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Influence of frequency exchange rate on free induction decay after saturation
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The free induction decay (FID) and light-echo kinetics are calculated under the assumption that a
two-level system frequency is a purely discontinuous noncorrelated Markovian process, and its sta-
tistical distribution is a bi-Lorentzian contour. The latter assumption is primarily mathematical,
but useful. The model allows one to obtain an exact solution of the FID problem, which recovers
the results obtained earlier with perturbation theory (the fast modulation limit) as well as the result
concerning the slow modulation limit. It is shown that only in the latter case does the field depen-
dence of the FID rate found by De Voe and Brewer [Phys. Rev. Lett. 50, 1269 (1983)] have a self-
consistent explanation.

I. INTRODUCTION

An interaction of a radiation field with a two-level sys-
tem (TLS) is usually described by Bloch equations, ' if
the line broadening is considered as homogeneous. How-
ever, the line, which is reasonably considered as homo-
geneous in a weak field, is not homogeneous in a strong
one. This became clear in the experiments by De Voe
and Brewer, who studied the field dependence of the
free-induction-decay (FID) rate after switching oF the sa-
turating field. As a sample, they used crystalline
LaF3.Pr +, in which the Pr + ion has a very wide inho-
mogeneous spectrum N(coo), determined by the disper-
sion of the crystalline loca1 electric fields. In addition,
the frequency of the studied resonance transition H4-'D2
depends on the orientation of the magnetic momenta of
Auorine nuclei surrounding the ion. Because of this it is
also dispersed within the limits of a narrow packet of fre-
quencies, but this broadening can be inhomogeneous as
well as homogeneous. It depends on how fast the reso-
nance frequency migrates in the packet due to mutual re-
orientation of Auorine nuclei. In any case, magnetic in-
homogeneity results in an additional broadening mecha-
nism, enlarging the rate of phase relaxation compared
with its spontaneous value (1/T2). De Voe and Brewer' s
experiment proves, though, that the corresponding in-
crease of the FID rate, observed in weak fields, is
suppressed in strong ones. This conclusion is quite con-
trary to that following from the Bloch theory. Consider-
ing the magnetic broadening to be homogeneous, it does
not take into account the origin of phase relaxation and
therefore ignores the inhuence of the field on its rate, in
principle.

This paradox has stimulated numerous attempts to
substitute the Bloch phenomenological description of
phase relaxation by a more adequate one, which is able to
explain the experiment. Assuming a homogeneous char-
acter of magnetic broadening, most authors employed

nonmodel perturbation theory (PT) in the random detun-
ing of a frequency in a packet e(t). It can be developed
when the distribution over detunings P(E) has a finite
second moment d = ( E ) . Besides, frequency modulation
rate 1/7 p must be great, so that the packet actually trans-
forms into the homogeneous line with the width I =d~p.
In the pioneering works different versions of such
theories were considered.

Most of them employ the Markovian version of PT,
which may be called a "Lorentzian" approximation. In
its framework the line is considered as not only homo-
geneous, but even of Lorentzian form, and the corre-
sponding phase relaxation is rigorously exponential. In
reality, at t ( ip the relaxation is nonexponential, and line
wings for cop &) 1/7p vanish as ~p, but not quadratically.
Therefore, the Lorentzian approximation is acceptable, if
the width of a hole in the spectrum 4(coo), appearing be-
cause of its stationary saturation, is less than 1/ro.
Verification of this statement post factum proves its in-
validity.

But non-Markovian perturbation theory is not better
either, even though it is free of the Lorentzian approxi-
mation. The agreement of any PT with experiment can
be gained only for the parameter I ~p in the range
0.7—1.1, which is not at all small, as it must be because of
the applicability conditions of PT. According to some
sources its real value is even greater ( —11.5, of Ref. 8).
This means that magnetic modulation is not fast enough,
and the corresponding packet can even be inhomogene-
ously broadened.

In order to eliminate perturbation-theory restrictions,
one should only suppose that the frequency fluctuation
process e(t) is a purely discontinuous Markovian noise;
i.e., c, changes instantly at successive moments of time
over a Poisson distribution separated by intervals at an
average equal to ~p. Throughout the intervals it is con-
served, and the next value c depends only on the former.
The averaged response of the TLS to such a perturbation
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II. FID SIGNAL CALCULATION METHOD

Let us consider the TLS interaction with mono-
chromatic wave 8 =Eoexp(i rot) The latter induc. es tran-
sitions between the TLS levels, whose frequency

E,(t) —E, (t) =coo+ e( t ) (2.1)

is a stationary random process: its mean value cup and de-
tuning distributions P(E) are conserved with respect to
time. In the coordinate system rotating with the field, the
density matrix of the TLS,

P11 P12

P2i P22

can be calculated by sudden modulation theory. Usual-
ly, though, for the sake of simplicity, a particular case of
such a perturbation is considered, known as the uncorre-
lated process. ' '" In this process a new value E does not
even depend on the former one, but appears with equilib-
rium probability P(E). Due to that fact, the FID signal
can be calculated analytically as a whole. But the gen-
eral solution done in quadratures is too cumbersome. It
is rather difficult to find from it the field dependence of
the FID rate, when P(s) is considered to be the Gaussian
contour.

To solve this problem, we shall address here the model
of the "bi-Lorentzian" contour. This contour has a finite
second moment. Therefore, perturbation theory can be
applied to it, as well as to the Gaussian contour. But an
exact solution for the bi-Lorentzian contour is simpler
than for the Gaussian one and it is easier to compare it
with the results of the perturbation theory. However, the
Lorentzian contour is just a particular case of the bi-
Lorentzian one. The first one qualitatively differs from
the Gaussian one by the absence of the second moment.
In this case there is no alternative to the exact solution,
as the perturbation theory is unapplicable to the contours
of this kind.

From a physical point of view, the choice of either the
Gaussian or the Lorentzian static contour is determined
only by the spatial packing of magnetic nuclei surround-
ing an ion. It is well known that the dipole-dipole in-
teraction with the nuclei yield the Gaussian inhomogene-
ous contour, the packing being regular, and the Lorentzi-
an contour if it is chaoticlike in diluted systems. ' But it
is note quite correct to compare the Gaussian contour
with the Lorentzian one, because the former narrows
with quickly increasing modulation, while the latter
remains unchanged. ' '

Our model contour occupies an intermediate position,
possessing some features of both of them. For the super-
fast modulation the perturbation theory is valid, and for
the slow one qualitatively different results were obtained.
In the latter case, the FID rate in zero field essentially
differs from the echo decay rate, though they coincide in
the perturbation-theory limits. Besides, the FID non-
monotonically depends on the modulation rate. There-
fore, there always exists an explanation of the effect
which is an alternative to PT.

satisfies the Liouville'kinetic equation of the form

X= —[La+i g(t)L, ]X+A,
where

(2.2)

o&2

X= o.
21 ~ pL

1
LZ

T2

1 +iz
T2

i8'
2

(2.3a)

Li=
—1 0 0
0 1 0, A=
0 0 0 np

(2.3b)

o &2(t) =o
&z K(t)e px[(iz —I /T2)t], (2.6)

where K(t)=(exp[ilog(t')dt']) is the correlation func-
tion of the frequency modulation. So, in the simplest
case, the problem reduces to the calculation of K (t) and
of the mean stationary value (o&z) =o &2. It is for this
purpose that the perturbation theory in frequency Auc-
tuations is applied, in the hope that

q'= (8')ro« I . (2.7)

To have the possibility for a comparison, we first calcu-
late R (t), exploiting PT. Then, addressing the exact

Time is chosen in units of ro, z =(coo ro)ro —is the fre-
quency detuning in units of ro ', g'(t)=c(t)ro, W'=pro,
n =p22 —p» is the difference between level populations
(E, &E, ), o.»=~/, =p»exp( i~t), T—, and T, a« the
time of the longitudinal and transversal relaxation, and
T] = T& Iso T2 = T2 IT().

After switching off the field ( W=O), free induction de-
cay is determined by the following expression:

cr& (2t)=( o& e2pxIizt+i f g(t')dt' —t/T2I ) . (2.4)
0

Angular brackets denote the averaging of its right-hand
side over random realizations of the process g(t). The in-
itial polarization o.

&2 created by saturating field is a sta-
tionary solution of Eq. (2.2). To determine the FID sig-
nal, it is necessary not only to find o,z(t), but to average
it over the broad inhomogeneous distribution of frequen-
cies N(z) =&9(co)lro Taking in. to account that the distri-
bution dispersion is much greater than that saturation re-
gion, we shall consider 4(z)=@a=const. Then the sig-
nal form is determined by the following expression:

R (t)=&bolm f o,~(t)dz . (2.5)

Usually when calculating R (t), the correlation of the
TLS frequency fiuctuations (before and after switching off
the field) is neglected. This makes possible the decou-
pling procedure in the formula (2.4), averaging separately
o.

&2 and the exponent. The decoupled formula essentially
becomes simpler,
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solution of the problem, we improve the criterion (2.7)
and show that it is broken when PT is fitted to the experi-
ment.

A(0)=q L, L, .
1+1.0

(3.9)

III. NON-MARKOVIAN PERTURBATION THEORY
Using (2.3) in (3.8) and (3.9) we find the mean station-

ary value of the nondiagonal element of the density ma-
trix:

K(t)=exp( —
q t) . (3.1)

It is known that in the framework of perturbation
theory

no~
0 12

—z3+z2 ' +z(q2 Kz—)+l(K2/Tz+qztz)
2

z +Bz +C
So, one should just calculate o.', z using the same theory.

Proceeding in Eq. (2.2) to the Liouville representation
of interaction, B =~ +O' T, /T2+1/T —2q

(3.10)

(3.11a)

X(t)=exp( Lot)X(—t), (3.2) C =(tr/Tz+q tz/ir)(«/Tz+q «/tz+ W .«T& ), (3.11b)

the following equation is easily obtained in the second or-
der of PT in g(t):

(X(t))=—f r(t —t')e 'Lie L, e

t~=zt (221+ W'/t, t, ), t, ,= 1+1/T, , (3.11c)

Substituting (3.1) and the value o.', 2 into (2.6) and per-
forining integration over z in the expression (2.5), we ob-
tain for the FIB the following expression:

X (X(t'))dt'+e ' A,
(3.3)

R(t)=
n08'

2 1

2
~+0exp —

q + t
T2

where r(t —t') = (g(t)g(t') ) =q exp( —t) is the noise
correlation function. In this equation a usual decoupling
procedure is used, which leads to the separate averaging
of the perturbation and the response to it. If the initial
variables are employed again, and their average value is
defined as X=exp( Lot) (X ),— then the final
integrodifferential equation of non-Markovian perturba-
tion theory is derived:

X(t)= LOX(t) f—r(t t'—)L ie — L,X(t')dt'

where

X[A iKi(t)+ Azgz(t)], (3.12)

A, = &C
T2

2z3 +~'/T2 +q't2 (2z3&C ),

(3.13a)

(3.13b)Az =[« —
q

—+C +2z3/Tz 8]/(2z3V C—),

+A. (3.4)

Applying the Laplace transformation to this equation,
we have

X(p) = f e "'X(t)dt
0

K, (t)= '

[z, exp( —z, t )
—zz exp( —zz t) ]/(z, —zz )

for 4C ~B
exp( —z3t) [cos(z4t)+ (z3 /z4 )sin(z4t) ]

(3.14)

for 4C) B~,

1

p +La+ A (p)
X(0)+—A

A(p)= f r(r)Le ' Lie i dr .

(3.5)

(3.6) Kz(t)=

[&C /(zi —zz)][exp( —zit) —exp( zzt)]-
for 4C ~B

(3.15)—(&C /&2z4)exp( —z3t)sin(z4t)

In addition to the non-Markovian approximation, the
Markovian approximation of perturbation theory exists,
when the operator A (p) is assumed '

A= f r( )Lre iLie dr . (3.7) —i
( 2i/( g+) 1/2

3,4

for 4C ~B

(3.16)

X'= lim pX(p)= A,
Lo+ A(0)

where A(0) is determined from expression (3.6),

(3.8)

This approximation is suitable for the description of a
long-time behavior of the system t )) 1 in the absence of
pumping. The application to the nonstationary regime,
however, is invalid. The stationary solution should be
found as follows:

The character of the decay depends on the sign of
D =B —4C. We have either a two-exponential FID with
rates z, and zz for D) 0 or the decay with rate z3 in the
presence of oscillations at frequency z4 for D & 0. Assum-
ing D=O, it is easy to find the position of the boundary
between the two-exponential and the oscillatory behavior:

(« —1/Tz —W T, /Tz)

(t4+21 T/)(«2/tz+ W T, +1/Tz)
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Taking into account that Tj, T2 ))1, we hence obtain the
boundary values of interaction strength for settled q .
The FID signal is two-exponential for W ~ 1/2(q' T-i)'
and for W) 4(q Ti )'~, and in the intermediate interval
it is oscillatory

K(g, t) =i gK (g, t) [—K (g, t) K—(t)], (4.4)

where K(t)= fK(g, t)P(g)dg, and P(g)=P(E)/ro. With
the help of this equation, it is easy to derive the Laplace
representation K(g,p) and, substituting it into (4.2), ob-
tain( W(4(q T, )'r

2(q T, )'

IV. UNCORRELATED MARKOVIAN FREQUENCY
MODULATION

p+t2 —i z+ dg

4k
p +t2 i (—z +()

(4.5)

o. ,z(t)= f dgexp izt — K(g, t)o', 2(g),
T2

(4.1)

where a'&2(g) and K(g, t) are "marginal" or conditional
average values, whose argument g coincides. For the La-
place representation o,2(p) from (4.1) we have

cr i2(p) = f o i~(t)exp( pt)dt—
0

Let us consider the TLS frequency modulation by a
stationary Markovian purely discontinuous process. In
this case, the averaging in (2.4) may be represented as fol-
lows:7' "

For the stationary value o'&z(g) to be derived, let us em-
ploy the kinetic equation for the density matrix, derived
in the framework of the sudden modulation theory

p(g, t) = i [H(g—, t),p(g, t)] Rp(g—, t)

p(g, t) ff (—g, g')p(g', t)d g', (4.6)

where H(g, t) is the Hamiltonian of the TLS interaction
with radiation field, R takes into account the lateral re-
laxation of components p, f (g, g') is the probability den-
sity of the appearance of frequency g after g'. If the pro-
cess is uncorrelated, then f (g, g') =P(g), and the system
(4.6) may be rewritten as

(4.2)
X(g, t) = —(L+i gL, )X(g, t)+ P(g)(X+ A), (4.7)

00 1
K(g,p)= f K(g, t)exp —p+ —iz t dt .

0 T2
(4.3)

According to Ref. 9 for the marginal function of the fre-
quency modulation K (g, t), we have

A.
where L =Lo+1, the designations are the same as in
(2.3) . Assuming X(g, t ) =0, we find

X, (g) =(5(g)X(g )(X, +A), (4.8)

where

X(g ) =(L+i gL, )

8'
t, [t,+i (z+g)]+

2

i W [t2+i (z +g)]

2

t, [t, i (z+g)]+—
iW[t~ —i —( z+g)]

[t2+i (z+/)]

[t~ —i (z +g)]

t', +(z+/)'

(4.9)

D =t, [K +(z+g) ], K =t~[1+W /tits] .

Averaging (4.8), for mean stationary elements of the density matrix we have

X, =X(l —X) 'A, (4.10)

where X = jX(g)P(g)dg. Using (4.10) in (4.8), one can derive the following relation between stationary marginal and

stationary mean values:

X, (g) =(h(g)X(g)X 'X, . (4.11)

Employing expression (4.9) in (4.11), one can easily obtain

~is(k) =
tl~ + l (K /tp )Vq

p(g) [K I +I0, (z +(')]cr',~+it [I 2(z +op) I,]—
D (K ID+I, )

(4.12)
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with designations o &2=(u +iv)I2, Ip= fding(g)ID,
Ii = f dg P(g)(z +g) ID. For the averaged stationary
value o.', z from (4.10), we derive

n08 —t, I) +it)(tqIp —2
~ )

1+(Iptq —
~
A )(W Ti —t, ) Ipt—, lr It2

(4.13)

where ~A~=t, (~ Ip+I, ).
Formulas (4.5), (4.12), and (4.13) are derived for an ar-

bitrary equilibrium distribution P(g). This general solu-
tion is valid for any strength of field and for any frequen-
cy modulation rate. But to derive the evident form of the
FID signal we have now to make the distribution
P( g) =P( E ) /rp more concrete.

V. BI-LORENTZIAN EQUILIBRIUM DISTRIBUTION

1 a
$2+ a 2 (5.2)

to which the perturbation theory cannot be applied at all.
For the equilibrium distribution (5.1), Ip and I, in

(4.12) may be easily calculated and for the Laplace repre-
sentation o. ,2(p) defined in (4.5), and we have

o,2(p) =K (p)o. ', 2
—K'(p)P' —K'(p) a' .

P +t2+K

Here

p iz ——(p, +pz —1/T2 )
K(p) =

(p —iz —p &
+ 1/T2 )(p —iz —pz+ 1/T2 )

(5.3)

Besides, such the equilibrium distribution allows one to
proceed in the limit b ~~ to the Lorentzian static distri-
bution

ab (b +a) 1

(f2+a 2)(g2+ b 2)
(5.1)

We suggest the "bi-Lorentzian" distribution of the
present form

(5.4a)

Kg( )
P 1P2

(p —iz —p, +1/T2)(p —iz —p2+1/T2)

where a =a 07 0 and b =b 0 ~0 are its dimensionless
widths. The second moment of this distribution
q = f g P(g)dg=ab, and its wings decay as 1/g . Using
the exact calculation and the calculation in PT, we sha11
be able to determine the applicability limits of the latter.

I

where

p, 2
= —

—,
'

I 1+a +b+[(1+a +b) 4ab]'~ I
—.

At the same time (4.13) yields

(5.4b)

(5.5)

no
0 12

+a +b abt2—z +iz /T2 —z[(@+a+b) —ab]+i(@+a +.b) +
T2 K

z +8]z +C]
(5.6a)

n08'
2

iz +z [1/Ti+t2(lr+a +b)IK] i ——+K+a +b
t2 T2

z +8)z +C)

abt2

(5.6b)

n08 t2c7'= (a+b) 1 ——
2 K

K+a +b
- iz z(1~+a +b +—a.lt2T2) i —— +

t2 K

z +8]z +C)
(5.6c)

where

B,=(a+a +b) +1/T 2+ W Ti /T2 —2ab, (5.6d)

a +b abt2

T K

~+a+b abide p-
(

T2 t2
(5.6e)

Performing the reverse Laplace transform, from (5.3 we derive

o &2(t) =exp[ —(1/T2 —iz)t][K(t)o &2 K(t)g] —f L (z, r)exp[——(t2+tt)(t r)]dr, —
0

L (z, r) =exp[ —(1/T2 —iz)r]K(r)a',
1K (t)= [p&exp(p2t) —p2exp(p, t)],

P] P2

(5.7a)

(5.7b)

(5.8a)

K(t)= P &P2
[exp(pzt) —exp(p, t)] .

P] P2
(5.8b)
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It is the first term of (5.7a) that exactly reproduces (2.6). The remainder take into account frequency fiuctuation corre-
lation before and after switching off the saturating field. Averaging (S.7) in (2.5), we derive the final expression for the
FID signal:

no 8'
R (t) = sr&0 exp( —t/T2) [K(t)[R,Ki(t)+RzK2(t)]+K(t)[R3K&(t)+R4K2(t)]I

2DO

+ f L( r)e xp[ —(t2+a)(t —~)]dr (5.9)

where

L (r) =exp( ~/T2—)K(r) [R5K, (w) —R 6K2(r)], (5.10)

' [8 +(8' —4C )'"]'"
1 1 1

T2

abt2
for B] o 4C

(5.14)Z —[—(2+C) Bi )' +—i(2+C, +8( )' ]

+QC) [1/T2 —(2+C( +8, )'~ ], (5.1 la) for B, ~4Ci,

R z
= ( i~+ a + b ) ab +Q—c,

+(2+C, +8, )' [1/T2 —(2+C, +8 )' ]

(5.11b)

—[8 —(8 —4C )' ]' for 8 &4C
2

z, = —[(ZQC, —8 )'"+i(2+C, +8 )'"]1
(5.15)

K K+a +b 2 —QC, , (5.1 1c)
for B ) +4C) .

R4= +—(K+a+b) —(2+C +8 )'~
K

1 1

2

t2R6=(a+b) 1 —— 1K+a +b +—

+(2+C, +8, )'"

DO=~C, (2~C, +8, )'~2

K, (t) =Re 1
[z,exp(iz2t) —z2exp(iz, t)]

Z$ Z2

K2(t) =Im ZiZ2
[exp(iz, r) —exp(iz2t)]

Z] Z2

t2 K K+a +b
R~ =(a +b) 1 —— ah+ — —Qc,

K 2 T2

(S.1 ld)

(S.1 le)

(5.11f)

(5.12)

(5.13a)

(5.13b)

From the general expression (5.9), the perturbation-
theory result can be readily gained, the parameters a and
b vanishing. For K(t) in this case formula (3.1) is valid,
and the value o.

&z as defined in (5.6a) transits into (3.10).
As a result, with (5.9) only the first term of the sum in
curly brackets is conserved, and the final formula for the
FID signal transits into (3.12).

In fact, for the exact result to be reduced to the partic-
ular case of perturbation theory, the unequalities

a, b «1
must be valid. The most rigid of these criteria is both
necessary and sufficient. If, e.g. , b )a, then it is the re-
quirement that b « 1 that determines an applicability re-
gion of perturbation theory, and not at all the unequality
ab «1, which is identical to the conventional condition
(2.7). The necessity to strengthen the applicability cri-
terion is connected with the presence of two different
widths in the bi-Lorentzian spectrum. The situation is
quite the same when the noise is characterized not by the
one correlation time only, but by two different correlation
times. ' The difference between the criteria (2.7) and
(5.16) disappears only when a =b

For the Lorentzian equilibrium distribution (5.2) the
exact solution can be readily obtained, performing in the
general expressions (5.9)—(5.15) the limiting transition
b —+ oo:

+ ++) ] 1+ II(1—exp[ —(1+a—a F)r])
1+K—a —F (5.17)
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where

at2+
T K

+ + +72T
T2 t2

nO 8' 1 at2
~No + —F

2F T
L

(5.17a)

(5.17b)

A simple analysis makes it clear that for characteristic
times of decay (1/Tz+a+F) ' the correlation correc-
tion II/(1/Tz+a +F) is less than 1 for any value of pa-
rameter. The same is true for the situation under the
curve determined by Eq. (5.18), i.e., for any
1+a )&a +F. The correction term in (5.17) decays in
this region faster than the main one and, besides, its am-
plitude II/( I+a —a F) —is small, Neglecting it, we have

a (F +a +~/tz Tz )(F + 1/Tz+atz/a )n=
(1/Tz+atz/a)(1+a/tz )(a +~t, T, )

(5.17c)

1+~=a +F . (5.18)

In this case one can easily derive from (5.17)

The correction term in (5.17) takes into account the
correlation of the system motion before and after switch-
ing off the field. Solution (5.17) shows that free induction
signal, generally speaking, is described by the sum of two
exponents with different weight multipliers. The case of
equal rates is specific, or degenerate, i.e.,

R (t)=Roexp[ —(1/Tz+a+F)t] . (5.20)

Roexp[ —(1/Tz+a +F)t], t ((tb
ROHR(t)= ' exp[ —( 1/Tz + 1+~)t],F+a —1 —v

(5.21a)

(5.21b)

Above the curve determined by Eq. (5.18), i.e., for
1+~ &&a +F, the time scale is separated into two regions
by the point t =tb. In each of these regions the solution
may be approximately considered to be monoexponential

R (t) =Ro(1+IIt)exp[ —(1/Tz+a +F)t] . (5.19) The value tb is determined from the condition

1

F+a —1 —v

(F+a —1 —a)(a +aT& )(a+1)(1/Tz+a/v)
ln 1+

a (a +F +a/Tz)(a/a+F + 1/Tz)
(5.22)

for which the correction term in (5.17) is compared with
unity. If tb «a +F, then the correction term is negligi-
ble, too, and the solution has the form (5.21a), coinciding
with (5.20). In the opposite case, there is no essential re-
laxation in the interval t & tb, and practically it develops
according to the law (5.21b). The boundary between

52 Q

(e —1 )8' 2(e —1)
2

+ —1(~+1)' ~+1
=a. . (5.23)

Figure 1 shows the separation of the considered cases
on the plane (a/T„P'). Above the curve (5.23), shown
in the figure, the decay rate is in general determined by
the value 1+a, and below by the value a+F. In the
upper region the system reaction may be considered as
quasistatic, and in the region below, as averaged by
motion. But this separation at 8'=0 does not coincide
with echo-theory separation of fast and slow modulation
(by the unequalities a ~a 1 ). ' Instead, the criterion a a~T,
appears, in which T& arises as a parameter characterizing
the system saturation before switching off the field.

I

these situations is determined by the curve described by
the equation tb =a +F. Using (5.22) in it, we derive

VI. INTEGRAL RATE OF THE FREE
INDUCTION DECAY

20

FIG. 1. Regions of the exponential decay: a, the decay rate
is equal to 1+a.; P, the decay rate is equal to a +F.

The above consideration shows that free induction re-
laxation may be consideration as an exponential process
only approximately and far away from the boundary
separating quasistatic and fast modulation. In reality, it
is to some extent nonexponential, as Fig. 2 related to
close quasistatics shows. This makes it difficult to com-
pare the theory with the experiment in which only the de-
cay time without the necessary analysis of the FID kinet-
ics, is found. We have to decide what this value should
be compared with. We suppose that the most suitable is
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Using expressions (5.3) and (5.4) we have

3'ro=R
~ I Qc~ [R ~ +(p~ +p2 —1/T2)R2+p&p2R4

—p)pqR6/(t2+z)]F, +V CI R2F2

where

+ [R &(p&+pz —1/T2)+p&p2R3

+p,p2R /(t2+v)]F3 (6.2)

(2+C, +B,)'"+P
F]= (6.3a)

0.0 0.1 0.2 0.3 0.4 0.5

a —Qc,
p

a+P(2+C, +B, )' +B,+Qc,F3=—
p

(6.3b)

(6.3c)

FIG. 2. Time dependence of the FID signals: 1 —g~o=0.45,
2 gwo=4. 5; and ao~o=30 T~/~o=22 55

the mean decay time ro jo"R (t)dt/R (0) or its reverse
value y, which we call the integral rate of the FID. In
order to calculate it, we have not restricted ourselves to
the analysis of the poles only, as is usually done, but
have performed the whole calculation, both in the exact
theory and in perturbation theory.

It is quite clear that y is expressed versus the derived
solutions as follows:

+Qc, (p'+Qc, ) . (6.3e)

Substituting the result of perturbation theory (3.12) to
(6.1) we derive

A &[(q +1/T2) +2z3(q2+1/T2)+V C ]
A, (q + 1/T2+ 2z3 )

—A 2&C

a=(t2+a+b)/T2+ab, p=t2+a+b+I/T2, (6.3d)

Fo=a(a+B&)+P(2+C&+B&)' (a+Qc&)

R (0)

f R(t)dt

12+ dz Imo 12
g —+ OO

Im f dz cr, z(p =0)
(6.1)

[the parameters are defined in (3.12)—(3.16), and q =ah].
Before making a comparison of (6.2) and (6.4) with the

experiment, let us compare them with each other in the
vanishing field ( W —+0). In this case, from (6.2) we have

t2+a+b
y(0)ro=2dP ab + T, + T,p(t2+a +b)

t2+a+b a ab
X aba 2 +T, +p +p (t2+a+b) +T, (t2+a+b) (6.5)

The perturbation-theory result derived from (6.4) is some-
what simpler:

geneity. In the perturbation theory it is essentially nar-
rower then the initial width of bi-Lorentzian center ap,
because in PT applicability limits,

(p)—
'YPT

2 1 1+ab =2 +apbp7 p
Tp T T2

(6.6)
ap ~bp «1/~p . (6.7)

In PT applicability limits the packet is a homogeneous
line, narrowed up to the value I =apbp7p. The phase re-
laxation rate in (6.6) increases by this very value. If
y(0)/2 is considered, counting it from 1/T2, it is the ad-
ditional broadening, determined by magnetic inhomo-

In Fig. 3 one can see that when ap «bp this region is
somewhat narrower, and outside it the exact solution
qualitatively differs from that in the perturbation theory.
It reproduces that which is obtained from a purely
Lorentzian static spectrum. The additional broadening is
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nearly equal ao at moderately fast modulation, but during
the transition to the quasistatic region (a ))T! ) it de-
creases as I/ro. The latter value is the width of the sub-
packet in the inhomogeneously broadened packet.

This behavior of the FID rate during the transition
from very fast modulation to very slow is worthy of com-
parison with the rate of the echo signal decay 1/T2. It is
the more appropriate, as most papers consider the
difference y(0) —1/T2, providing T2 is measured. As
in perturbation theory 1/T2 = 1/T2+ aobo~o this
difference is just twice less than (6.6) in the limits deter-
mined by the inequality (6.7). With the modulation being
slower, the relation y(0)=2/T2 is no longer valid. To
make it clear, we have calculated the echo signal of the
bi-Lorentzian contour with the formula suggested in Ref.
13:

0.0 ! I ! !

0 2 4 8 10 V(t) = I+2 J ~K (t')
~

exp(2t')dt' exp( t2t) . —

FIG. 3. FID rate at g~0:, y(0)/2ap, Eq. (6.5);
gpT(0)/2ap, Eq. (6.6); and echo rate:

1/apT&, Eq. (6.10) as a function of the frequency modulation
rate ~p '; apTI 100, bp=10ap.

Using for E (t) its value (5.8a), we hence derive

(6.8)

V(t)= 1— (PI +P2+ I )(P 1+P2 ) P!P2(P1+P2 )

p]p2+pi+p2+1
4pip2 p &

2

exp[(p2+ 1)t]
p) +p2+2 p2+ 1

4p &pz
exp

p&+p2 +1 t
2

pz
p)+1 exp[(p, +1)t] exp( —t2t) . (6.9)

Taking T2 for the mean integral time, we find

J V(t)dt
o

t2~13(p! —P2)'

+~(pl P2) +~ — Pl P2 (P 1 +P2)+~plp2(p!+P2) 4~plp22 1
'

2

T2

(6.10)

As Fig. 3 shows, y(0)/2 coincides with 1/T2 only in
perturbation-theory limits (boro(&1) and in very deep
quasistatic regions: for aoro)) T, . In the intermediate
region they diA'er rather essentially, and this can cause an
error, if they are still identified.

The case a =b is of special interest, as it imitates the
monoparametrical contour, similar to the Gaussian con-
tour in this sense, but of a difFerent shape. Perturbation-
theory limits shift in this case to the point ao7O=1 but
still there is a large interval between it and the quasistatic
region, where the decay times of the echo and the FID
signal are essentially different (Fig. 4). This difference is
especially clear, if by varying ao~o we keep ~o invariant,
as in Fig. 5. It reaches its maximum at aoro-QT&/ro.
Therefore, the results of the FID signal extrapolation to
zero fields may coincide with the echo data, either at very
small or at very great aors o.

VII. DISCUSSION

1.0 —~
l

1

l

L

0.8 — I

0.6—
t

I

0.2

2 4 6 8 10

Until now, the results of the experiments by De Voe
and Brewer have been interpreted only in the framework FIG. 4. The same as in Fig. 3, but with bp =ap.
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of perturbation theory. Figure 5(a) shows that in the bi-
Lorentzian model of contour 't ' 1'di is va i only to

the FID in
q =ap7"p Ap'Tp(0. 3. In the sarrie limits the half- fe a -rate o

e in the zero fields y(0)/2 coincides with the re-
verse echo integral time 1/T*. On th bn is asis most work-
ers have used the echo data to complete curve y(g) by a

e experiments.zero point, which is inaccessible in th FID
But one should avoid this; since the perturbation theory
is inapplicable, the equality y(0)/2=1/Tz breaks down,
and both experiments should be considered separately

CO

f—

30 60 g0 120

1 ~ 5 I [ I
]

I

/

Extrapolation of the y(y) data to the zero fields puts
some reasonable limits on the choice of y(0) based only
on the results of FID experiments. In the case shown in
Fig. 6, we have chosen y(0)/2n=15 kHz. So the prob-
lem is if the dependence y(x), supplied with a zero point
is described by the above-developed theory and for exact-

the model quite viable, and both its parameters (ao and
wo) can be uniquely found from Figs. 4 and 5 correspond-
ingly. According to Fig. 4, at q —+0 and at q~~ the
va ue ap diverges. But this value as a width of the static
pac et originated by dipole-dipole magnetic interaction
cannot be infinitel ry g eat. Therefore we have to restrict
ourselves with moderate values of q.

Using perturbation theory the authors of Ref. 5
'

de . varie
q in e interval of 0.7—1.1 and the authors of Ref. 4 as-
sumed it to be e ualq to 0.6. Both groups reported satis-
factory agreement of the so-calculated y(y) d depen ence
wi e experjmental one. But this agreement i 'llss i ussve.

s e imits of perturbation theory turned out to be bro-
ken, the dependence y(g) calculated with it essentially

. , as a ove, theneviated from the correct one. If q=0.7 b, h
e derivation of the exactly calculated curve from the

experimental one becomes very essential with the in-
crease of (Fi . 6 . Tig. ~. o eliminate them, it is necessary to

ng e imits o pertur-en arge q even more, finally breakin th 1'

ation theory. Only at q=2.3, which corresponds to
~p=22 s and a 2p p/ sr=16.6 kHz can one gain satisfactory

6
agreement of the exact theory with th e experiment (Fig.

~ ~

The problem of the correspondence between the FID
and echo data, especially outside perturbation-theory lim-

greater than 1, values of q the echo kinetics is much more
nonexponential than the FID signal (Fig. 7). Because of
this reason the integral decay tim f T*
than twit an twice as large as the parameter of the long-time
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FIG. 5. (a) FID rate at g~o:, y(0)~p/2, E . (6.5);
——- —,ypT(0)~p/2, Eq. (6.6); and echo rate: ———~ /T*
E . (6.10) as a function of q =ap&p Ti/&p=22. 55, ap=bp, '

q ~ 120. (b) The same as in (a), but with q ~ 3.

FIG. 6. Field dependence of
theory; ———,exact theory
ap /27T =b p /2~ =22.3 kHz'
ps, ap/2m=bp/2vr=16. 6 kHz;
Tl =0.5 ms.

the FID rate. —.——., Bloch
[Eq. (6.2)] q=0.7, ~o=5 ps,
, exact theory q=2.3, zp=22

0, experimental data (Ref. 3),
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FIG. 8. Field dependence of the FID rate. ——.—-, Bloch
theory;, exact theory [Eq. (6.2)] q= 400, ro =22 ps,
ao =bo, ao /2~ =2.9 MHz; II, experimental data (Ref. 3),
T] =0.5 ms.

FIG. 7. Logarithmic dependence of the FID signal at y~0:
, R (t)/R (0), Eq. (5.9); and of the echo signal

V(2t), Eq. (6.9); ao=bo, q =a0~, =2.3, ~o=22 ps, T, =0.5 ms.

asymptotic decay, which is ~o. But the deviations from
exponential echo kinetics were not observed experimen-
tally. If the reason for this is that only the exponential
asymptotic regions can be measured, then the value
vo =2 1.7 ps found in this way agrees well with the one ob-
tained by fitting the fiel dependence y(y). However, if
not only the asymptotic behavior is exponential, but all
the kinetics from the very beginning to the end, it cer-
tainly proves that the modulation is either too fast or too
slow. The first possibility should be rejected at once, as it
does not describe field dependence y(y). Concerning
that, the second one is preferable, since in the deep quasi-
statics y(y) is approximated even better than in the

moderate one (Fig. 8). But for such a great q=400 mag-
netic static broadening ao/2~=2. 9 MHz is much greater
than its real value. '

Therefore, it is rather dificult to describe both experi-
ments in the framework of the model employed here. At
least we have to consider other types of static contour,
which are difterent from the bi-Lorentzian one. Besides,
it is necessary to remember that the frequency migration
can be a correlated process as well, which for the Gauss-
ian contour is described by the Focker-Planck equation.
This latter case was considered in Ref. 16, but did not al-
low us to eliminate the discussed contradictions. It is
quite possible that the physical model of modulation
must be revised even more seriously due to the rejection
of the Kielson-Storer kernel for the description of the
correlated frequency migration.
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