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Theoretical studies of self-induced transparency have used the slowly varying envelope approxi-
mation with perturbative corrections. These analyses indicated that for a carrier wave of given fre-
quency, there was a continuum of possible steady-state pulse velocities. We show that the exact
steady-state solutions of the full Maxwell-Bloch equations do not share this property; instead, there
is a nonperturbative selection mechanism: a carrier wave of given frequency gives rise to steady-
state pulses with discrete values of the velocity only. We present analytical and numerical calcula-
tions, and suggest some experiments for the semiconductor CdS.

I. INTRODUCTION

The discovery of self-induced transparency (SIT) by
McCall and Hahn' in 1969 focused attention on the very
old problem of light propagation in dielectrics. The older
investigations of Sommerfeld? and Brillouin® had given a
complete description of the light-dielectric interaction in
the framework of the classical Lorentz linear model of
harmonically oscillating charges. However, this model is
adequate only if the light intensity is low, or if the light
frequency is far from any of the atomic resonances of the
dielectric medium. Since the 1960s, intense and practi-
cally coherent monochromatic laser light has been avail-
able as a probe of optically resonant systems. The
response of such systems near resonance is not satisfacto-
rily described by the linear Lorentz model: nonlinearities
produce a wide range of nonclassical effects (Allen and
Eberly,*) such as SIT, photon echoes, optical nutation,
saturation phenomena, etc. When incident light lies in-
side a frequency gap occurring near resonance, it is
strongly absorbed. What McCall and Hahn discovered is
that above an intensity threshold, a pulse light can propa-
gate with anomalously low energy loss even near reso-
nance, the highly absorptive medium becoming essential-
ly transparent. The physical picture of SIT is that the
front part of a short pulse coherently excites the atoms in
the medium, e.g., up to the state of complete inversion.
The macroscopic polarization formed in this process em-
its coherent radiation which joins the back part of the
pulse. If the oscillators in the medium return to the
ground state after this stimulation process, steady-state
propagation is realized. This front to back energy ex-
change gives rise to pulse velocities which can be several
orders of magnitude slower than that of light in a vacu-
um.

McCall and Hahn demonstrated! SIT theoretically and
experimentally, generating much interest and further
work.>™® Central to this and subsequent theoretical stud-
ies is the so-called slowly varying envelope approximation
(SVEA) which is used in solving the Maxwell-Bloch equa-
tions. The purpose of this paper is to go beyond this ap-
proximation and beyond perturbative expansions about
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this limit to show that steady-state pulses do not exist for
arbitrary pulse widths 7, but only for selected pulse
widths. The experimental consequence of this fact is that
steady-state pulses will propagate only at certain special
velocities.

This article is organized as follows: we begin by re-
viewing the Maxwell-Bloch equations which are the stan-
dard starting point for SIT studies. This is followed by
an explanation of the SVEA and McCall and Hahn’s
work. In Sec. 1V, following Bialynicka-Birula!® and Aki-
moto and Ikeda,'! the complete Maxwell-Bloch equations
for steady-state pulses are derived without assuming the
SVEA, together with the dispersion relation of the carrier
wave and the pulse velocity. After reviewing previous
methods for approximating the solitary-wave solutions,
we present in Sec. VI an electric-field amplitude expan-
sion to solve the coupled Maxwell-Bloch equations per-
turbatively. General expressions for the pulse shapes and
their phase modulations are derived as a function of the
incident carrier frequency » and the arbitrary pulse
width 7. In particular, these expressions include Akimo-
to and Ikeda’s results for short and long pulses inside and
outside the gap. Setting w to be on resonance in our
method gives the expansion introduced by Marth,
Holmes, and Eberly.'?

The rest of the paper shows that the steady-state pulse
width 7 is not arbitrary, rather it can only take on certain
“selected” discrete values. In Sec. VII, we explain why
perturbation expansions are misleading: they are not uni-
formly valid on the whole domain (— o, + o), and they
cannot determine whether there exist solitary-wave solu-
tions (steady-state pulses). We find that it is necessary to
tune the pulse width 7 for each given laser frequency to
satisfy the boundary conditions on the pulse at . Nu-
merical results from the integration of the Maxwell-Bloch
equations are presented in Sec. VIII. -We show that
solitary-wave solutions exist only for restricted parame-
ters, contrary to the implications of all previous work.
Figure 1 gives the location of these selected solitary solu-
tions. The mathematical essence of the selection mecha-
nism is given in Sec. IX. Finally, in Sec. X we discuss ex-
perimental consequences.
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FIG. 1. Values of the parameters A, A for which steady-state
solitary-wave solutions exist (solid curves). We have taken
; /o =1000.

II. MAXWELL-BLOCH EQUATIONS

SIT is the result of a coherent coupling of the em field
to the resonant atoms of an absorptive medium. Any
change in the state of the absorbers which is incoherent
with the optical pulse will destroy SIT. One must
prevent incoherent spontaneous radiation, and phonon or
defect coupling to absorbers in solids. This places an
upper limit on the pulse width which can give rise to SIT
propagation, so that in particular the pulse width 7 must
be much shorter than the relaxation times 7'y and T',. In
general, the starting point of theoretical SIT analyses*°
is the semiclassical description given by the Maxwell-
Bloch equations [Egs. (2.1)-(2.4)]. The dielectric (gas,
semiconductor, etc.) is modeled as an ensemble of nonin-
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teracting two-level systems or dipoles (atoms, excitons).
Each dipole moment has strength d. A true quantum di-
pole (an atom in a gas, an exciton in a semiconductor) has
a series of energy levels. For most problems of interest,
however, one can restrict oneself to the ground state and
first excited state (of energy #w, ) for each dipole. (This is
particularly true near resonance.) The em field is treated
classically and the two-level systems semiclassically.
There are no impurities, no spatial dispersion or finite
temperature effects, nonresonant losses are absent, relaxa-
tion times are infinite (no damping), and no sample
boundary effects are included. If one takes fields which
are x and y independent then the (classical) Maxwell
wave equation becomes

47 9°

E(I,Z):?yp(t,z) . 2.1)

E is the electric field, and P is the polarization due to the
dipoles of density N. Defining & to be the electric-field
magnitude, there are functions O(t,z), u (t,z), and v (t,z)
such that

E(t,z)=6(t,2)a(t,z) ,

a=3XcosO(t,z)+§sinO(t,z) , (2.2)
O=wt —Kz +¢(t,z) ,
P(1,2)=LN#i[u (t,27a+v (1,2)b]

(2.3

b=—% sin©(t,z)+§ cosO(t,z) .

The time dependence of P is given in the semiclassical
limit by the Bloch equations'®>!* (k=2d /#):
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u and v are the in-phase (parallel to E or dispersive) and
out-of-phase (orthogonal to E or absorptive) components
of P, and w is the population inversion of the medium;
they satisfy u”>+v?+w?=1. By projecting Eq. (2.1) onto
the unit vectors a and b, the wave equation becomes the
following pair of partial differential equations (PDE’s)

(kg=w/c):
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Note that the nonlinearities of the Maxwell-Bloch (MB) Qu =(w—w,V ,
equations come in through Eq. (2.4). Hereafter, we only at
consider the case of no inhomogeneous broadening. v _
For very small electric fields (linear optics), w~= —1, —87“_(‘0_“%)“ tréw , (3.4)
the atoms are predominantly in the ground state; one can 3
recover the Lorentz limit by linearizing these equations. —aﬁ =—xbv
t

By translation invariance, all solutions can be expressed
in terms of the Fourier modes which behave as
expli (ot —Kz)]. Such a plane-wave solution is a mixture
of the photon and the electronic excitations in the local-
ized two-level system (in the case of a semiconductor, the
two-level system is an exciton and the mixed mode is
called a polariton). The dispersion relation of these plane
waves is given by

2

<K =1+

(0]

27N #ixc?
o,—o

(2.7)

It varies steeply near the resonance frequency w, and is
accompanied by a gap of size w,r=27N#k? in which
propagation is forbidden (this is the polariton gap of
semiconductors in the ‘local optics” picture). Light is
strongly absorbed in the gap because K becomes imagi-
nary there. For large electric field intensities, the non-
linearities of the Bloch equations become important, and
SIT shows that propagation can in fact occur in the gap.

III. SLOWLY VARYING ENVELOPE
APPROXIMATION

McCall and Hahn considered a circularly polarized
pulse with a carrier wave of frequency w and wave num-
ber K so that ©(¢,z)=wt —Kz. On the time and length
scale of this carrier wave, the envelope is typically slowly
varying. The slowly varying envelope approximation!
consists in taking an envelope function &(¢,z) which
satisfies
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and neglecting all subleading terms in this limit. If one
uses this approximation and forces the wave to be circu-
larly polarized, most derivatives in Egs. (2.5) and (2.6)
can be dropped and one is left with the much simpler sys-
tem
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It is assumed that all absorbers are in the ground state
prior to the passage of the radiation pulse. McCall and
Hahn simulated these partial differential equations [Egs.
(3.2)-(3.4)] on the computer and found that after the
pulse had propagated a few classical absorption lengths
into the medium, the pulse evolved into the shape of a
symmetric hyperbolic-secant traveling wave, the area un-
der the pulse envelope being equal to 27 (“27 pulse”).
This suggested looking for steady-state solutions, i.e.,
solutions which are time independent in a moving frame.
Taking &,u,v,w to be functions only of §=t —z/V, Egs.
(3.2)-(3.4) become coupled ordinary differential equations
(ODE’s):

2
K 1 |6=20Ntiku , (3.5)
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As McCall and Hahn found, these equations have solu-
tions:

t—z/V
-

6’(t,z)=—2—sech
KT

with « [ ““6(1,2dt =27, (3.8)

which correspond to a family of solitary waves of arbi-
trary pulse width 7 with velocity ¥V =c /(1+2wkoNd?).
Solitary waves are waves which decay at infinity and
which are steady-state, i.e., which depend upon z and ¢
only through {=¢ —z/V. (See Appendix A.) Such pulses
have constant shapes and thus are transmitted with no
loss (SIT). Actually McCall and Hahn allowed deviations
from circular polarization (chirping) of the form
O(t,z)=wt —Kz +¢(z), but it turns out that this ansatz
for ¢ does not lead to any new solutions. In the next sec-
tion, we shall see how ¢ should be chosen for steady-state
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waves.

In 1971, Lamb® showed that the Maxwell-Bloch equa-
tions in the SVEA [Eqgs. (3.2)—(3.4)] form an exactly in-
tegrable system. This meant that the propagating
hyperbolic-secant pulses found by McCall and Hahn were
in fact solitons. Solitons are solitary waves which
preserve their form after collision.!>!¢ What happens if
one goes beyond the SVEA by keeping higher-order
terms in the Maxwell wave equation? A generic pertur-
bation destroys exact integrability. Thus one expects that
as soon as one goes beyond the SVEA, the pulses are no
longer solitons, but one might still expect there to be soli-
tary waves. However, we will see that the solitary waves
also disappear except for a discrete set of solutions, and
that this phenomena cannot be seen at any finite order in
a perturbative expansion about the SVEA.

IV. EQUATIONS OBEYED BY STEADY-STATE
WAVES

Without assuming the slowly varying envelope approx-
imation in dielectrics, we are looking for ‘traveling-
wave”” solutions for the electric field E(t,z) and the polar-
ization density P(¢,z), which suggests talking all fields to
depend only on the variable {=(t —z /V), where V is a
velocity to be determined. It turns out that this form
does not lead to any solutions because the carrier wave
and the envelope cannot both be of this form. To justify
the procedure used in the later SIT studies, it is best to
follow the standard prescription (Barenblatt,!” Olver!'®)
for finding ‘‘self-similar” solutions. Given a partial
differential equation, one considers its symmetry group
G. In general, G will be an m parameter Lie group. Self-
similar solutions are those solutions which are invariant
under a one-parameter subgroup of G. In the case of
Maxwell-Bloch equations [Egs. (2.1)-(2.4)], the symmetry
group of interest consists of translations in space, transla-
tions in time, and rotations about the propagation axis, z.
A self-similar solution will be characterized by a one pa-
rameter  subgroup: t—t+A, z-—»z+VA, and
O©—->O0+(w—KV)A.,-V and K are real parameters. Re-
cently, it has been common practice in applied
mathematics to call such parameters ‘“nonlinear eigenval-
ues”!” because for special values of ¥ and K the associat-
ed boundary-value problem will have solutions. Choos-
ing a pulse to be invariant under this subgroup amounts
to asking for pulses which are time independent in a uni-

formly translating and rotating frame. Defining
E=t —z/V, this gives
O(t,z)=wt —Kz +¢(&) 4.1)

and imposes that &, u, v, and w must be functions of &
only. This form contains phase modulation (chirping) ¢
for the electric field so one is restricted to circularly po-
larized waves. K generally is not equal to the magnitude
of the vacuum wave vector, K#k,=w/c.

For the rest of this section, we follow Bialynicka-
Birula'® and Akimoto and Ikeda.!! The wave number K
and the pulse envelope velocity V can be derived by
linearizing the set of Maxwell-Bloch equations
[(2.4)-(2.6)] and setting ¢=0 and w=—1. This corre-
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sponds to defining w and K in the tail of the pulse where
the excitation is very weak. Within the linear theory, the
solutions are exponential, & ~exp(£+{/7). Even though
such exponential solutions are divergent, they are mean-
ingful in the tail of a steadily propagating pulse since the
exponential form can describe a growing (or decaying)
wave locally. In the presence of nonlinearity, the diver-
gence will be suppressed and a pulse may be formed. 7
introduces a time scale which allows one to write every-
thing in dimensionless form. As shown in Ref. 11, K and
V then satisfy

K|’ (1) (LA +2A
k 2 A2+ A2
12 2 1/2
+(14s7) [LAZDTAD , (4.2)
A+A
e s 2y, (1=5?)A+2sA
v 2 t=s? AP+ A2
(A—12+A% |
+(+s?) |55 , 4.3)
A?+A

where A=(w—w,)/w;r is the dimensionless frequency
detuning, w;,=27N#x?, A=1/w; ;7 is the dimension-
less reciprocal pulse width, and
s=1/0t=A/[A+w,/w;r]. Furthermore, we introduce
the coefficients «, 3, and y

2
_ | K| _
a= Ky 1,
cK

= —1 4.4
B=2 Vk, ], 4.4)

2
y=s| |5 —1},

which are known functions of the three dimensionless pa-
rameters A, A, and s. In particular, the coefficient S is
given by
g— Al—s?)  2sA
AP+AT AHAE
(For later reference, remark that «, 8, and y do not fol-
low from the SVEA but are defined as shown.) The gap
where there is no propagation in the linear theory corre-
sponds to the range 0<A <1. Now we can write the
Maxwell-Bloch equations for a solitary wave in dimen-
sionless form. Introduce the dimensionless electric-field
amplitude E =k&/w;r, and the dimensionless time
E=¢&/T7=(t —z/V)/7 where 7 is the above-defined time
scale which will be essentially the pulse width. For a
steady-state pulse, Egs. (2.4)—(2.6) turn into coupled
ODE’s:

4.5)

. . 2, S |sA 5% E
vE atpo+vyve +A A 2 w+A¢w
2
=— i{f——l u, (4.6
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ydE + /3+2y¢3—%w E
2 2
- %—1] + | Ez]v, @7
Au=(A+Adw , (4.8)
Av=—(A+Ad)u +Ew , (4.9)
Aw=—Ev , (4.10)

where hereafter dots mean d /d¢& (i.e, w =dw /d§).

The problem is to solve these differential equations un-
der the boundary condition that in the limit £— * 0, the
electric field vanishes, £ =0, and all the dipoles of the
dielectric are in the ground state, so that w = — 1.

V. SURVEY OF PREVIOUS EXPANSIONS

Equations (4.6)—(4.10) are nonlinear and thus in general
the best one can hope to do is derive perturbative expan-
sions for the solutions. Consider beginning with Egs.
(4.6)—(4.10), and then drop the chirping and the higher
derivatives, and set s =0 wherever it appears explicitly.
This gives

aE=u, BE=—v ,
Au=Av, Av=—Au +Ew,

(5.1
Aw=—Ev .

Note that, using the first three of these, one obtains the
constraint Aa= — Af3 which is not satisfied by the values
appearing in Egs. (4.6)—(4.10) so the above system has no
solutions. The reason for this is that «, 3, and y depend
on s and A, so the constraint Aa= —Af is only satisfied
in the limit s—0 and A—0. In that limit however, we
do recover the SVEA equations.

Thus the correct starting point for Eqgs. (4.6)-(4.10) is
to take in Egs. (5.1) the limiting values of a and f3 as
determined by the SVEA. Then one can derive a pertur-
bative expansion by including the terms dropped in Egs.
(4.6)—(4.10) simultaneously with the corrections to the
limiting values of the coefficients a and 8. Finally, one
needs to find an expansion parameter which makes the
perturbation expansion meaningful. In general, this
means long pulses, i.e., A—0. This is essentially the ap-
proach first introduced by Bialynica-Birula'® whose ex-
pansion parameter was s =1/w7. Her work was sys-
tematically expanded upon by Akimoto and Ikeda'' to in-
clude various expansions whose parameters depended on
the nature of the pulse. Their results can be summarized
as follows. Besides the usual SIT with full inversion,
steady-state pulse solutions were also found with only
partial inversion in the case when the pulse width is
much longer than the reciprocal of the gap frequency
;. For a semiconductor, a long pulse outside the gap
(i.e., with frequency w outside the gap) behaves as a weak
polariton-soliton wave in the picosecond regime. A long
pulse inside the gap propagates very slowly as a sort of
standing wave of a nonlinear polariton. A short pulse of
strong intensity realizes the usual SIT. The derived pulse
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shapes depend continuously on the pulse width 7 which is
an arbitrary parameter in the problem, just as McCall
and Hahn found in the SVEA.

A slightly different approach for solving Egs.
(4.6)—(4.10) was developed by Marth, Holmes, and Eber-
ly,!? who went beyond the SVEA for the on-resonance
case. Their method of approximation is based on a series
expansion in powers of the electric field rather than in a
parameter. It can be viewed as an amplitude expansion.
In this way, they studied very short pulses finding correc-
tions to the results of McCall and Hahn. This expansion
will be generalized in the next section to the off-resonance
case. A perhaps more ambitious attempt was made ear-
lier by Matulic and Eberly!® to find exact solutions within
the SVEA with phase modulation included. This corre-
sponds to dropping E, ¢, and s terms, but keeping the
rest. They found multipulse chirped steady-state wave
trains. However their ansatz was too restricted to lead to
any solutions for single steady-state pulses.

There also have been investigations of SIT in spatially
dispersive media. This case was studied by Agranovich
and Rupasov?® in the SVEA. Additional work by Belkin
and co-workers?"?? in the SVEA considered the effects of
saturation and phase modulation on the form of steady-
state solutions which lead to the spreading of pulses. Fi-
nally Ikeda and Akimoto developed a systematic pertur-
bation expansion beyond the SVEA to include nonlocal
effects in a spirit similar to what they had done for the lo-
cal optics case.?

All these perturbative studies find steady-state pulse
shapes which depend continuously on the pulse width
T7—Iit is an arbitrary parameter. We shall see in Sec. VII
that this is not true of the exact steady-state solutions of
the MB equations: for a given carrier wave frequency,
solitary pulses can propagate only at special parameter
values and velocities (cf. Fig. 1), a phenomenon we call
velocity selection. This has not been realized previously
because it cannot be seen at any order in a perturbative
expansion about the SVEA.

VI. A POWER-SERIES EXPANSION
IN THE ELECTRIC FIELD

In this section, we show how to extend the amplitude
expansion of Marth, Holmes, and Eberly!? to the off-
resonance case by using a method which generalizes the
perturbation theory of previous studies. The phase equa-
tion (4.7) is a first-order linear differential equation for ¢,
from which one can derive the relation

. B 2 52
7/¢E2=—3E2+A (w+1)+7\—E2w

sA
22—
A

S2 E ’ ’ ’
— = [ Ew(ENdE" . (6.1)
This is the A0 generalization of the first integral de-
rived in Ref. 12. Equation (6.1) shows that if one knows a
functional relation w =w (E) between the dimensionless
energy of the dipoles w and the pulse amplitude E, then
$(E) is determined. Furthermore, if both w (E) and ¢(E)
are known, then one can determine, at least formally by
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using the Bloch equations, the functional relation
u =u (E). This turns the amplitude Eq. (4.6) into a non-
linear second-order differential equation for E alone. The
ansatz we use for w =w (E) is a power-series expansion in
E:

w(E)= 3 wyE¥. (6.2)

i=0
The pulse boundary condition gives w,= — 1 because the
dipoles of the dielectric are in their ground state when
the pulse amplitude is zero. With this ansatz, ¢ and v are
also power series (in E and E). All the coefficients of
these series can be determined recursively. The conver-
gence of these series is a rather difficult mathematical
question to decide, since the coefficients depend in com-
plicated ways on the parameters A, A, and s. We will
come back to this question in Sec. VIL.
From Eq. (6.1) one obtains

2
; B s? sA
= _— —— _._1
vé > T 2A +A A w,
A ’ 3s2
S S 2
+ A |21 | wy+ = 4+ 6.3
A wy+ oW, E (6.3)

When §£— =t oo there is no phase modulation so that the
E-independent term of ¢ is zero. This leads to an expres-
sion for w, and for ¢, in terms of A, A, s, and w,:

sA
A 2

s

+
brt

wy —

.5‘2
x

E=E+

14
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2
B+
w =1 A = L (6.4)
2U2A (g P 204244 '
A
sA 352
. A T—l w4+Kw2
éd=¢,E*+ -+ where ¢,= ”
(6.5)

The power series for # and v can be derived using the
Bloch equations (4.8)-(4.10). This gives

u(E)=uE +uE3+ -+, (6.6)
where

u;=—2Aw, and u;=—H4Aw,+2Ad,w,) (6.7)
and

v=v,E+ -+ with v,=—2Aw, . (6.8)

Now, one can solve the amplitude equation (4.6) after us-
ing Egs. (6.2) and (6.4)-(6.7) for w(E), ¢(E), and u (E).
All the terms in Eq. (4.6) except ¢ ? contribute at this or-
der of the approximation. The result is the following
ODE for the electric-field amplitude E:

(6.9)

Dropping higher-order terms in E, the solution to this ODE is a hyperbolic secant. To derive w,, another independent
equation for E can be obtained from the conservation law (u2+v2+w?=1) by using the lowest-order terms for u, v,
and w from Egs. (6.2) and (6.6)—(6.8). This leads to another order ODE for the electric-field amplitude E with the un-
known w,:

2w, — w3 —2uu;,

h

E=E+2 E3+ .-

(6.10)

By equating the coefficients of E3 in Egs. (6.9) and (6.10) an equation of first degree for w, is obtained. The coefficient
w, is a rather complicated function of the parameters A, A, and s. The formulas for w, and for the other lowest-order
coefficients in the case s#0 are given in Appendix B. Here we restrict ourselves to the case s =0 (since for gases
w1/, ~1078, and for excitonic semiconductors w; /@, ~ 1073, this is a good approximation).
—3y%w?
Wy= 5 > 5 5 T3 - (6.11)
2[ =3y +8(AY Yw, + 8Ay(Aw, ) +3BAw; +2A%w; ]

The solution of the nonlinear ODE’s in Egs. (6.9) and (6.10) is given by

E =C sech(£)=C sech 1:# where E‘=E—~C%E3 (6.12)
and
o 4[ —3y2+8(Ay w, +8Ay(Aw, 2 +3B8A3w3 +2A%w3 ] 6.13)

w,[4Ay +3BA+2A%w, ]

The other w,-dependent coefficients ¢, and u; can also be derived:
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—3yAw?

=

and

ywi(2Ay +A%w,)

2[ —3y?+8(Ay w, +8Ay(Aw, )*+3BA%w3 +2A%w3 |

Us

Using this amplitude expansion, it is possible to derive
the various limits of Akimoto and Ikeda in a unified way.
Consider, for instance, a long pulse outside the gap. The
following inequalities are then satisfied: A <<|A| and
A <<|A—1]| (in Akimoto and Ikeda’s paper'! the expan-
sion parameter is e=A/A <<1). Explicit forms of the
lowest-order solutions are

172
E=a 222 seche, (6.162)
i 3A 2
¢ 2A(4A_3)sech§, (6.16b)
A [aa—3]"
N sech&
A3
+ sech®¢ , (6.16¢)
AN —3)NA—1)] AA—1) 8
Al aa—3 "
= |= 1
v A N sechétanhé , (6.16d)
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The other limits (such as long pulses inside the gap) are
given in Appendix C. We find that the phase coefficient
¢, has negative values for long pulses and tends to zero
for short pulses (no phase modulation) in agreement with
McCall and Hahn’s results. The product ¢,C is propor-
tional to A for long pulses and to 1/A for short pulses.
For short pulses (A— =), the coefficient w, goes to zero,
and leads to total population inversion. For long pulses
outside and inside the gap (A—0), full population inver-
sion cannot be obtained. This concludes our generaliza-
tion of the amplitude expansion method.

VII. NONEXISTENCE OF SOLITARY-WAVE
SOLUTIONS

We saw that within the SVEA and all the perturbation
methods, there is a continuous family of solitary pulses
parametrized by their width 7 or equivalently by their ve-
locity V. As we will see soon, these expansions do not
guarantee the existence of solitary-wave solutions of the
full MB equations. In the remainder of this paper we will
show that the perturbative expansions of the previous
sections are misleading, and that in general solitary-wave

=324 8(Ay)w, + 8AY(Aw, P+ 3BA%wE +2A%w]

(6.14)

(6.15)

[

solutions of SIT do not exist. There are two reasons for
doubting the validity of the perturbative expansions.
First, the SVEA as used by McCall and Hanh is a highly
degenerate limit as explained below. Second, the higher
derivatives in Egs. (4.6)—(4.10) form a singular perturba-
tion which makes the solitary-wave boundary value prob-
lem ill-posed.

Consider first the five SVEA equations with no chirp-
ing [Egs. (3.5)-(3.7)]. These are four first-order ODE’s
for the four functions, &,u,v,w and in addition a con-
straint, Eq. (3.5). For general ODE?’s, this constraint can-
not be satisfied even locally unless it is a conservation law
of the ODE’s. In the case of Egs. (3.6) and (3.7), Eq. (3.5)
is indeed a consequence of the others if K is chosen prop-
erly. But this conservation property is not structurally
stable: under a small change in the equations, there will
be no solutions to Egs. (3.5)-(3.7) in any finite interval.
One example of this was given in Sec. V. For a more sub-
tle example, consider the *“small” change consisting in
dropping, é, ¢, and E, but forcing s##0 in Egs.
(4.6)-(4.10). The constraint corresponding to the
modified Eq. (4.6) is no longer conserved by the ODE’s
and there are no solutions at all. This shows that the
SVEA equations are very special, so a perturbative ex-
pansion about them may be misleading.

The second source of possible problems is the higher
derivatives dropped in the SVEA. Are there solutions on
the whole real line which satisfy the boundary conditions
at £=+c when these terms are included? The expan-
sions described in the previous sections are locally valid,
but they need not be valid on the whole domain
(— o0, + o0 ). In order to clarify this statement, let us first
present a mode counting argument. Equations
(4.6)—(4.10) are equivalent to a system of six first-order
ODE’s in E, E, u, v, w, and ¢. These equations have a
six-dimensional solution space. One dimension of this
space corresponds to the solution (unique up to transla-
tions in &, and some discrete symmetries) which comes
out of the E =0 and w = —1 point at §= — . The five
other dimensions correspond to modes which are ‘“bad,”
i.e., which do not satisfy the boundary conditions as
&— —oo. The same kinds of modes occur for £=+ .
In general, the continuation of the good solution from
£=— o will have some of the bad modes as §— + .
This is generically the case, so in general there are no
solitary-wave solutions. To remove the bad modes at
&=+ o0, one has to tune the parameters A, A, and s in
order to come back to the £E =0 and w =—1 point at
&=+ . This is the condition for a solitary solution to
exist. As will be described in the next section, Egs.
(4.6)-(4.10) are symmetric under £&— —§&; E and v should
be odd, and the other functions should be even. Thus one
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has to satisfy one constraint to have a solitary wave: E
and v must simultaneously vanish. For the case of the
SVEA equations, if E vanishes, v does also, so there is no
additional constraint which need to be satisfied: the solu-
tion which satisfies the boundary conditions at £— —
also satisfies them at £= + 0.

The derivatives dropped in going from ®he full equa-
tions to the SVEA change the nature of the space of solu-
tions, and thus these derivatives form a singular pertur-
bation. A consequence of this is that perturbative expan-
sions starting with the lower-order equations miss some
nonperturbative terms which in general are nonzero.
This kind of behavior can be illustrated with two simple
examples from singular perturbation theory. Consider
the first degree equation: Ax+B =0. The solution is
x =—B/A. Now introduce a small perturbation: for
€<<1, consider the equation of second degree
ex?+ Ax +B =0. The extra solution, 24 /e+ O (¢), is
nonanalytic (singular) in € at e=0: ex? is a singular per-
turbation. As a second example, consider the first-order
ODE y +y =0 with solution y =C exp(—x). Introduce a
small perturbation: for € << 1, consider the higher-order
ODE

€ +y+y=0. (7.1)

Its solutions are

y=Adexp{[—1+0(e})]x}+Bexp{—[e '+0(e)]x]} .
(7.2)

The new family of solutions is nonanalytic in € at €=0.
Again, €j is a singular perturbation. If one solves such
equations by expanding the unknown function y in
powers of €, one misses the part which is nonperturbative
in €.

This singular perturbation argument can be applied to
the case of the Maxwell-Bloch equations [in particular,
the first term in Eq. (7.3)]. Take, for example, a long
pulse case outside the gap; the expansion parameter is
€e=A/A<<1. The system of Maxwell-Bloch equations
for steady-state solutions can in principle be transformed
to a sixth-order ODE for the amplitude E. Schematical-
ly, this would give

2

6()(E(6)+"‘)+E"E+E’2‘E3=O- (7.3)

For €=0, the equation has a conservation law that
reduces the ODE to quadratures. An analogy for this
case is a ball rolling down a potential V (E) for which the
conserved quantity is
E?

Uiotal = BN +V(E). (7.4)
A solitary pulse corresponds to a trajectory from
E(£=— 0 )=0to E(£=+ o )=0 which has total energy
U,ota1 =0. Because of this conservation law, the equation
is reduced to evaluating an integral and the trajectory
leaving E =E =0 is guaranteed to return to this point.
However, as soon as €70, there is no conservation law,
and in general, the trajectory coming out of §=—
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misses the E =E =0 point when £=+ . This property
cannot be seen by expanding the unknown function E in
powers of €: it is precisely the € nonanalytic part of E
(which does not appear in any € expansion) which spoils
the boundary conditions.

In Egs. (4.6)-(4.10), €=0 corresponds to the SVEA.
For general A, A, and s, the nonperturbative terms in €
will spoil the boundary conditions, and there will be no
solitary-wave solutions. In the next section, we will see
that a single condition needs to be imposed for the solu-
tion from —oo to have none of the bad modes as
&— + oo. This means that one can have solitary waves if
A, A, and s satisfy one constraint. In the next section, we
will determine this constraint numerically.

To explicitly see that perturbative expansions of the
type discussed in Secs. V and VI give rise to approximate
solutions which satisfy the boundary conditions at each
order, consider for instance the expansion of Akimoto
and Ikeda. At each other of their iteration
(E=T3,€"E,), for n 21, the electric-field amplitude E,
satisfies a certain linear second-order ODE. For those
ODE’s, there is always at least one solution which
satisfies the boundary conditions E, —0 at §==%co. The
terms E, can be calculated iteratively and never suggest
any problem. That such a series can be constructed does
not imply that there exist solitary-wave solutions. This
explains why Akimoto and Ikeda never realized that the
expansion was misleading and that solitary waves gen-
erally do not exist. Similar remarks apply to our expan-
sion of the population inversion w(E) in powers of E,
given in Sec. VI. All these expansions are locally valid,
but they are not uniformly valid on the whole domain
(— o, + o0); in general, the nonperturbative parts violate
the boundary conditions.

This section has shown that singular perturbations
have dramatic effects: there is selection of steady-state
solutions because the boundary conditions are
overspecified. Do these small perturbations also affect
more general time-dependent solutions? When going
from the SVEA [Egs. (3.2)-(3.4)] to the full MB equations
[Egs. (2.4)—(2.6)], the initial value problem is modified:
one has to specify in addition to the fields the time
derivative of the electric-field vector. Once this is done,
the initial value problem is well posed; thus we expect no
selection principle to be applicable to general time-
dependent solutions. However, the perturbations
dropped in the SVEA are still singular: the solution de-
velops nonanalyticities in the corresponding small param-
eters. One consequence is that standard perturbative
treatments should not be expected to provide approxima-
tions which are uniformly valid at all times.

VIII. NUMERICAL RESULTS

To find for which values of A, A, and s there are soli-
tary waves, we first make the problem well-posed. We
follow the procedure developed for similar boundary-
value problems in other fields.?#2> Equations (4.6)-(4.10)
have translational symmetry in £ and ¢, and are invariant
under §— —§, v— —v. Also, changing the sign of E, u
and v is a symmetry. Since the boundary conditions at
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&= — o define the solution everywhere modulo the above
translations and modulo the sign symmetry, it is not
difficult to see that solitary-wave solutions (after shifting
& so that the pulse peak is at £=0) have w and ¢ even in
&, and E must be either even or odd. The standard
hyperbolic-secant 27 pulses are even, so we will restrict
ourselves to E even. (The analysis for odd pulses would
proceed similarly.) Then u is even and v is odd. Let us
thus consider the ODE’s on the interval (— «,0] with
the same boundary conditions at £= — o0 and the condi-
tion v =0 at £=0. This new boundary value problem is
well posed. If E =0 at £=0 also, it is easy to see that one
can construct a solitary-wave solution on the whole £ axis
by reflection of the solution on the half line with a change
of sign for v. However, in general, E¥0 at £=0, corre-
sponding to a solution which has some amount of grow-
ing (bad) modes as £&— + . The amount of these bad
modes is zero to all orders in perturbation theory, but
nonetheless can be nonzero. Using the above, we see that
the condition for existence of a solitary-wave solution is
that E and v vanish simultaneously; this condition can be
interpreted as forbidding any cusp in E.

We numerically integrated the system of Egs.
(4.6)—(4.10) from £— — oo. For £ in the tail, the solution
can be obtained from the perturbative expressions for E,
E, ¢, u, v, and w; these are used as initial conditions on
the fields. We evolve forward and find the £ or £’s where
v =0, and determine E there. Call this value Etip(A,A,s).
As expected on the basis of the arguments in the preced-
ing section, in general E;,70, and solitary waves do not
exist for those values of A,A,s. However, we find that
E,, changes sign when the parameters are varied, and
that there are surfaces in the (A, A,s) space on which
E,=0. These are the surfaces for which solitary-wave
solutions exist; they determine the selected velocities for
steady-state pulse propagation.

The numerical analysis shows that one can tune the pa-
rameters A, A, and s so as to obtain Etip =0 at least in the
gap 0<A=<1. Using a root solver, we determined the
locus of the curves (A,A) for which there are solitary
solutions at fixed w;/w,. As can be seen in Fig. 1, vari-
ous branches of solutions rise from A=0 and set at A=1;
note that these two points are also special in the linear
theory. We have drawn some branches as stopping inside
the gap because there appear multiple solutions to v =0.
As one decreases A, the pulse shapes along these
branches continue to develop more and more oscillations,
eventually looking nothing like the original hyperbolic-
secant shapes. In Fig. 2, we plot the mismatch function,
i.e., the magnitude of the cusp of the solution, Eﬁp for the
parameters given by the dashed line of Fig. 1. The oscil-
lations are difficult to resolve all the way down to small
A, but it is likely that there are an infinite number of
branches coming out of the point A=1,A=0.

In summary, the solutions of the full MB equations
differ qualitatively from the solutions in the SVEA:
steady-state pulses do not exist for arbitrary pulse width 7
(or equivalently velocities), but only for selected values of
7 which in turn determine the propagation velocity.
Furthermore, such solutions are only solitary waves, not
solitons since the system of Maxwell-Bloch equations
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FIG. 2. Mismatch function for (A, A,s) given by the dashed
line of Fig. 1.

beyond the SVEA is not exactly integrable. (For in-
stance, in the presence of chirping, the identity between
the pulse area and the dipole turning angle in Bloch space
is no longer true: the area theorem fails.) Also, since the
pulse shape depends on A, contrary to the case of the
SVEA, there should not be true solitary-wave pulses
when the absorption line is inhomogeneously broadened.
This is already evident at the level of the perturbation ex-
pansions since the pulse shapes depend on A at each or-
der.

IX. ASYMPTOTICS BEYOND ALL ORDERS

In Sec. VII we argued that generically there should be
velocity selection of steady-state pulses, and in Sec. VIII
we showed numerically that this ““generic” behavior does
in fact occur in our physics problem. In this section we
show how the selection can be studied analytically using
boundary layer methods. These are techniques often
practiced in applied mathematics, and after the pioneer-
ing work of Kruskal and Segur,?* they have become the
main analytical tools in studying selection mecha-
nisms.?#?> They allow one to calculate the mismatch
function when a parameter in the problem becomes
small: in this sense, they are examples of asymptotic
analysis methods. Kruskal and Segur showed that their
method was capable of obtaining the asymptotics
“beyond all orders of perturbation theory,” thus the title
of this section.

There are three parameters in Egs. (4.6)-(4.10). s does
not represent a singular perturbation, so the asymptotics
as s —0 can simply be obtained by a perturbative expan-
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sion in powers of s. A and A play much more interesting
roles as they give rise to nonanalyticities. The Kruskal-
Segur analysis can be applied to the case where the small
parameter multiples the highest derivatives. It is readily
seen in our problem that this requires A to be outside the
gap and A—O0 (long pulse). Thus this is the case we shall
consider. Our result is that when A—0, the mismatch
function behaves as E,;, ~exp[ —A(A,s)/A] times power
corrections in A. We were not able to carry the analysis
to the point of obtaining a closed-form formula for the
function A(A,s), but in Fig. 3 we show the result of the
numerical calculation. We see that A depends rather
weakly on A far away from A=0 or 1, and that the
asymptotic behavior sets in rather quickly. Note that the
behavior we have derived for Etip is nonanalytic in A as
argued in Sec. VII. There we said that E,, should be
zero to all orders in perturbation theory in A, and this is
indeed the case. Our result shows that there are no long
solitary pulse solutions outside the gap, as E,  does not
vanish. .

Here, we outline the calculation of Ey;,, the mismatch
function. As A—O0, one expands all parameters and
functions in e=A/A. Akimoto and Ikeda have obtained
the first term in this expansion. The first step in the
Kruskal and Segur analysis is to extend the independent
variable £ to the complex plane. The first-order solution
of Akimoto and Ikeda has a singularity at £=i7/2. Im-
agine obtaining the entire series in €. It will turn out that
this series is only asymptotic. One can argue that the
various terms in the series have the leading behavior
[e/cosh(&)]" as Eé—im /2, and in fact this behavior can be
shown rigorously by taking sinh(&) as the new indepen-
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FIG. 3. Exponential dependence of the mismatch function on
A as A—0 outside the gap.

dent variable. The series in € is thus well behaved except
in the region of the complex plane consisting of the disk
of radius € centered at §=im/2. This disk is called the
“inner region” and the boundary layer is the surrounding
region also of size €.

The second step in the Kruskal-Segur analysis consists
in investigating the behavior of the fields on the imagi-
nary axis. For our steady-state pulse solution, the fields v
and E are odd. Thus they have only odd terms in their
Taylor series about £=0, and this shows that they are
pure imaginary on the imaginary axis. Similarly, since all
the other fields are even, they must be pure real on the
imaginary £ axis. However, if the mismatch is nonzero,
these fields will not have this property. As can be seen
recursively, each term in the € series does satisfy the even
or odd property, and thus the nonzero value of the
mismatch function cannot be seen using this series. Let
us thus write each field as its asymptotic series plus a
nonperturbative term. For instance,

E(£)=€E (E)+EE(&)+ -+ +Enp(E) . (9.1)

Then derive the set of ODE’s which these nonperturba-
tive quantities satisfy. On the imaginary axis, and sup-
posing we are not too close to the boundary layer, the
asymptotic series is a very good approximation to the ex-
act fields and the nonperturbative terms are small. Thus
it is sufficient to linearize this latest set of ODE’s: the re-
sult is a set of six first-order homogeneous ODE’s. They
are homogeneous because if the nonperturbative parts
vanish at £=0, they vanish all along the imaginary axis
because the condition for a solitary wave is satisfied. One
finds that the nonperturbative functions decrease ex-
ponentially as one comes down the imaginary axis to-
wards §=0. For a complete solution, it is necessary to
find the initial conditions for these ODE’s which means
obtaining the functions E,u,v, . . . in the boundary layer.

The third and last part of the Kruskal-Segur analysis is
to find the solution at the edge of the boundary layer. In
practice this is done by integrating along a line parallel to
the x axis from — oo to the imaginary axis. In general,
this cannot be done analytically and one must resort to
numerical integration. Far away from the boundary lay-
er, the asymptotic series can be taken as an initial condi-
tion on the fields. On the imaginary axis, one will obtain
in general a value for, e.g., Eyp which is O(1). [The inner
problem has no € dependence, so this matching problem
has no small parameter. Either Eyp is identically zero (a
nongeneric case) or it is O(1) at the edge of the inner re-
gion.] The values on the imaginary axis are then used as
the initial conditions for the homogeneous ODE’s dis-
cussed in the second step. Now integrate these ODE’s
down the imaginary axis to £=0. Suppose for simplicity
that the system of homogeneous ODE’s is £ independent.
Then the value of the mismatch function at £=0 can be
written as a linear combination of exponentials
exp(—Am/2A) where —iA/A is an eigenvalue of the ma-
trix describing the ODE’s. The mismatch function is
then exponentially small as A—0. In our case, the ma-
trix is not £ independent, but for any £ it has eigenvalues
which scale as 1/A and so essentially one still gets an ex-
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ponential dependence. This is very similar to the WKB
approach where the eigenvalues are also £ dependent, and
this gives rise to power corrections to the pure exponen-
tials. Thus, up to such slowly varying corrections, one
obtains an exponential dependence on 1/A. To go
beyond this leading order requires integrating the §&-
dependent ODE’s, but as can be seen in Fig. 3, the
corrections are very small.

X. EXPERIMENTAL CONSEQUENCES

SIT was first observed by McCall and Hahn! in a
liquid-helium-cooled ruby rod. Further experimental
confirmations of SIT were reported by Patel and Slusher,’
and by Slusher and Gibbs® in gaseous absorbers. Gibbs
and Slusher® later described detailed experiments on the
propagation of coherent optical pulses in dilute rubidium
vapor in a magnetic field. They observed pulses with
time delays and with low energy low consistent with the
theoretical predictions.! SIT effects in semiconductors
(first studied theoretically by Poluektov and Popov,?® and
by Tzoar and Gersten?’) have also been investigated ex-
perimentally.?® 73! The two-level systems in these materi-
als are the excitons. Experiments on materials like
CdS,Se, _, and GaAs (Refs. 28—31) showed that power-
ful light pulses ( ~ 100 MW /cm?) near the absorption res-
onance can propagate above a threshold intensity with
anomalously small losses; significant delays (~ 100 psec)
in time (larger than the pulse widths) were observed.
These features of nonlinear absorption of ultrashort opti-
cal pulses were identified with SIT for excitons in semi-
conductors.

It would be of interest to verify our results experimen-
tally for both gases and solid-state systems. Our most im-
portant prediction, that of pulse shape and velocity selec-
tion, requires that one be able to resolve the gap. Thus
line broadening must be kept at a minimum. In addition,
one must have a system of several Beer absorption
lengths wide before one can expect pulse propagation to
become steady state. There have been to date no experi-
mental verification of steady-state shapes, nor careful
determinations of velocities. Similarly the perturbative
corrections to the SVEA have not been investigated ex-
perimentally. The first step is thus to do velocity mea-
surements to see if the velocity reaches an asymptotic
value as the sample thickness increases. Steady-state ve-
locities can drop to 10°-~10* times less than the velocity
of the light in the medium away from resonance, so this
may be a feasible measurement. If one can show that
there is steady-state propagation, the velocity should cor-
respond to the selected one as determined by our theory,
given w and the material parameters. In addition, if the
pulse shape is measurable, it can be compared with the
theoretical prediction, providing a further check on the
steady-state nature of the propagation. Since steady-state
pulses exist only inside the gap, one needs to be able to
experimentally resolve the gap rather well; in particular,
any line broadening must be small compared to w; .

This constraint effectively rules out doing experiments
with gases [e.g., Rb (Refs. 8 and 9)]. However, the gap is
large enough in many semiconductors to permit an exper-

iment to test our theory. Consider, for instance, a local
optics (m*= ) semiconductor with parameters like
CdS. Take #w,=2.55 eV and #io;+=2.0 meV, and as-
sume (as in the case of CdS) that the line broadenings due
to the finite relaxation times 7', and T, are small enough
so that the structure inside the gap is not washed out.
Then we find that the top branch at A=0.3 corresponds
to a pulse of width 7=0.95 psec, leading to a pulse veloc-
ity ¥/c =3.4X107% On the same branch in Fig. 1 at
A=0.9, we find 7=2.5 psec, and V/c =3.65X10"%
These velocities should be measurable. In practice, spa-
tial dispersion effects (m* < ) need to be considered.
The change in results should be small if selected velocities
are not too small, but a separate investigation is required
to get quantitative results.

Finally, let us point out another possibility for experi-
mental observation of SIT. Within the SVEA, an arbi-
trary pulse will break up into a sequence of steady-state
pulses. This is likely to be true for the full Maxwell-
Bloch equations also, so that a pulse eventually becomes
a sequence of solitary waves. However, it is also possible
that a pulse may propagate with no loss, may not spread
out, and yet never become steady state. It could resem-
ble, for instance, a sech pulse with a time-dependent rip-
ple superposed on it. This might occur for instance if, as
w is increased, the steady-state pulse goes unstable ac-
cording to a Hopf bifurcation. To determine theoretical-
ly whether this happens, one would need to do a linear
stability analysis of the selected pulses. However, we
think that a non-steady-state SIT solution is very unlikely
to exist. The reason is that a SIT pulse must return the
pseudospins to the down state. If the pulse is steady
state, all pseudospins have the same rotation history, so
the SIT constraint reduces to one constraint on the en-
velope. If the pulse is not steady state, different pseudo-
spins have different rotation histories. There is thus one
new constraint for each dipole: w = —1 before and after
the pulse has passed the point of interest. The envelope
function would have to realize these constraints in a very
nontrivial way; since our system is not exactly integrable,
we do not think this would occur. Also note that in the
SVEA, all SIT solutions are steady state. This makes the
Hopf bifurcation scenario mentioned above rather im-
probable. On the other hand, non-steady-state SIT pulses
would be demonstrated experimentally by seeing SIT in
thick samples outside the gap since there are no steady-
state pulses there at all according to our theory.

XI. CONCLUSIONS

A perturbation expansion for the population inversion
w in powers of E was used to solve the coupled Maxwell-
Bloch equations in the lowest orders of approximation.
General expressions for solitary-wave shapes were de-
rived for an arbitrary incident carrier frequency w and an
arbitrary pulse width 7. The expressions derived
confirmed Akimoto and Ikeda’s perturbation results but
used a more uniform approach. The derived solutions for
frequencies inside and outside the gap indicated that only
in the case of very short pulses (A— o) is the phase
modulation zero, corresponding to complete inversion
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(“27 pulse”). In the other cases, the inversion of the
atoms is not complete. In the short pulse limit one ob-
tains McCall and Hahn’s solutions and the area theorem.

However, we showed that such perturbation series gen-
erally do not converge to the exact solutions. For in-
stance, our amplitude expansion and Akimoto and
Ikeda’s perturbation expansions are only locally valid:
they are not uniformly valid on the whole domain
(— o0, + ), and thus they cannot be used to determine
whether solitary-wave solutions exist. We showed that
the existence of solitary waves requires the fine tuning of
the pulse width 7 for a given frequency detuning o —w,.
Numerical results from the integration of the Maxwell-
Bloch equations determined that branches of selected
solitary-wave solutions exist inside the gap but not out-
side. This selection principle dramatically changes the
previous picture of SIT. Also, even when there are
steady-state pulse solutions, they are not solitons as for
SIT in the SVEA. Rather they are solitary waves since
the system of Maxwell-Bloch equations beyond the SVEA
is not exactly integrable.

A possible extension of this work is to investigate in-
tense pulse propagation in local media with finite relaxa-
tion times (damping I'20) to include the relaxation times
T, and T,. Because of the energy loss, there will not be
any true steady-state waves, but there will be pulse shapes
which are nearly steady state. As T; and T, diverge,
these shapes will go to the ones calculated in this paper.
The major question is how fast does the dissipation
effectively absorb the pseudosolitary pulses and can the
losses be compensated by focusing of the beam. It is also
possible to extend our analysis to spatially dispersive
media. A generalization of Ikeda and Akimoto’s work?
for spatially dispersive media along the lines of our work
will determine which of their “soliton” pulses are selected
by the laser frequency. Furthermore, a calculation of the
stability of the selected pulses is desirable.

Finally, in practice, one has to deal with the fact that
there has to be an incident pulse from vacuum into the
medium. This requires solving for the boundary effects
due to the vacuum-dielectric interface. It would be
worthwhile to investigate the shape of the incident pulses
which efficiently generate solitary waves inside the medi-
um after a few absorption lengths. As the incident pulse
shape changes, one should see a discontinuous jump in
the velocity of the steady-state pulse transmitted into the
medium as one switches from one branch of solitary
waves to another (cf. Fig. 1).
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APPENDIX A: SOLITARY WAVES AND SOLITONS

We restrict ourselves here to plane waves, i.e., waves
which are x and y independent. A steady-state wave is a
disturbance which depends on z and ¢ only through
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=t —z/V, where V is a fixed constant, the velocity of
the wave. Thus it preserves its shape with time. Gen-
erally, disturbances obey a partial differential equation;
for a steady-state wave, the PDE reduces to an ordinary
differential equation in §.

A solitary wave is a localized steady-state wave, i.e., it
decays to zero as {—* . A special subclass of solitary
waves is the soliton solutions of certain nonlinear disper-
sive wave equations. A working definition for solitons is
the following one: A soliton is a solitary-wave solution of
a wave equation which asymptotically preserves its shape
and velocity upon collisions with other solitons.'®

A simple example of waves with these properties is a
pulselike steady-state wave solution of the dispersionless
linear wave equation. Because of linearity, the solitary
waves can collide and still return to their initial shape:
thus they are in fact solitons. Introducing dispersion
without nonlinearity into the wave equation destroys the
possibility of solitary waves because the various Fourier
components of any initial conditions will propagate at
different velocities. By the same token the introduction
of nonlinearity without dispersion usually removes the
possibility of solitary waves also because the pulse energy
is continuously injected (via harmonic generation) into
higher frequency modes. In the time domain this often
appears as the formation of a shock wave. But with both
dispersion and nonlinearity, solitary waves can arise. The
solitary wave can be qualitatively understood as
representing a balance between the effect of nonlinearity
and that of dispersion. In very special cases, the PDE
describing the wave dynamics will be exactly integrable,
and the solitary waves will then be solitons.

In 1971, Lamb’ showed that the propagating isolated
hyperbolic-secant pulses found by McCall and Hahn are
in fact solitons of the Maxwell-Bloch equations in the
SVEA. These equations are exactly integrable and pos-
sess an infinite number of conservation laws, preventing
solitons from disintegrating during collisions. A general
initial condition will break up into a sequence of isolated
coherent optical pulses as McCall and Hahn had found
numerically and later studied by Dolfi and Hahn.’? The
amplitude of each of these solitons can be predicted from
the conservation laws derived by Lamb. The analytical
technique® for carrying out these calculations is known
as the inverse scattering transform (IST). Lamb!> showed
using a series of variable transformations that the SIT
equations reduce to one of the standard equations of IST,
the Zakharov-Shabat equations®* and Ablowitz, Kaup,
and Newell showed how to solve the general initial value
problem.*®> A general review of the IST as applied to SIT
in the SVEA was given by Hauss.®

APPENDIX B: GENERAL EXPRESSIONS
FOR THE COEFFICIENTS (s+0)
IN THE ELECTRIC-FIELD AMPLITUDE EXPANSION

In this appendix, the general formulas for w,, w,, and
the other lowest-order coefficients C2, ¢,, u,, u,, and v,
for the case s70 are presented. All the algebraic calcula-
tions were done by using the symbolic calculation
software program Mathematica on an SE-Macintosh per-
sonal computer:
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wo=— (B
2 2AZ+AY)
wy={—3w2[272—8y Asw, + 8Aysw, +3BAs*w, +3s*w, +2(Asw, )* —4AAs w3 +2(As*w, )?]}
X L[ —3y2+8(Ay 2w, + 8Ay (Aw, )2 +3BA%w3 +2A%w3 — 16y As(Aw, )2 —6BAs (Aw, > +8y A¥(sw, )
+3BA(Asw, >+ 3(Asw, )*— 6AAs w3 +3(Asw, > —8As(Aw, >+ 12(AAs) w3 —8A(Asw, )
+2w3(As)*]T, (B2)
L (A24AY)
C2=8A[ —3y2+8(Ay ) w, +8Ay(Aw,)*+3BA%w3 +2A%3 — 16y As (Aw, )> —6BAs (Aw, )
+8yA3(sw, )2+ 3BA(Asw, >+ 3(Asw, )> — 6AAs*w +3(Asw, > —8As (Aw, )* +12(AAs) w3’
—8A(Asw, )} +2w3(As)*]

Xwy '[—24yAs +12Ays2+9BAs>+9s*+8Ay A%w, + 6BA w, +48A%y Asw, — 12BAA sw,

—24A%y 5w, — 18BA2Asw, + 12(As 2w, —24AAs w, — 12A%5%w, +4A% % + 16A A sw3
—56(AAsw,)?+48Aw3(As)*—12w3(As)*] 7!, (B4)
Gy =3w,[ —3ys?—2yw, A’ +4Ay Asw, +6yw,(As)*+8s A3w3 — 16A(Asw, )* +8A(Aw, )*s*]

X (4A) [ =372+ 8(Ay 2w, +8Ay(Aw, )2+ 3B8A%wE +2A%3 — 16y As (Aw, )> — 6BAs (Aw, >+ 8y A’(sw, )
+3BA(Asw, )+ 3(Asw, ) > —6AAs w3 +3(As*w, )* —8As (Aw, )+ 12(AAs) w3 —8A(Asw, )?
+2w3(As)*] !, (BS)

A
U =——, (B6
! (AZ+A2) )
uy=wi[+4Ay%+3ys2+2yw, A2 —20Ay Asw, + 10yw,(As)*+ 6BAAs 2w, +6As*w, —8s A’w3 +20A(Asw, )
—16A(Aw, )% +4A%*w3 ]
X L[ =372+ 8(Ay 2w, + 8AY (Aw, )2 +3BA%w3 +2A%3 — 16y As(Aw, )2 —6BAs (Aw, > +8y Ad(sw, )
+3BA(Asw, >+ 3(Asw, ) > —6AAs w3 +3(As?w, )* —8As (Aw, )*+ 12(AAs) w3 —8A(Asw, )’
+2w3(As)*] 7. (B7)
[
APPENDIX C: LIMITING CASES (ii) Long pulse at resonance, i.e., A=0 or =w,. The
OF THE ELECTRIC-FIELD AMPLITUDE EXPANSION expansion parameter is € = A and the results are
We have the following cases. E = Asech§ , (C2a)
(i) Long pulses inside the gap. The expansion parame- S 2
ter e=A /A is the same inside and outside the gap but the ¢=—gsech’s, (C2b)
terms a, f3, and y have different expressions depending on u =lgech’¢ , (C2¢)
which case is treated. In Sec. VI, we gave results for long *
pulses outside the gap. For pulses inside the gap, we find v =sech§ tanhf , (C2d)
for the lowest-order solutions ) 4
w = —1+1sech’{—Isech®s . (C2e)
E =2AV'1— Aseché , (Cla)
(iii) Long pulses at A=1, or o=w,+w 7. In this case,
45: — %%sechzg , (C1b) the expansion parameter is €= A and the results are
— :\/—“
u =—2V1—Aseché +4(1—A)3*sech’¢ , (Cle) E=V2Asechf , (C3a)
JEN— . 3A
v= %\/ 1— Asech£ tanhé , (C1d) ¢=— TSCChzé , (C3b)
w=—1+2(1—A)sech’6—6(1—A)%sech*s . (Cle) u = —V2Aseché +(2A3)%sech3¢ , (C3c)
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v =(2A%)%seché tanh§ (C3d)

- 2. 3A° 4
w=—1+Asech §——2——sech £. (C3e)

(iv) Short pulses. The following conditions are satisfied:
A>>1 and A>>A (in Akimoto and Ikeda’s paper,!'!
€=1/A <<1). The solutions are given as follows:

E =2Asechf , (C4a)
j= — 3 ech?
§=— 5 sech’t , (C4b)
u= —ZA—sechg-I— —l~sech3§ (C4c)
A 4A ’
v =2sechf tanhé , (C4d)
w = —1-+2sech?— ?i—z—sech“g . (C4e)

For A— 0, one obtains complete inversion and no phase
modulation, as found by McCall and Hahn.!

APPENDIX D: NUMERICAL INTEGRATION
OF THE MAXWELL-BLOCH EQUATIONS

In this appendix, details for the numerical integration
of the Maxwell-Bloch equations are presented. The
Maxwell-Bloch equations for the steady-state pulse form
a system of ODE’s [Eqs. (4.6)—(4.10)] which can be writ-
ten in a more convenient way for computational purposes
as a system of first-order equations. Defining E=e, and
¢=>, one has

E=e, (D1)
=g+ By || |32 5 |uE
14 Y YA A
|22 gL |21, (D2)
A v | A ’
2
. B |e de s we 1 |sA v
b=—|E |24 | |22 | 2
v | E E YA | E vy | A E
2
— |2 > |Ev, (D3)
YA
a="v+ou, D)
A 1
) = — — o +__
v Au du AEw , (D5)
w:—%EU . (D6)

In order to integrate the system numerically, we use the
expressions for E, ¢, u, v, and w derived in Sec. VI as
asymptotic initial conditions:
E =Cseché, E=—C sechétanh§ ,
O=¢,E?, u=u,E+uE’, (D7)

v=v,E, w=—1+w,E*+w,E*.

The general form of the coefficients C, ¢,, u,, us, v, w,,
and w, (s70) is given in Appendix B [Egs. (B1)-(B7)].

The transformed system of ODE’s [Egs. (D1)-(D6)] is
a stiff set of equations. Stiffness occurs in ODE’s when
there are two or more relevant scales of the independent
variable £. In our case [Egs. (D1)-(D6)] the large scale is
the pulse width 7, which corresponds to the overall struc-
ture of the solitary-wave solutions. The short scale is of
size €, where € is a small parameter associated with rapid-
ly oscillating modes. These can be seen explicitly by
linearizing the ODE’s in the tail: two of the eigenvalues
of the linearized system are equal to *i /€, and thus rap-
idly oscillating. For stiff ODE’s most integration
methods (such as Runge-Kutta, Bulirsch-Stoer, and
predictor-correctors”) fail, because the stability of these
integration schemes is controlled by the most rapidly
varying component. Therefore, to follow the long-time
behavior (the overall structure of the solitary wave solu-
tions), one must choose time steps smaller than the shor-
test time scale. Then the large number of steps leads to
laborious integrations plus potentially large accumulation
of errors. Fortunately, algorithms for stiff ODE’s have
been developed which do not have this problem. One of
the most efficient ones due is to Kaps and Rentrop,*® and
it is a generalization of the Runge-Kutta scheme that
monitors the local truncation error to adjust stepsize. An
introduction to this stiff algorithm is given by Press and
Teukolsky.’* We used the subroutine STIFF from Ref. 39.
It requires two subroutines JACOBI and DERIVS which
contain all the information regarding the system of six
ODE’s. STIFF uses the subroutines ODEINT, LUDCM, and
LUBKSB from the Numerical Recipes book.>’

The overall program®*®*! searches for solitary solutions
by solving Egs. (D1)-DS5) with initial conditions given by
Eq. (D7). The input parameters are the frequency detun-
ing A=(o—w,)/wrr, the inverse pulse width
A=1/w;r7, and the material parameter w,/w;r. For
different values of A and A, the program scans in the
domain of (A, A) for solitary-wave solutions. The solva-
bility condition (cf. Sec. VIII) for the existence of steady-
state solitary waves is that both the derivative of the
electric-field amplitude dE /d § and the out-of-phase com-
ponent of the polarization v vanish simultaneously. The
program integrates from some asymptotic value &
near §=— oo and defines &;, by the location of v =0.
Then one does a regula falsi method on A to find when
E 1ip =0 at the tip. The program outputs the set of points
in (A,A) space for which the solvability condition is
satisfied.

Various tests on the program have been conducted.
The initial value of § used in Eq. (D7) was varied. The
results of the integration showed a fast convergence as
one took large negative values for & ;.- The results also
were seen to converge as the accuracy at each step was
increased. The integration was checked against Akimoto
and Ikeda’s solutions and the perturbative solutions of
Sec. VI. In both cases, the numerical results agreed very
well with the analytic formulas for £ away from zero. We
also checked that the condition u2+v2+w?=1 was
preserved under integration to the expected accuracy.

Another check consists in using the conservation law
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for the Bloch components u, v, and w (u2+vi+w?=1)
to transform the system of six ODE’s to a system of five
ODE’s in E, e, ®, u, and v. We coded this five-
dimensional system and the agreement between the two
programs for the selected values of (A,A) was to the ac-
curacy expected.

Finally, one can subtract out from the vector of six
functions Y  the  analytically derived  part:
Y =Y yeq. T €8Y, where € is a small expansion parameter

related to the pulse width for Akimoto and Ikeda’s
analysis. We linearized Eqs. (D1)-(D6) in 8Y and in-
tegrated numerically the corresponding linear inhomo-
geneous system. As €—0, the program for the linearized
equations and for the original nonlinear equations agreed
to the expected order in €.

The programs were run on the Celerity and VAX com-
puter machines at the City College of New York, Depart-
ment of Physics.

*Present address: Department of Physics, Emory University,
Atlanta, GA 30322.
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