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Squeezing transformations in the discrete Z»+, XZ»+, angle —angular-momentum phase space
are shown to be associated with the SL(2,Z»+, ) group and important special cases are explicitly
constructed. "Spherical" bases are introduced in the direct sum of all the Hilbert spaces H2, + &

and
the corresponding representations are defined. Transformations of these bases, using area preserv-
ing diffeomorphisms on a sphere, are studied and potential applications in quantum-optics models
are discussed.

I. INTRODUCTION

In a previous paper' we have considered the Hilbert
space II& +i associated with the SU(2) group and intro-
duced the angle (or phase) states

~ 0;j n ) which are dual to
the standard angular-momentum states for which we
used the notation

~ J;jm ). We have explained that these
angle and angular-momentum states have similarities to
the position and momentum states of the harmonic oscil-
lator. For example, the 0 states are related to the J states
through a Fourier transform, and there exists a Weyl
group which creates translations in angle and angular
momentum. We have also introduced angle operators
0„0+,0 dual to the standard angular-momentum
operators J„J+,J

The purpose of this paper is to continue this work and
discuss various transformations on the angle —angular-
momentum phase space. Quantum phase-space tech-
niques have led into a deeper understanding of quantum
theory and have been used widely in quantum optics.
Transformations in phase space have been a valuable tool
in both classical and quantum mechanics and for this
reason we study them here in the context of the
angle —angular-momentum phase space. In Sec. II we
consider the analogue of the concept of squeezing. This
concept has been studied extensively in the harmonic-
oscillator context, with the use of SL(2,R) (Bogoliubov)
transformations, that preserve the Weyl commutator
tx,p]. In the present context we consider the operators
E,F that create translations in the 0—J phase space and
study transformations that preserve the Weyl relation

2'FE =EF exp i
2g+1

They form the SL(2,Z2 +, ) group. Similar transfor-
mations have been considered in Ref. 3 in the context of
general finite quantum systems. Here we study a more
complex problem because our finite Hilbert space is asso-
ciated to the angular momentum, and every idea has to
be considered in connection with its implications on the
angular-momentum structure. We construct explicitly
two important special cases of these transformations.

The first one is the dilation-contraction transformations
in the 0-J phase space (the analogue of the x'=-A, x,
p'=A, 'p for the harmonic oscillator). It is very interest-
ing to study them in detail because it is not immediately
clear what dilation and contraction is, in a discrete (and
finite) phase space. The second special case is finite
Fourier transforms that map the J states and operators
into the 0 states and operators. Both of these cases pro-
vide valuable physical insight into the nature of these
transformations and more generally into the nature of the
0—J phase space.

In Sec. III we study the Hilbert space H which is the
direct sum of all the Hilbert spaces Hz +&. In this Hil-
bert space we consider the "spherical" bases

~ J;ap) and
~0;aP) such that

(J;aP~J;jm ) = Y (a,P),
(0;aP~0, jm ) = Y, (a,P) .

(2)

The first of those is the widely used ~a, f3) basis, denoted
here as

~
J;ap). The second one is its 0 counterpart

8;a/3). The a, /3 in
~
J;aP) are angles on a sphere that

we call J sphere; and the a, P in ~0;a/3) are angles on a
sphere that we call 0 sphere. We then define four repre-
sentations with respect to the four bases

~
J;jm ), ~ 0;jm ),

J;a/3),
~
0;aP ); we call them J, 0, spherical- J, and

spherical-0 representations correspondingly. Transfor-
mations that connect the J with the 0 representation and
also the spherical-J with the spherical-0 representation
are studied in detail.

In Sec. IV we consider a very rich class of transforma-
tions, namely area-preserving diA'eomorphisms of the J
and 0 spheres. They are generalizations of the rotation
transformations and the corresponding operators J
(and 0, ) contain the J+,J,J, (and 0+,0,0, ) as spe-
cial cases. Area-preserving diAeomorphisms of simple
manifolds have been studied recently in the context of
string theory in particle physics. ' Here we apply these
transformations on the J and 0 spheres and hope that the
resulting formalism will be useful in models which are
based on the angular-momentum formalism. In particu-
lar, they could be useful in problems such as the under-
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standing of time evolution of systems with complicated
Hamiltonians, the solution of nonlinear (soliton) systems,
where such transformations could reduce the problem
into another one which is soluble, the quantization of sys-
tems with nonAat phase space, etc.

In Sec. V we show that the Hilbert space H is iso-
morphic to the Hilbert space of the two-mode harmonic
oscillator. We then apply some of the ideas of this paper
on the model

h
&

=m&a &aI+m2a2az+Aa &a2+A, a&a2,

which is widely used in quantum optics in connection
with frequency converters, interferometers, beam
splitters, etc. This example shows how the formalism
presented can be used for the understanding of the time
evolution of various systems.

We conclude in Sec. VI with a discussion of the results.

II SL(2 Z2J + ) ) TRANSFORMATIONS
IN THE Z2J+, XZ2~+, ANGLE —ANGULAR-MOMENTUM

PHASE SPACE

We consider the (2j+1)-dimensional Hilbert space
H2 +, associated with angular momentum j. We shall
use the notation and a lot of the relations proved in Ref.
1 and we shall limit the present study to the case of in-
teger j (Bose sector). In H2 +, we consider the J basis of
the angular-momentum states

~ J;jm &, and also the dual
8 basis of the phase states 8;jm &. We also consider the
angular-momentum J„J+,J and the phase operators
0„0+,0 . We have proved that the "Cartesian opera-
tors*' J+,J (and also the 8+, 8 ) can be expressed in
terms of the "polar operators" J„,E (and O„,F) as

J+ =J,E, 0+ =O„F,
J =E J„O =F9„,

where

2&E =exp —i 0,2j+1

277F=exp i J,2j+1
J =(J J )'

8„=(8,8 )'"

F E =E F'exp i kl
2'

2j +1
E»+~ =F»+~=1

)

F-'I J;jm &
=

I J;jm +k &,

F'~ejm &=~8;jm+I & .

It has also been explained that this is a discrete Weyl
group (the k, I are integers), and therefore Eqs. (5) and (6)
do not lead to the Weyl algebra [J„O,]=i 1. In fact, the
[J„O,] has been calculated explicitly and found to be
different from i 1. However, it is clear that we do have a
Weyl group and that the operators E,F perform transla-
tions in angular momentum and angle correspondingly.
References 8 have studied the Wigner function in this
phase space. References 9 have explained in a different
context that operators similar to E F' provide a basis for
the SU(2j+ 1)XU(1) algebra. This basis is an alterna-
tive to the usual Cartan-Weyl basis. It is clear that the
E F generate all the unitary transformations within
~»+i.

We consider transformations similar to the Bogoliubov
transformations in the position-momentum phase space
of the harmonic osci11ator

F =EPF

A, ) k) p) v'E Z2j +]
(8)

A, v —@k=1(mod2j+I) .
We can easily show that the E',F' also form a Weyl

group

277F'E' =E'F'exp i 2j+1
(~i)2j 1 +(Fi)2j+1

x =Ax+kp

p —px +vp

A, , k, p, vER,
kv —pk =1,
[x p I [xp]=l

which are based on the group SL(2,R) and which have
led to the concept of squeezing in quantum optics. Since
the Weyl group of Eq. (6) is discrete we shall work with
the E,F rather than J„O,. We consider the transforma-
tions

EI EAFk

Let Z2 +, be the set of integers modulo 2j +1. The set

Z»+ ] XZ»+ &
is the angle —angular-momentum phase

space for this Hilbert space. The first Z2 +& is associated
with the angles (which take the values 2mn /(2j + 1) with
—j ~ n ~ j); the second Z2. + i is associated with angular
momenta (which take the values —j ~m ~j). It has
been explained in Ref. 1 that the operators E F' play the
role of the Weyl group in this phase space

Transformations (8) form a group. Indeed we can easi-
ly show that the product of two such transformations is a
transformation of the same type, that each transforma-
tion has an inverse, and that there is a unity transforma-
tion. This group is the SL(2,Z2 +, ). We can now
proceed and explore how the various operators and states
change under these transformations. For simplicity we
shall study in detail two important special cases. The
first one is the transformations (8) with k =p =0,
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AX= 1(mod2j + 1),
XEZp

We now consider the unitary operators

J
U, = g IJ;j,An)&J;j, nI

n= —j
J

I J;j,n && J;j,Xnl
n= —j

(10)

Av= l(mod2j+ 1). In this case number theory proves
that the A, , 2j + 1 (and also the v, 2j + 1) are coprime, i.e.,
their greatest common divisor is one. The v is the "in-
verse" of k and will be denoted as A, ,

We see that the operator J&+ translates the state
I J;j,An ) up in the ladder by A, steps. We also see that

J~+ I J;j,Aj & =0,
Jz J;j,—Aj)=0. (18)

IJ;2, —4=1&~IJ;2,—2&~IJ;2,0&~IJ;2,2&

As an example let us take the case A, =2, j =2. Starting
from the state

I j;2, —4= 1(mod5) ) and acting successive-
ly with the operator J2+, we get the following ladder of
states:

Ug=U~,

U~=i =1 ~

We can easily prove

E'=U EU =E
F'= U FU =F

(13)

(14)

We now act with the unitary operators U& on the
angular-momentum operators J„J+,J and call
J&„J&+,J&, the resulting operators correspondingly.
They will also obey the SU(2) algebra

J
10;J n)&0'j Anl

n = J
J

10j,Xn &&Oj, n1,
n= —j

U~U~=UgUg=1 .

The fact that A., 2j+1 are coprime implies that as n
takes all the values between —j and j the kn also takes all
the values between —j and j(mod2j+1); and this is im-
portant in the proof of the unitarity of the operators U&.
The equalities in Eq. (11) can easily be proved if we use
the relations between the J and 0 states, given in Ref. 1.
Note also that

with numerical coefficients that have been omitted. If we
relabel the states so that

I J&,j,n &
—= V&IJj,n &

=
I J;j,An &, (20)

then with respect to the
I J&,'j, n ) the Jz„Jz+,Jz play

the role of the standard angular-momentum operators
(e.g. , the Jz+ translates the

I J&,j,n ) up in the ladder by
one step, etc.).

We next consider the operators U ~ (A, )0) and prove
easily

J(-~).= —J~,

J(-~)+ =J~-

Jx+ .

The 0 counterpart of Eq. (15) is

0~, = Ug0, U~,

0g+ = U~0+ Ug,

[0~+ 0~-1=20~. [0~. 0~+]=+0~+ .

(21)

(22)

(23)

We consider now the state 10;j, l ) and write it as
10;j, l =Xm ) with —j~ m ~ j. We can easily see that

0~, 10;j,Xm ) =m10;j,A, m ),
0&+ 0;j,Xm ) = [j(j+1)—m (m +1)]'

J~+ = U~J+ U~ (15)
X IO;j, X(m+1)), (24)

I J~. J~ ]=+J~+ .

In order to see how the operators J&„J&+,J& act on
a state IJ;j,l) we first write this state as IJ;j,i =An )
with —j + n ~ j; we can always do this in a unique way.
Then we easily prove

~J, I Jj, nA) =
InJj, A&n,

J~+ I J;j,An ) = [j(j +1) n(n + I )]'~
I

J—;j,A(n +1)),
(17)

J& IJj,An ) =[j(j +1) n(n —1)]' IJ;j,A(—n —1)) .

10& j,m &
= U&10j,m & =10;j,Xm ), (25)

then with respect to the 10','j, m ) the 0&„0&+,Oz play
the role of the angle operators 0„0+,0 (e.g. , the Oz+
translates the 10~,j,m ) up in the ladder by one step, etc.).

The above construction clarifies the nature of the
dilation-contraction transformations in our discrete 0J
phase space. The second special case that we consider is

Og IO;j, Xm)=[j (j+I) m(m l)]10;j K(m 1)& .

We see that the 0&+ translates the state 10;j,A, m ) up in
the ladder by k steps. We also see that if we relabel the
states so that
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the transformation (8) with A, =v=0, k = —1M=1. Let us
consider the finite Fourier transforms

=& IJ;jn)&ej nl—

=(2j+1) ' g exp i . mn IJ'jm )(Jjnl2'
2j +1

I IJ'jm &I j~m ~ j; j=0,1».
(JPm I J;Ik ) =5.,5

g IJ;jm)(J;jul=~2, +1,

X ~2j+1 1

J

~2j + 1~21+ 1 ~j 1~2J'+ 1

(30)

=(2j+1) 'j +exp i . mn Iejm)(ejnl,2j+1
(26)

UU =U U=1 . (27)

They have been used in the context of general finite-
dimensional systems in Ref. 3 and in the context of finite
Fourier transforms for signal-processing applications in
Ref. 10. Here we use them in our context and discuss
their effect on the angular-momentum operators and
states and also on the angle operators and states. The
proof of the equalities in Eq. (26) is straightforward. Us-
ing Eq. (26) we can prove

Ile jm )I j~m ~j; j=0, 1,2, . . . I,
& e, jm I e; ik ) =5,,5.„,
pie; jm &(e;Jm I

=m'2j+1.

(31)

An arbitrary state
If ) in H can be expressed in these

two bases as

lf &=gsj IJjm &=&t, le;jm &,

where m2j+1 are projection operators in the subspace
H2 +, . We also consider the 6I basis of phase states

U =1,
UI J;j,n ) = lej,n ),
Ule;j, n & =IJ;j,—n &,

UJ, U =0, ,

UO, U = —J, ,

UEU =F,
UFU =E

UJ+ U~=O+,

UO+ U~= J
UJ U =0

UO Ut= J+ .

(28)

J, m J, m
(32)

Sj =(2j+1) ' g tj exP i

j +1 ~2j+1+~2j +1

A2j +1A2j +1 or jl+j2
(33)

The IS,. I and It~ ) represent the state If ) in the J
and 0 representations correspondingly.

In Ref. 1 we have defined various operators (e.g. , J„e„
etc.) within the Hilbert space H2 +1, in this sense each of
these operators has the index 2j + 1 which for simplicity
has been omitted. Summation over j defines these opera-
tors in the Hilbert space H. If we call A any of these
operators, we have

Equations (28) show that these transformations map the J
states and operators into the 0 states and operators. It is
also clear that the E is mapped into F and the F into
E ', i.e., this is the special case X=v=0, k = —p=1 of
the general transformations (8).

III. JAND 0 REPRESENTATIONS

Another basis in H is the usual I a,p) basis where a,p
are angles on a sphere. Within our notation we shaH
denote this basis as I J;ap) and we shall introduce later
another dual basis with the notation Ie;ap). We shall
refer to them as spherical bases. We define

IJ;aP) =g I')* (a,P) J;j m ),
J, m

We consider the Hilbert space H which is the direct
sum of all the Hilbert spaces H2J+, for all j,

0 ~ a ~ vr; 0 ~ p (21r,

f IJ;aP)(J;aPld cosadP=1,
(34)

H=g H2 '+1
J

(29)

In this space we consider the J basis of angular-
momentum states

(J;a,P, I J;a2P2) =5(cosa, —cosa2)5(P, —P2),
where I'j (a,P) are the usual sPherical harmonics. The
a,P span a sphere that we shall call J sphere. We also
define
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l9;a/3&=g Y* (a,P)19;jm &,
j,m

O(a (vr; 0(P(2~, (35)

X (a,P)=(J;aPI9;jm )

=(9;apl J;j —m )

=(2j+1) '~ g Y„(a,P)exp i nm
2~

2j+1

where here a,p are angles on a sphere that we shall call 9
sphere. The I9;ap) obey relations similar to these given
in Eq. (34).

We introduce the dual spherical harmonics X~ (a, p)

U=g U~i+,
J

U =1,
UU =U U=1 .

The matrix elements of U

U(a, ply, 5)= & J;aplUIJ;y»
=&J;apl9;y5&

=+X (a,P)Y,* (y, 5)
J, m

=g Y (a,P)X* (y, 5)
J, m

(42)

(43)

(36)

Like the Y (a, /3), the X, (a, p) obey the orthogonality
and completeness relations

gX,* (a,P)X, (y, 5)=5(cosa cos—y )5(P—5),
j,m

f d cosadPX, *
( a, P) Xql( a, P)= 5)15k . (37)

can be used to connect the J with the 0 representation as
follows:

fJ(a,P)= f U( aPI y, 5)fz( y, 5)d cosy d5,

fz(a, /3)= f U*(a, /3ly, 5)fJ(y, 5)d cosy d5 .

We refer to Eq. (44) as the spherical J —9 transform.
An arbitrary operator g and its action on a state

If )
can be expressed in the spherical J representation as

Note that

J;ap) =g X,* (a, p) I 9jm ),
J) m

I9;aP&=&X* (a,P)IJ;jm ) .

(38)

q(a, ply, 5) =(J;aplqlJ;y5),
(45)

& J;aplllf &
= f 4(a,ply, 5)fJ(y, 5)d cosy d5 .

We next give the expressions for the angular momen-
tum and angle operators in the spherical J representation,

We can now use the states
I J;ap) and 9;ap) to intro-

duce new representations. The arbitrary state f ) of Eq.
(32) can be represented by the function

& J;aPIJ, IJ;y5) = i5(co—sa cosy)—5'(P —5),
(J;a/3I J+ I J;y 5 ) =e '~[ —sina 5'( cosa —cosy )5(/3 —5 )

(46)

fJ(a,P)=(J;aPlf )=+~, Y, (a,P)
J, m

=gt, X, (aP),
j, m

(39)

+i cota5(cosa —cosy )5'(/3 —5)],
(47)

(J;aPIJ IJ;y5) =e'~[sina5'(cosa —cosy)5(P —5)
where a, /3 are angles on the J sphere. It can also be
represented by the function

+i cota5(cosa —cosy)5'(p —5)],

fe(a, p)=(9;apl f ) =g t, YJ (a,p)
j, m

=g S, X, (aP),
j,m

(40)

(J;apl9, I J;y5) =g mX, (a,p)X,* (y, 5),
j,m

& J;aPI9+IJ;y5) =g [J (J +I)—m (m+1)]'"

(48)

(49)

where a, p are angles on the 9 sphere. We call them
spherical-J and spherical-0 representations correspond-
ingly. The scalar product is in these representations, ex-
pressed as

J, m

+,(a, /3)X,* (y, 5),
& J;aPI9 I J;y5) =&[j(j +1) m(m +I)]'"—

j,m

(5O)

(g I f ) = f d cosa dP gg (a,P)fJ(a, /3)

= f d cosa d/3g e (a,P)fz(a, P) . (41)

We next introduce a transformation that connects the
spherical-J to the spherical-0 representation. We start
with the transformations of Eq. (26) which now we
denote as Uz +, , with the subscript indicating the fact
that they act on the Hilbert space H2 +&. We define the
unitary operators

XX, ,(a,P)X.* (y, 5) . (51)

IV. AREA-PRESERVING DIFFEOMORPHISMS
ON THE JAND 0 SPHERES

Let us consider area-preserving diffeomorphisms on
the J sphere, i.e., transformations,

The proof is straightforward if we take into account the
expressions for these operators given in Ref. 1.
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cosa'= A (cosa, p),
P'=B (a,P),
B(cosa', p')
B(cosa,p)

(52)

and also that

J P 0 coscx

J cosa = Bg

where A, B are di5'erentiable functions of a, /3 with Jaco-
bian equal to one. We shall use them to transform the
spherical J basis into another one with similar properties.
We define the state

l
J', a';P' & as

IJ', a', P'& —= IJ;a,P&,

( J', a', P'l J', y', 5'& =5(cosa' —cosy')5(P' —5'),

f lJ';a', P'&( J',a', P'ld cosa'dP'=1 .

(53)

Notice that the fact that the area is preserved is impor-
tant for the proof of (53). We can now define the spheri-
cal J' representation as

fg(a', P')=f~(a, P)=t J', a'P'lf & (54)

~Qi ~Qz

i) cosa Bp

where the last constraint expresses that the Jacobian is
equal to one. For a topologically trivial manifold like a
sphere (with Betti number zero) this constraint implies
that there exists a "potential" g (a,p) such that

Q
g

Q
ga a

Bp
'

B cosa

Using (54), (55), and (56) we get

fg(a', P') fg(a,P)—
5c.

gg r)f

8 cosa Bp

df~ ag
icosa ap

(56)

(57)

Motivated from this, we give the following definition.
Let g(a, p) be a function defined on the J sphere. We
define the operator J as

~J aPlJ lf &=Ig(a P) fg(a P)]
&(g(a, P), f~(a, P))

B(cosa,p)

ag de ag de
8 cosa Bp Bp i) cosa

where
l f & is an arbitrary state and f~(a, p)= (,J;apl f &

its spherical-J representation. We can easily prove that

(59)

and prove easily that due to the fact that the area is
preserved, the scalar product of two states is given by a
formula similar to that of Eq. (41).

Originally such transformations have been studied by
Arnold" in a hydrodynamical context and more recently
they have been studied in the context of string theory in
particle physics. ' Following these references, we con-
sider the infinitesimal version of transformations (52)

cosa'=cosa+ Q, (a,P)gs,
P' =/3+ Q~ (a,P )$s,

J f~(a, P)=f~(Jga, JgP),

[exp(tJ )]f~(a,p)= f~([exp(tJ )] a[ exp(tJ s)]p) .

The last of these equations could be used to describe
the evolution of a system with Hamiltonian J~. Note that
we use the same symbol J for both the operator and its
spherical-J representation [Eq. (45)]. Some other proper-
ties of these operators are given in the Appendix.

We next analyze the function g with respect to a basis
[e.g. , the Y. (a,P)] and express the J as

g(a, p)=gg Y~ (ap),
J =gg, J,

J, m

(J;aplJ,.lf &=IY, (a p»f. (a p)]
8( Y (a,p), f~(a, p))

B(cosa,p)

(61)

The J create area-preserving diffeomorphisms on the J
sphere. For j= 1 we substitute the Yi in Eq. (61) and
get the expressions for the angular-momentum operators
(up to a normalization constant). Therefore the Ji are
the standard angular-momentum operators J+,J„J (up
to a normalization constant). This is not surprising be-
cause the solid rotations are indeed area-preserving trans-
formations. Note that

J3)m3

XX (63)
where the various o. coefficients are related with ap-
propriate finite Fourier transforms, e.g.,

J3, m3

2'
Xexp i m] n&2j)+1

277X exp i m3n32j3+1

(64)

J3) m3

(62)
where the o. coefficients have been given in Ref. 5. For
our purposes, we also need the Poisson brackets for the
X which we defined in (36). From (36) and (62) we easi-
ly see that

J3,m3
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Similar expressions can be given for the [X,X ].jim I j2mp
Using (59) we easily prove that the J obey the infinite-
dimensional algebra

J3,m3

(6S)

In analogy with the J operators we also introduce the 0
operators associated with area-preserving di8'eo-

morphisms on the 0 sphere. Let h be a function defined

on the 6l sphere. We define the operators 0I, as

We consider the Schwinger representations of SU(2)
where'

J+ =a &a2,

J =a&a2,

J, =
—,(a,a, —azar'),1

J =[—,'(a, a]+a2a2)][ —,'(a]a]+a2a2)+ I] .

The number eigenstates lN„Nz ) correspond to the
angular-momentum states

l J;jm ) as follows:

&(h(tr, P),fs(~, P))
&8;~pl8„ f &= (66)

where l f ) is an arbitrary state and fe(a, p)=(8;apl f )
its spherical-0 representation. We now analyze the func-

tion h in the YJ basis and express 8], as

IN„N, &
= IJ;j=-,'(N, +N, ), m =-,'(N, —N, ) &,

I
N i =j + m Nz =J —m &

=
I J;jm & .

The Hilbert space Hz +, is spanned by the states

H2 ~] =
I lN„N2=2j —N] ) lN, =0, . . .(Zj)I .

(72)

(73)

h(a, P)=g h Y,
J, m

8h=gh 8
J, m

(67}

It is now clear that the H =QH2 +, is isomorphic to

Hz XHz. In this model

l J;aP) =g Y, (a,P)lN] =j+m, Nz =j —m ),
J, m

8( Y, (a,P),f]](a,P))
&8; pl8,.lf =

8 cosa,

Arguments similar to those given above for the J case
show that for j =1 the |9& are the angle operators
8„8+,8 (up to a normalization constant).

We have presented the J operators in the spherical-J
representation and the 0 operators in the spherical-8
representation. It is possible to find formulas for the J.
operators in the spherical-8 representation (and also for
the 8, operators in the spherical-J representation), but

the expressions are complicated and we do not present
them here.

We now consider a general state lf ) and calculate the
J.

lf & and 8 lf ) in terms of its components
Jim i Jlmi

S =(Jjzm2lf & and t =(8;j2m2lf &

fg(a, p)=&8;aplf &= & f]vwXJ, «»»—
N, M

j=
—,'(N +M},

m =
—,'(N —M) .

(75)

l8;oP) =+X." (a,P)lN] =j+m, N2=j —m ),
j, m

and the J and 8 representations of a state
lf ) are defined

as

If &
= g f~M IN M &

N, M

f,(~,p}=&J;~plf&=yf Y, (~,p),

J3,m3

XS, lJ;j,m3), (68)
The J representation is suitable for the study of sys-

tems with the Hamiltonian (3), which we rewrite here as

J3)m3

xt) l8;J, m, ) .

h, =An, +2cJ, +M++A, *J

n, =a ia] +a 2a2,

0=—,'(a]]+a]2),

s= ] (co] —co~) .

(76)

V. APPLICATIDNS

%'e consider the two-mode harmonic oscillator

Ao &)a )a ) +~2a pap (70)

Note that

[n„J,]=[n„J+]=[n„J ]=0,
J =

—,'n, ( ,'n, + I) . —

Its Hilbert space is the direct produce H„XH&, where

Hz is the Hilbert space of the first mode and H~ is the
Hilbert space of the second mode. We sha11 show that
the H~ XHz is isomorphic to the Hilbert space H of Eq.
(29).

~2j+1 = 2j+1 (78)

We assume that the two-mode system with the Hamil-
tonian (3), is initially (t =0) in the state
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=+exp[i(2jOt)]W, (Et, kt)lf2J~, ), (79)
J

W, (Et, kt)=exp[it(2EJ, +AX++A, *J )] . (80)

The operator W', describes SU(2) rotations. Conse-
quently the state

l f2, +, ) evolves into states which are

where if& +, ) belongs in the Hilbert space Hz +, . The
evolution of this system in time is given by

exp(ih
&
t ) lf ) =exp(ih

~
t ) g If2) ~ ) ) fJ(~ &)=X P2 +i(~»)

J

y„.,(,13)=&.J; elf„., )

=g Y (a, f3)IfJ(y, 5)Y* (y, 5)d cosy d5,

(81)

and the time evolution is given by

within the Hilbert space H2 +, . In the spherical-J repre-
sentation we rewrite (78) as

( J;aplexp(ih, t)lf ) =g exp[i (2j Qt)](J;apl W, (Et, kt)l f2~+, )
J

=g exp[i(2j At)]( J;a(t),p(t)l f2 +, )
J

=g exp[i(2j Qt)]pz +,(a(t),p(t)),
J

where the rotation operator 8'&(st, A, t) rotates the point
(a,g) of the J sphere, into the point (a(t), /3(t)).

This technique, based on the Schwinger representation
of SU(2), describes the evolution of the system h, with ro-
tations in the J sphere. This picture leads to a full under-
standing of the behavior of such systems. The limitation
of this method lies in the fact that it can only be used for
the Hamiltonian h& and it cannot accommodate higher-
order nonlinear terms like g(az) az, g(a&) a2, etc. Such
terms are, however, very interesting in various models in
quantum optics' ' in many-body theory, in chaotic sys-
tems, etc.

The fact that the terms of a Hamiltonian obey a finite
Lie algebra [e.g. , the terms of the Hamiltonian h, obey
the SU(2) algebra] is very important in the practical cal-
culations of the evolution of the relevant system. Usually
the Baker-Hausdorff or other similar type of calculation
between noncommuting operators is needed in such prob-
lems and the Lie algebra is helpful in the exact evaluation
of such relations. In the case of Hamiltonians with
higher-order terms [like g (a 2 ) a 2 ], which do not obey a
finite Lie algebra, such an exact calculation is very
dificult. The usual method is to do some approximation
in the small coupling regime and use it in numerical cal-
culations. The infinite-dimensional algebra of Eq. (65)
might help to do something deeper than this, if some ex-
tension of the Schwinger representation could be found
that expresses the J in terms of the a „ai, a2, a z. It will
be much easier to work with a Hamiltonian which con-
tains J. type of terms rather than a Hamiltonian which
contains high-order a, a2 terms. More generally we feel
that the whole subject of infinite-dimensional Lie alge-
bras, currently under intensive study in mathematical
physics, could be useful in such problems.

VI. CONCLUSIONS

We have studied various types of transformations in
the angle —angular-momentum phase space. In the

Z 2j+ &
X Z 2j+ ] phase space associated with a system with

angular momentum j the analogue of squeezing is
SL(2,Z2 +, ) transformations. We have constructed ex-
plicitly the special case of contraction-dilation transfor-
mations and we have seen in detail the meaning of these
concepts, in the case of a discrete phase space. For exam-
ple, the operator J&+ translates the J states by k steps
and the 0&+ translates the 0 states by A. steps, where k is
the "inverse" integer of A, . We have also constructed ex-
plicitly finite Fourier transforms that map the J states
and operators into the 0 states and operators. These
ideas together with the Wigner techniques given in Ref. 8
provide a full study of the angle —angular-momentum
phase space.

We then considered the Hilbert space H of Eq. (29) be-
cause there are problems, such as the two-mode harmon-
ic oscillator, where this Hilbert space is relevant. In this
Hilbert space we have considered the J and 0 bases, and
also the spherical-J and spherical-0 bases. Representa-
tions with respect to these bases and also transformations
that connect these representations have been given.

The spherical-J bases can be transformed into other
ones with similar properties, with the use of area-
preserving diffeomorphisms on the J sphere. The
relevant operators J have been defined and shown to
obey the infinite-dimensional algebra of Eq. (65). The
standard angular-momentum operators are special cases
of these more general operators. The use of so rich trans-
formations in quantum phase-space methods opens new
directions in this area and might lead to a deeper under-
standing of the behavior of systems with complicated
Hamiltonians.

In Sec. V the evolution of systems with the Hamiltoni-
an h& [of Eq. (3)] has been studied with the use of the
spherical-J representation. The possibility of extending
this method into Hamiltonians with higher-order terms,
using the transformations of Sec. IV, has been discussed.
Progress in the study of nonlinear systems, beyond the
usual perturbative methods, requires an understanding of
the often hidden symmetries of these systems, and the
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transformations of Sec. IV might be useful in such stud-
ies.

We feel that the transformations studied in this paper
contribute in the understanding of the angle —angular-
momentum phase space and we hope that they will be
useful in developing further the quantum phase-space
methods.

~, [ft f2) =[Jsft fz)+[fi ~sf~)

~,"(i fi+vf»=i ~,"fi+vJ, f~
Jx(f f ) g (tv )(JMf )(Jx —Mf )

(A3)

(A4)

(A5)

(A6)

APPENDIX

We present here some properties of the operators J . '

Let A, ,p, v be real numbers and f&,f~,g &,gz, g functions
of a, P. We can easily prove

(A 1)

(A2)

[exp(M ) ](pf, +vf 2 ) =p [exp(Ms ) ]f, +v[ exp(M ) ]f2,

(A7)

[exp(M )](f,f2)=[exp(AJ )f, ][exp(Ms)fz], (A8)

[exp( ~Js ) ][fi f2 )
=

[ [exp( ~s )f i ] [exp( ~s f2 ] ) .

(A9)
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