier and given
by the steady-state value, Eq. (3.132). If the duration 7,
of the x-polarized dye-laser pulse is such that y 7, <<1
and yg7; <<1, then amplification of the pulse is deter-
mined by a simplified version of Egs. (3.118), (3.119), and
(3.123)-(3.126), namely,

(ng/¢)3,1)(z,t)+0,I,(z,1t)
=67ras(v,)I,(z,t)f_lldgg‘zn(l)(z,t,é‘) (3.133)
and
d,nd(z,t,E)=—nh(z,t,E)[30,(v))(z,t)/hv]E* .
(3.134)
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Solution of these two coupled partial differential equa-
tions generally requires numerical integration. However,
in many applications the dye-laser pulse energy fluence

riz)= [ dt I(z,1) (3.135)

is of interest. In this case the treatment may be
simplified. At the input to the amplifier the pulse energy
fluence is known and given by

;0= [ dt1,00,0) . (3.136)

An equation governing the axial spatial evolution of I';
can be obtained by first formally integrating Eq. (3.134)
to obtain

n(l)(z,t,g):n(l)(fp,é')exp

=3¢ " arnz)/T, |,
(3.137)

where T';=hv,/0,(v,) is the conventional'®!'-® dye-
laser pulse saturation fluence and n(‘,(rp,é‘ ) is given by Eq.
(3.132). If Eq. (3.137) is substituted into the radiation
transport Eq. (3.133) and the resulting equation is in-
tegrated over all time, it can be shown that

3. T(&)=1—[2(y +D]!
><f:ld§(3y§2+1)exp[—3§2F(§)] , (3.138)

where =g,z is the dimensionless amplifier gain length
and I'=T,/T; is the normalized laser-pulse energy
fluence. The quantity go=o,(v;)N} is the small-signal
gain coefficient when dye-molecule rotational relaxation
is very fast during pumping, i.e., when y <<1 and
YT, >>1. Equation (3.138) together with the initial or
boundary condition I'(0)=Iy=TI,(0)/T'; describes the
amplification of short pulses. In general, the perfor-
mance of a short-pulse dye-laser amplifier of length L, de-
scribed by Eq. (3.138), depends on three dimensionless
variables: v, goL, and I';. After the dye-laser pulse has
passed a given axial location § in the amplifier, from Eq.
(3.137), the dye-molecule S,(0) excited-state density per
unit solid angle will be

n(5,6)=ng(7,,E)exp[ —3&T(L)] .

In Fig. 9, numerical solutions of Eq. (3.138) are
presented for an amplifier with gain length goL =4. In
this figure the light pulse energy gain G=I/T,
=G(TI'y,7,80L) and extraction efficiency €, =(I'—T)/
goL =€,(I'y,7,80L ) are plotted as a function of normal-
ized light pulse input energy fluence I'y=I',(0)/I;. In
the figure, as noted, the curves are parametric in
Y =vfg/Ygr, which is the ratio of the dye molecule’s
fluorescence to rotational relaxation rates. In parts (a)
and (b) of the figure the energy gain and efficiency for
finite ¥ are normalized to the corresponding energy gain
and efficiency for ¥y =0. In part (c) the energy gain and
efficiency are plotted for the ¥ =0 case. This approach
exhibits the importance of dye-molecule rotational relax-
ation for a wide range of I';. Also, for comparison pur-
poses the light pulse energy gain and extraction efficiency

(3.139)
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FIG. 9. The short-pulse normalized (a) energy gain

G(T,7,80L)/G(Iy,0,g0L) and (b) extraction efficiency
€.(To,v,80L)/€.(I,0,80L) characteristics for a transverse-
laser-pumped dye-laser amplifier of normalized gain length
goL =4. Both the pump- and dye-laser-light beams are x polar-
ized. Before passage of the dye-laser pulse the initial dye mole-
cule S,(0) excited-state density per unit solid angle n} is given
by Eq. (3.132) and plotted in Fig. 8. In (a) and (b) the curves are
parametric in y=yp/ygr. In (c) the pulse energy gain
G(Iy,0,g0L) and extraction efficiency €,(I,0,g8oL) of the
amplifier are plotted for the normalization case y=0. The
dashed lines give the amplifier performance predicted by the
Frantz and Nodvik (Ref. 60) theory of homogeneously
broadened short-pulse amplifiers, Eq. (3.140).

obtained from the conventional solution

r=In[e* (e °—1)+1] (3.140)

derived by Frantz and Nodvik® are also plotted as
dashed lines. Strictly speaking, this solution is valid for
short-pulse dye-laser amplifiers only then y .7, <<1 and
7iyr >>1. In this regime, negligible dye-molecule
fluorescence relaxation but very fast dye-molecule rota-
tional relaxation occurs during the light pulse. Conse-
quently, during the pulse dye-molecule rotational relaxa-
tion maintains an isotropic S;(0) excited dye-molecule
orientation distribution, i.e., n{F#n }(£).

Figure 10 shows the §,(0) excited dye-molecule popu-
lation density per unit solid angle n} after passage of the
light pulse, Eq. (3.139), as a function of polar angle a for
several values of ¥. The curves are parametric in the nor-
malized light pulse energy fluence I'=T";,/I';. Figure 9
shows a strong dependence of amplifier energy gain and
extraction efficiency on y. In general, dye-molecule rota-
tional relaxation has the largest effect on amplifier perfor-
mance when the light pulse normalized input energy
fluence is in the small or intermediate signal regime, i.e.,
'y S1. The enhanced amplifier energy gain and extrac-
tion efficiency for finite ¥ can be explained by the aniso-
tropic dye-molecule S,(0) excited-state population densi-
ty per unit solid angle distributions plotted in Figs. 8 and
10. As y increases the initial dye-molecule orientation
distribution, Fig. 8, becomes peaked about the x axis,
producing greater light pulse energy gain and conse-
quently larger extraction efficiency.

Equation (3.138) may be used to derive approximate
analytic solutions for light pulse amplification in the
small and large signal regimes. In the small-signal regime
I' << 1 and the exponential factor in the integrand may be
expanded yielding an approximation to Eq. (3.138):

3 L()=[9y/5+1)/(y +DII(E) . (3.141)
The solution of this equation is
I'=Tgexp[(9y/5+1)goL /(y+1)] . (3.142)

Since (9y /5+1)/(y +1)> 1, this result is consistent with
results presented in Fig. 9 and discussed earlier. Equa-
tion (3.142) indicates that in the small-signal regime slow
dye-molecule rotational relaxation yields a gain enhance-
ment G(v)/G(0)=exp[4ygoL /5(y +1)], which can be
large, i.e., [G(y)/G(0)],.,=exp(4g,L /5). For example,
if goL =8 then [G(y)/G(0)],.,=600. In the large signal
regime I'>>1. Due to the exponential factor in the in-
tegrand, in this case the principal contribution to the in-
tegral comes from the vicinity of £=0. Consequently,
Eq. (3.138) may be approximated by

3 L(O)=1—[2y+D]7' [ 7 deGByE+1)

Xexp[ —3&TT(£)]  (3.143)
or
3L (O =1—[2(y + 1] [7/30(£)]"?
X{1+[y 20O} . (3.144)
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Provided the second term on the right-hand side of Eq.
(3.144) is small compared to 1, Eq. (3.144) may be in-
tegrated to obtain the transcendental equation

L=T4+goL —(y+1)"(mw/3)!/?
X[FI/Z_F(I)/2_(,V/2)(r—1/2_r()—1/2)] X
(3.145)
The first iterative solution to this equation, namely,
C=Ty+g,L —(y+1)"Y7/3)2
X {(ro+g0L )I/Z_F(1)/2
—(y/2)[(To+goL) ™' ?—T5 2]}
(3.146)
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provides a good approximation to the large-signal solu-
tions of Eq. (3.138) presented in Fig. 9.

(ii) Quasi-steady-state pulse amplification. Consider a
dye-laser amplifier that is transversely laser pumped and
operates in the quasi-steady-state regime. The pump- and
dye-laser-pulse lengths are long compared to the dye-
molecule fluorescence and rotational relaxation times,
ie, ypr>>1 and yg7>>1, where 7=(7,,7;). However,
the ratio y is finite. In addition, the pump- and dye-laser
beams are polarized with their electric fields aligned
along the x axis. Under these conditions the
amplification of a dye-laser-light pulse is determined by a
simplified version of Egs. (3.118), (3.119), and (3.123),
namely,

3,1,(z)=6ma (v, )1,(z)f_11dg§2ng(z,§) . (3.147)

1.0

0.8

0.6

0.4

0.2

(1)1 J) NS BN SN SR | MR A
0.0 0.2 0.4 0.6 0.8 1.0

1 1
4mn ' /N,

LIS BN L B B B S S B I L B S S L SN B A B L

3.0

r=0 @

25 [

20

0.5

NS AT RS S S AR

Y B
1.0

PN

2.5

P B |

1.5 2.0
1 1
4nn " /N;

P

0.0 L
0.0

0.5

w
=)

FIG. 10. Polar angle a dependence of the dye-molecule S,(0) excited-state density per unit solid angle n} after passage of a short
dye-laser pulse of normalized fluence ' =T, /T, for several values of ¥ =y /¥, namely (a) 0, (b) 0.2, (c) 1, and (d) 5. The normaliza-
tion total number density N} is given by Eq. (3.131). The angle « is measured from the vertical x axis.



43 THEORY OF PULSED DYE LASERS INCLUDING DYE-...

ndy,+vr(ng) —ng)—ypno—niy, =0, (3.148)

and

nd+nl=N/47, (3.149)

where the pump absorption y, and stimulated emission
Y. rates are given by Eqgs. (3.124) and (3.125). Equation
(3.149) is obtained by adding together the steady-state
forms of Egs. (3.118) and (3.119) and using Egs. (3.97),
(3.98), and (3.126) to simplify the result. The parametric
time dependence of physical quantities is suppressed for
simplicity. Orientationally averaging Eqs. (3.148) and
(3.149) using Eq. (3.126) it can be shown that

(nd)Y=(N/4m)n(1+y)F/[(g+I)y+F)] (3.150)
where
F=F(n+I,y)
=1—[(y +1)/3y(n+D)]'"?
Xtan" Y [3y(n+D)/(y+ DI} . (3.151)

The quantity n=1,, /1, is the normalized pump intensity
where I, is the conventional pump saturation intensity.
The quantity I =1,/1, is the normalized laser intensity
where I, is the conventional laser saturation intensity. In
the limit of very rapid dye-molecule rotational relaxation,
¥ <<1, Eq. (3.150) for {(n}) reduces to the conventional
form

4r{n{)=N{=Nn/(1+n+I) . (3.152)

By substituting Eq. (3.150) into Eq. (3.148) and using Eq.
(3.149) to eliminate #J it can be shown that

ny=(N§/4mw)(1+m)
X(3y&+am{nl)/Nn) /[y +1+3y(n+1)E],
(3.153)
where here and in the remainder of this section

N{=Nn/(1+7), (3.154)

which is the small-signal total dye-molecule S,(0)
excited-state population density, including ground-state
S(0) depletion when dye-molecule rotational relaxation
is very fast, i.e., ¥ <<1. By substituting Eq. (3.153) into
Eq. (3.147) it can be shown that the normalized dye-
laser-light intensity is governed by

AA(E)={(1+I(&)/[n+I(D]}
X(1={(y+DF/[q+I1 Oy +F)}),

where the function F is given by Eq. (3.151) and =g,z is
the dimensionless amplifier gain length. Here the quanti-
ty go=o0,(v;)N)=0 ,Nn/(1+m) is the small-signal gain
coefficient when dye-molecule rotational relaxation is
very fast, i.e., y <<1. Equation (3.155) together with the
initial or boundary condition I(0)=1,=1,(0)/I, deter-
mines the amplification of dye-laser-light pulses in the
quasi-steady-state regime. In general, the performance of

(3.155)
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FIG. 11. The quasi-steady-state dye-laser-light pulse normal-
ized (a) intensity gain G(Iy,¥,7,80L)/G(1,,0,7,80L) and (b)
amplifier efficiency €,(lo,v,7,80L)/€,(1,,0,m,80L) for a
transverse-laser-pumped dye-laser amplifier of normalized gain
length goL =4. Both the pump- and dye-laser-light beams are x
polarized. The normalized pump light intensity n=1I,/I,,=1.
The (a) and (b) curves are parametric in y =y ;/yz. In (c) the
pulse intensity gain G(I,,0,1,80,L) and amplifier efficiency
€,(1y,0,1,80L) of the amplifier are plotted for the normaliza-
tion case ¥ =0. The y =0 curves give the amplifier performance
predicted by the conventional theory of homogeneously
broadened steady-state amplifiers, Eq. (3.158).
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a quasi-steady-state pulsed dye-laser amplifier of length
L, described by Eq. (3.155), depends on four dimension-
less variables: ¥, 1, goL, and I,. In Fig. 11 numerical
solutions of Eq. (3.155) are presented for an amplifier
with gain length goL =4. In this figure the light pulse in-
tensity gain G=I/I,=G(l,,y,7n,80L) and amplifier
efficiency €, =¢€,(1,,v,7,80L ) are plotted as a function of
normalized input light intensity I,. The regime of
ground-state depletion often found in quasi steady-state
dye amplifiers is treated by taking 7=1. In the figure, as
noted, the curves are parametric in ¥y =y, /y . In parts
(a) and (b) of the figure the intensity gain and amplifier
efficiency for finite ¢ are normalized to the corresponding
intensity gain and amplifier efficiency for ¥ =0. In part
J

e, =L~ 1,1 [(1+me—n(1+y) ["CdI {((q+DF /I[(n+I)y +F)—(y + 1F])
10
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(c) the intensity gain and amplifier efficiency are plotted
for the ¥y =0 case. This approach exhibits the importance
of dye-molecule rotational relaxation for a wide range of

I,. The amplifier efficiency plotted in Fig. 11 is defined
by

ea=(vp/v,)[I,(z)—II(O)]/aaIp fozdszdﬂ nd(z,Q) .
(3.156)

For generality, the linear dependence of amplifier
efficiency on pumping quantum efficiency v, /v, has been
removed by introducing the factor v, /v, into Eq. (3.156).
After a considerable amount of analysis it can be shown
that in normalized variables

(3.157)
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FIG. 12. Polar angle a dependence of the dye-molecule S,(0) excited-state density per unit solid angle n} during passage of a
quasi-steady-state dye-laser pulse of normalized intensity I =1, /I, for =1 and for several values of ¥y =y /¥, namely (a) 0, (b) 0.2,
(c) 1, and (d) 5. The normalization total number density N} is given by Eq. (3.154). The angle a is measured from the vertical x axis.
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In the limit of very rapid dye-molecule rotational relaxa-
tion y << 1, Eq. (3.155) reduces to the conventional form

3L =(1+mI(E&)/[1+n+I(5)] . (3.158)

The solution of this equation yields the y =0 curves
displayed in Fig. 11. Integration of Eq. (3.158) yields the
transcendental relation

(1+m)goL =(1+m)InG +1,(G —1) . (3.159)

In this limit the amplifier efficiency, Eq. (3.157) becomes
€, = —1y)/[(1+7)goL —mInG] . (3.160)

Figure 12 shows the §(0) excited dye-molecule popu-
lation density per unit solid angle n} as a function of po-
lar angle o for several values of y. The curves are para-
metric in the normalized light intensity I=1,/I; for
n=1. Figure 11 shows a significant dependence of
amplifier intensity gain and efficiency on y. In general,
dye-molecule rotational relaxation has the largest effect
on amplifier performance when the light pulse normal-
ized input intensity is in the small or intermediate signal
regime, i.e., I S 1. The enhanced amplifier intensity gain
and efficiency for finite ¥ can be explained by the aniso-
tropic dye-molecule S(0) excited-state population densi-
ty per unit solid angle distributions plotted in Fig. 12. As
v increases the dye-molecule S,(0) excited-state orienta-
tion distribution becomes peaked about the x axis, pro-
ducing greater light pulse intensity gain and consequently
larger amplifier efficiency.

Equation (3.155) may be used to derive approximate
analytic solutions for quasi-steady-state dye-laser-light
pulse amplification in the small- and large-signal regimes.
In the small-signal regime I <<1 Eq. (3.155) may be ap-
proximated by

A O)=(1+MIO{1=[(y +1DF /qy +F)]} /7,

(3.161)
where
F(n,y)=1—[(1+y)/3yn])"tan" {[3yn/(1+y)]'/?} .
(3.162)

The appropriate solution to Eq. (3.161) for an amplifier of
length L is

I=1Iyexp(RgyL) , (3.163)
where
R=R(n,y)=(1—{(y + DF(n,y)/qly +F(n,7)]})
X(1+m)/7n . (3.164)

Equation (3.163) holds in the small-signal regime for arbi-
trary ¥ and 7. This result gives a good approximation to
the numerical results in the small-signal regime. In Fig.
13 the function R is plotted as a function of 7 for several
values of y. Since R appears as a factor of goL in an ex-
ponential, its magnitude and functional dependence on 7
and y leads to significant variations in amplifier behavior.
For weak pumping n << 1, Eq. (3.163) reduces to
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FIG. 13. Plot of the quasi-steady-state small-signal gain pa-
rameter R, Eq. (3.164), as a function of n=1,/I, for several
values of y =y /vx-

I=I,exp[(9y /5+1)g,L/(1+y)], (3.165)

in agreement with Eq. (3.111) when J,,, =I,. Equation
(3.165) indicates that in the small-signal regime slow
dye-molecule rotation relaxation yields a gain enhance-
ment G(y)/G(0)=exp[4yg,L /5(y +1)] which can be
large, i.e., [G(Y)/G(0)]h.c=expl4goL /5]. For example,
if goL =8, then [G(y)/G(0)],.,,=600. If ground-state
depletion is included and =1, then from Egs. (3.163)
and (3.164) [G(y)/G(0)],.,=exp(0.2g,L) and the
enhancement is much smaller. For example, if goL =8,
then [G(y)/G(0)],.,=5. These results reveal the very
sensitive dependence of amplifier performance on both 7
and y. This behavior is explained as follows. Figure 14
shows the S,(0) excited dye-molecule population density
per unit solid angle, ), as a function of polar angle « for
717=0.01 and 1 and two values of y, namely, 1 and 10.
These plots indicate that for both values of y as 7 is in-
creased, corresponding to harder pumping, the dye-
molecule S,(0) excited-state orientation distribution n}
becomes less peaked about the x axis, producing smaller
light pulse intensity gain. In the large-signal regime
I>>1, Eq. (3.155) reduces essentially to Eq. (3.158),
which is independent of y. This is consistent with the
numerical results displayed in Fig. 11.

In general, the previous results indicate that when the
dye-molecule fluorescence rate ¥ becomes comparable
to or greater than the dye-molecule rotational relaxation
rate yp, i.e., ¥ R 1, transversely pumped dye-laser light
amplifier characteristics will depart significantly from the
characteristics of conventional homogeneously broadened
amplifiers. Also, under these circumstances amplifier
measurements of stimulated emission cross sections must
account for dye-molecule rotation relaxation or they may
be significantly in error.
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IV. TIME-DEPENDENT PHYSICAL SPECTRUM
OF PULSED DYE-LASER-LIGHT
COHERENCY MATRIX

In Sec. II a phenomenological semiclassical theory of
laser-pumped, pulsed-dye-laser amplifiers including dye-
molecule rotational relaxation was developed. In Sec. III
this theory was used to study the amplification of partial-
ly polarized, quasimonochromatic light pulses. The po-
larization state of the light was treated using the coheren-
cy matrix formalism of Wiener?® and Wolf.?"?> The rela-
tionship between these theoretically calculated radiation
field quantities and experimental measurements is estab-
lished in this section by generalizing the theory of the
time-dependent spectrum of light introduced by Eberly
and Wodkiewicz.*
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For plane polarized light, if i(z,v;I") is the spectral in-
tensity of the light detected by a Fabry-Perot
interferometer-photodetector instrument, then3°

. t t —(F—iw)(t—1t,)
ittviD)=4cel [ dt, [* dre 00
— — 0

—(P+io)(t—1,) 3

Xe (e P(ty) 4.1)

if

EWN=P)+V*) 4.2)

is the electric field of the light at the entrance to the in-
terferometer. The quantities v and I' are the center fre-
quency v=w /2 and pass bandwidth, respectively, of the
interferometer. The time-dependent spectrum of polar-
ized light, Eq. (4.1), may also be written
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FIG. 14. Polar angle a dependence of the dye molecule S,(0) excited-state density per unit solid angle n{ during passage of a

quasi-steady-state dye-laser pulse of normalized intensity /=1, /I for several values of n=1,/1,

(a) n=0.01 and (b) n=1, and for y =10: (c¢) n=0.01 and (d) n=1.

ps and Y=V /Vr, namely for y=1:
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i(t,v;T)=dce, L'V (t,v;T)V*(t,v;T") , 4.3)
where

~ t . ’

V(t,‘V;F)= f dt’ﬁ(t')e"(r-km))(t—t) . (44)

In the following these results are generalized to the case
of partially polarized quasimonochromatic light by using
the measurement technique proposed by Wolf.2!:22

Suppose the partially polarized light pulses emitted by
the dye laser are examined with an optical detection sys-
tem consisting of a compensator, polarizer, spectrometer,
and a fast photodetector aligned in sequence.?’* The
spectrometer-photodetector subsystem is a multichannel
device in which each optical filter channel acts as a
Fabry-Pérot interferometer-photodetector combination.*®
The optical detection system is oriented so that the enter-
ing laser light pulse is partially polarized in the x-y plane.
Due to the compensator?"?? the y component of the radi-
ation electric field is retarded by an amount € relative to
the x component. It then passes through a polarizer,2)??
which makes an angle 6 with the positive x direction. If
the radiation electric field at the entrance of the optical
detection system is

E)=V()+V*1), 4.5)

where V(¢) is the positive frequency part of the radiation
electric field, then following the polarizer the-component
of the complex electric field vector V(¢) in the direction
of 9 is?!%2

P(t;0,€)= P, (t)cosd+ P, (t)e'’sind , (4.6)

where 17,,(t) is the component of ‘A/(z) in the n direction,
n =(x,y). The time-dependent physical spectrum or
measured spectral intensity of this radiation, as deter-
mined by the spectrometer photodetector system, is given
by

i(t,;T,0,€)=j, (t,v;T")cos’0+j, (t,v;T)sin’0
+ jy (£,v; T )e ~'sin6 cos®

+j (1,v; T)e’sinf cosb , @.7)

>

where j(¢,v;T") is the time-dependent physical spectrum
of the coherency matrix or simply the measured time-
dependent spectral coherency matrix of the light pulse.
Both the measured spectral intensity i(¢,v;I,0,€) and
spectral coherency matrix j(¢,v;I") have the units of in-
tensity per unit frequency interval. Each of the measured
spectral coherency matrix components are given by

Jon(Lv;T)=dce,TV,, (t,v; TV *(t,v;T) (4.8)
where
V,(tv;D)= [ dr'P,(11)e(THieki=0) 4.9)

and v and ' are the center frequency and pass band-
width, respectively, of a given spectrometer channel. The
overbar denotes ensemble average. The measured spec-
tral coherency matrix is Hermitian. Its trace is the time-

dependent physical spectrum’® or measured spectral in-

tensity, Eq. (4.3), of the light pulse if only the
spectrometer-photodetector optical system is employed in
the meausrements, i.e.,

>

i(t,v;T)=Tr[j(t,v;T")] . (4.10)

The corresponding measured time-dependent coherency

matrix J(z;T") of the partially polarized light pulse is
given by

T;0)= [ avil,vDD) . @.11)
This coherency matrix is also Hermitian and its trace is
the measured intensity of the light as determined by the
spectrometer-photodetector system, i.e.,

>

I(t;D)=Tr[J(¢;T)] . (4.12)

Now the measured intensity of the partially polarized
light examined by the complete optical detection system
described earlier,

I(t;0,0,6)= [ © dvi(t,%T,6,¢) (4.13)
is obtained from Eq. (4.7):
I(¢;T,0,€)=J,,(¢;T)cos’0+J,,(t;T )sin’0
+J,,(t;T)e ~'sin6 cos®
+J,(£;T)e “sinf cosO . (4.14)

In general, these results may be used to relate laser-light
pulse properties predicted by the pulsed-dye-laser model
described in Sec. II to measured values. To illustrate how
this may be done the case of nearly monochromatic light
is now considered.

If the dye-laser-light pulses are quasimonochromatic as
assumed in Sec. III, then from Eq. (3.1)
it

V. ()=[E, (1)/2]e (4.15)

Substituting Eq. (4.15) into Eq. (4.9) it can be shown that
—[T+ilo—w))]T

P, (viD)=(e “'/2) [ "drE,(t —7e
0
(4.16)

Suppose the dye-laser light is nearly monochromatic and

the spectrometer parameters are such that
19,E,(t)/E, ()| <<T <o , 4.17)

then the principal contribution to the integral in Eq.
(4.16) comes from 7S O(I' ') and thus
P.(t,y;D)=E (e "“I'N2[C+il0—w,)].  (4.18)

For these circumstances the measured spectral coherency
matrix of the radiation,

Jum(Lv;T)=ce B, (OE £ (T /[T (0 —w;)*],

is obtained by substituting Eq. (4.18) into Eq. (4.8). Sub-
stituting Eq. (4.19) into Eq. (4.11) gives the measured
coherency matrix of the light pulse:

Jom()=ceok, (DE ¥ (1)/2 ,

(4.19)

(4.20)
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which is the ensemble average of the coherency matrix
calculated in the theory developed in Sec. III. Equations
(4.14) and (4.20) lead to the conventional measurement
methodology?"?? for the coherency matrix of quasimono-
chromatic light pulses.

V. SUMMARY AND CONCLUSIONS

In this paper a phenomenolgical semiclassical theory of
pulsed-laser-pumped dye-laser amplifiers is presented.
The theory accounts for the novel spectroscopic and re-
laxation properties of dye molecules in liquid solvents. It
is applicable to pulse durations <10-100 ns including
the ultrashort pulse regime. Due to dye-molecule rota-
tional relaxation the medium is optically anisotropic.
This anisotropy is significant if the dye-laser medium has
a fluorescence lifetime ‘less than or comparable to the
dye-molecule rotational relaxation time. Under this con-
dition the amplification of dye-laser radiation depends on
the directions of propagation and the polarization states
of the pump- and dye-laser light beams and the dye-
molecule fluorescence and rotational relaxation dynam-
ics.

For light pulses of duration R 1 ps, the optical anisot-
ropy of the dye medium can be represented by dye-
molecule electric susceptibility tensors. These suscepti-
bility tensors characterize the polarization-dependent
pump- and dye-laser radiation coupling to the dye mole-
cules. Using Kramers-Kronig or Hilbert transform rela-
tions these tensors can be calculated from experimentally
determined absorption and emission cross sections. In
this regime, the coherency matrices of Wiener®® and
Wolf?:22 conveniently characterize the time- and space-
dependent polarization states of the pump- and dye-laser
radiation. Rate equations describe the excited-state dy-
namics for dye molecules of a given orientation. Overall,
the theory provides a self-consistent description that is
applicable to both small- and large-signal regimes of
amplification. All the physical parameters in the theory
may be determined by conventional experimental tech-
niques.

The theory presented here clarifies approaches used to
date and provides a more complete description of previ-
ous experiments. In general, it should provide a
significant improvement over conventional theories! !l
of pulsed dye lasers which are based on a radiation
transport-rate equation formalism that neglects dye-
molecule rotational relaxation. In addition, it should be

a useful point of departure for the analysis of dye-laser
J

)2{[0a(wj

w;+1
wa/ da)aa(co)/‘n'(a)z—wiz,
J

)—m,0;]1/270, In[(0, +o; ) w; |~
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amplifiers that operate in the high-intensity and/or
ultrashort-pulse length regimes. The purpose of using a
phenomenological semiclassical approach was to develop
a theory of pulsed dye lasers that accounts for the dye-
molecule structure and its interaction with the radiation
field and liquid solvent with physical parameters that are
easily accessible to experimental measurement. Only a
detailed comparison between the theory presented here
with dye-laser experiments will determine if this objective
has been successfully met. It seems clear that further
progress will require better models of the dye-molecule
structure and relaxation processes, particularly vibration-
al relaxation, and inclusion of nonlinear optical effects.
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APPENDIX

Consider the Cauchy-principal-value integrals Egs.
(3.77) and (3.78) when the absorption and stimulated
emission cross sections are known at discrete radian fre-
quency points w=w;. For example, consider Eq. (3.77)
and suppose that ©; <w, <w; ;. To evaluate Eq. (3.77)

under this circumstance it is useful to express Eq. (3.77)
as

)(I',(a)p )=2cn, fo ‘dw aa(w)/ﬂ(wz—wf,)

+f;+1dw0a(co)/77(a)2—wlz,)

—I—wajﬂda)aa(a))/'fr(wz—a)z) (A1)
i

»
The first two integrals may be computed by conventional
numerical techniques.

Over the interval w; =w=w;; the absorption cross
section can be approximately written

o @)=0,(0)+tm,(0—w;), (A2)
where
m,=[0,(w; )0 (0)] /0 —o;) . (A3)

Using Eq. (A2) the Cauchy-principal-value integral in Eq.
(A1) may be evaluated and the result is

P P J

+(m, /2m)In[(0} 1, —w)) /(02 —w?)] . (A4)

J

This approach to the numerical integration of Egs. (3.77) and (3.78) is useful when the cross sections o ,(w) and o (®w)

are known from experimental measurements.
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