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The existence of odd Raman subharmonics in the nonlinear mixing of fields of frequencies ®w; and
w, is examined in a nonperturbative way. It is shown that the coupling of Stokes and anti-Stokes
processes at high pump powers produces odd subharmonics in nonlinearly generated signals. It is
also shown that this coupling can lead to gain at the odd subharmonics. An effective Hamiltonian is
used to discuss the coupling of Stokes—anti-Stokes processes. Numerical results showing the odd
subharmonics are presented. The origin of odd subharmonics in terms of transitions among dressed

states is also discussed.

I. INTRODUCTION

The occurrence of the Raman resonance in four-wave
mixing is well understood and has been studied very ex-
tensively. It is now known'! ™3 that the mixing of intense
fields of frequencies w; and ®; can produce additional
resonances at subharmonics of the Raman frequency wg,
i.e., the nonlinearly generated signals can exhibit reso-
nances at w;, —w; =wg /n, where n is an integer. These
can be understood'”7 in

subharmonic resonances

terms of the higher-order nonlinear susceptibilities.
For example, the fifth-order susceptibility
X(S)(w,,m,,ws,—ws,—ws) also leads to a signal at

2w; —w,, but such a signal also exhibits the subharmonic
resonance at wg /2. The six-wave-mixing signal at
3w;—2w,;, obtained from the calculation of
X @, 0,0, —o,, —w,), also exhibits the subharmonic
resonance at wg /2. The existence of the subharmonic
wp /3 follows from considerations of still higher-order
nonlinearities like ¥'"(w;,0,,0;, —o, —©;, —o,, +o,).
The subharmonic wy /3 arises from the mixing of at least
eight waves. The expressions for ¥ can be obtained in
the usual way from perturbation theory, though these get
extremely involved due to the very large number of dia-
grams that contribute. Trebino and Rahn® have exam-
ined these higher-order X’s. Another approach to the
subharmonic resonances is to generalize the polarizability
theory® extensively used in the context of Raman scatter-
ing. This has been done by Kothari and Agarwal,”® who
also showed how to include the effects of a collisional
mixing of Raman lines. In certain cases it is possible to
go beyond perturbation theory®>> by using the dressed-
state approach.

In this paper we study in detail the origin of the
subharmonic resonances at wg /3, wg /5, etc. We devel-
op a nonperturbative approach based on an effective
Hamiltonian. We show that the coupling of Stokes and
anti-Stokes lines produces such odd subharmonics. The
organization of this paper is as follows. In Sec. II we
derive an effective Hamiltonian describing both Stokes
and anti-Stokes processes. We derive the corresponding
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equations for the coherences and population inversion.
These equations have the same structure as Bloch equa-
tions for a two-level system driven by a bichromatic field.
We show how the induced polarization at different opti-
cal frequencies can be obtained from the knowledge of
the low-frequency coherence. The origin of the odd
subharmonic is discussed. In Sec. III we show how to
calculate the line shapes of various signals generated
from the interaction of pump and Stokes fields. We
present numerical results for a range of parameters.

II. STOKES-ANTI-STOKES COUPLING
AND SUBHARMONICS

Consider the Raman transition |2)—|1), where the
system absorbs a photon of frequency w; and emits a pho-
ton of frequency w,;. The Raman resonance occurs when
w;—w,=wg. The Raman transition [2)—|1) or the
Stokes process [Fig. 1(a)] can be described by an effective
Hamiltonian H; given by

H,=g,S*te " *"4H.c, 2.1)
where SV is the transition operator |1) (2| for the Stokes
process and g, is the matrix element for the Raman tran-
sition. The anti-Stokes process is also possible—the sys-
tem once in the state |1) can absorb a photon of frequen-
cy w; and emit a photon of frequency w,. The system re-
turns to the state |2). The anti-Stokes process [Fig. 1(b)]
can also be described by an effective Hamiltonian H,

given by

11> —
4 o
|2> —_— 2

(a) (b)

FIG. 1. Schematic representation of Stokes (a) and anti-
Stokes (b) processes. The intermediate states are denoted by |j )
and |j').
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H,=g,S e VY H.c., (2.2)
where g, is the matrix element for the anti-Stokes process
and where S~ =|2) (1] is the transition operator for the
anti-Stokes process. The unperturbed Hamiltonian can
be written as
DR 2

HO=T(|1)(1l—I2>(2|)=mRS . (2.3)
Note that the S*,S? operators introduced above satisfy
the spin-1 angular momentum algebra. We work in a
frame rotating with the frequency v=w;,—w,. The
effective Hamiltonian for both Stokes and anti-Stokes
processes can be written as

H=(wg—v)S*+(g,ST+g*S )+(gkS Te* ' +H.c.) .
(2.4)

From (2.4) we get the following equations for the mean
values of S* and S*

(S tYy=+ l(coR—v)—?z— (S*)—2ig*(S?)
—2ig, {(S?)e 2V | (2.5)

(§y=— z(mR—v>+—T1: (S~ )+2ig (S?)
+2igr(S?)erv, (2.6)

(S'Z)Z—%1<Sz—n)—i(gs+g:e2i"‘)<s+)
+i(gr—g,e (ST . 2.7

Here we have introduced phenomenologically the
traverse and longitudinal relaxation times — 7, and T,.
The linewidth of the Raman transition in weak fields is
1/T,. The parameter 1 gives the equilibrium population
difference between the levels |1) and |2). We will see
that the Raman coherence (S ) will determine the vari-
ous components in the induced polarization. The reso-
nances in the coherence S ) will thus give rise to reso-
nances in the nonlinearly generated signals.
The induced polarization P is given by

P=alge “'+ee “4cc.), (2.8)
where «a is the polarizability which for Raman problems
can be approximated by®

a—»a—a
90

Note further that the long-time solution of (2.5)-(2.7)
will have the form

0=q(ST)+g*(s7) . (2.9)

+ *® . .
(ST(1))y= 3 >y’ . (2.10)
The extra factor e’ comes from transforming back from
the rotating frame. The different frequency components
of the induced polarization can be obtained by combining
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(2.8)-(2.10).

Before we discuss exact solutions of (2.5)—(2.7) we
point out what is expected on the basis of (2.4). Supposing
the anti-Stokes coupling is treated perturbatively, then
the system will exhibit resonances whenever 2v equals the
transition frequencies of the Hamiltonian H,+H,. The
eigenstates of H,+H, are same as the semiclassical
dressed states so familiar from optical resonance physics.
Thus the coherence (S ) will exhibit resonances when-
ever

2v==[4|g >+ (wgp —v)*]V?, (2.11)
and to first order in g,, (ST ) will have the form
<S+(I))zw(ll)eZivt_FIp(l—l)e*Z[vt . (2.12)

If the coupling g; (Raman matrix element) is small com-
pared to wp —v, then (2.11) leads to the approximate re-
sult

v=wg /3, —owg . (2.13)

Thus to lowest order in the anti-Stokes field, we will get
resonances at the anti-Stokes frequency and at the odd
subharmonic wg /3. If we interchange the role of the
Stokes and anti-Stokes fields, then we will get in place of
(2.13),

v=—wg /3,0 . (2.14)

Higher-order odd subharmonics can be obtained from
considerations involving higher-order processes in
Stokes-anti-Stokes fields.

III. NUMERICAL RESULTS
FOR MULTI-WAVE-MIXING SIGNALS

In this section we calculate the generated signals by the
mixing of w; and w; fields. For this purpose we first cal-
culate the Fourier components of P. Combining Egs.
(2.8)—(2.10) the induced polarization can be written as

+ oo
P= 2 (qw(ln)ewt(1+2n)+q*¢(ln)*efzvt(l+2n))
- o0

t

X [eﬂwst(s,e""”-i-es ) e (efe™+eX)] .

(3.1)

The Raman gain can be obtained from the component of
P oscillating at the frequency w,. It is seen from (3.1)
that

P:eAiwsl(qw(lo)+q*¢(l~l)*)€l+ cee (3.2)

It is clear that the Raman gain will be proportional to
—Sg(v), where Sg (v) is defined by

Sp(v)=Im(\0+ !~ D*) (3.3)

Here for simplicity we have assumed the matrix element
q to be real.

The four-wave-mixing signal S, at the frequency
2w; — o, can be obtained from the Fourier component of
Pat 20, —w,. A simple calculation using (3.1) shows that
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—i(20;~ )t

P=e g(qi Vg 0% )+ - (3.4)

and hence the four-wave-mixing signal is proportional to
S, with
Sy=[{7V+yO* 2. 3.5)
The six-wave-mixing signal can be similarly calculated
from the component of the induced polarization at
3w; —2w,, which can be written as

=i, —20)t

P=e g (g P +g* i)+ -, (3.6)

and hence the six-wave-mixing signal is proportional to
S where
Se=Igi7H+yiV*> . (3.7)
Thus the knowledge of the Fourier components of the
coherence (S ™) will enable us to calculate all the sig-
nals. It should be noted that the Fourier components /"’
can be calculated to all orders in the applied fields. Thus
the term six-wave-mixing signal implies the signal at the
frequency 3w; —2w,, though at high intensities many
waves mix to produce such a signal. The Fourier com-
ponents of ¥{" are to be obtained from basic equations
(2.5)-(2.7). Equations (2.5)-(2.7) can be solved by
continued-fraction methods.!® Let us also introduce the
Fourier decomposition of (S?),
(S7)=3 X,e 2 (3.8)

Then Egs. (2.5)-(2.7) lead to the following recursion rela-
tions:

Y\ =(—2ig*X,—2ig,X,.)/D, , (3.9)
D,= %—|AR+2ivn , Ap=wgp—v, (3.10)
2
a,,X,,+an,,+1+chn_1=—}’—a,,o ) (3.11)
1
where the coefficients a,,, b,,, and ¢, are given by
2g, 1> 2lg,1? | 2lg,l?
an=2inv+L+ & & 8a
Tl Dn Dtn Dn*l
2|g,|?
*ii , (3.12)
D*(n+1)
b, =2g,8, | —— +— (3.13)
n aos Dn Di(n+1)
=2gkg* + 1 (3.14)
cn gagS Dnv1 Dtn .

The recursion relation (3.11) can be solved by converting
it into a continued fraction.! In perturbation theory the
expected resonances arise from the zeros of D, , which are
given by

L*i(coR —v)+2ivn =0,

T, (3.15)
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FIG. 2. Absorption of the radiation at the frequency w, as a
function of v=w;, —w,. Positive and negative values of Sg(v)
correspond to absorption and gain, respectively. Curves a-c
are for increasing values of the field intensities, i.e., for g values
equal to 0.5, 10, and 20 and for ¥{=0.9. Note that the actual
values for curve a are ten times those shown.

ie.,

y=

(3.16)

wR+%2 /(2n+1) ,
where n is an integer. This expression shows the ex-
istence of odd subharmonics.

We have calculated numerically the signals for a wide
range of parameters and the results are shown in Figs.
2—-4. For numerical computation we choose g,~g;.
Note that both g, and g, are proportional to the product
le;€,| of the fields at w; and w,. We also scale everything

I )
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FIG. 3. Four-wave-mixing signal S, at the frequency
20, — w, as a function of v for increasing values of the pump in-
tensities g =0.5 (curve a), 5 (curve b), 10 (curve ¢), and 20 (curve
d), and for ¥;=0.2. The signal is symmetric with respect to v.
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FIG. 4. Six-wave-mixing signal S at the frequency 3w, — 2w,
as a function of v for pump intensities g equal to 5 (curve a) and
20 (curve B), and y;=0.2. Only the region of subharmonics is
shown. The actual values in case a are 100th of that shown.

in units of ¥ and take wg /¥y =100. We further write
1/T,, 1/T,, and 1 as

1 _ -2
Tl —(Yl+7/T) T2 .

—_1
=73

Yi— 71

(3.17)
Yitr:

Thus the ratio y;/y | defines the width of the Raman line
as well as the populations in the states taking part in the
Raman transition. In Figs. 2(a)-2(c) we show the Raman
gain for increasing values of the parameters g (i.e., |g;€,|).
At low intensities [Fig. 2(a)] we have the standard Stokes
and anti-Stokes processes. As the field intensities are in-
creased, the gain profiles exhibit the emergence of the
subharmonic resonances. Figure 2(b) shows the first odd
subharmonic wg /3. With a further increase in the field
intensity the next odd subharmonic wy /5 can also be
seen. The main resonance at wp (—wg) shows power
broadening effects. Next, Figs. 3(a)-3(d) show the four-
wave-mixing signal at 20, —w, for increasing values of
the field strengths. For low pump powers [Fig. 3(a)] the
signal exhibits only the Stokes and anti-Stokes reso-
nances. This one expects from the lowest-order perturba-
tion theory. As the pump strengths increase the Stokes
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and anti-Stokes lines exhibit [Fig. 3(b)] a hole!! in the line
center. Such a pump-power-induced hole at the line
center is known from the earlier studies. With a further
increase in pump power, the hole at the center becomes
quite prominent [Fig. 3(c)]. In addition, the first odd
subharmonics appear at =wy /3. These odd subharmon-
ics become quite prominent at even higher intensities
when the four-wave-mixing signal also shows [Fig. 3(d)]
the next odd subharmonics at twg /5. Note that in go-
ing from 3(a) to 3(b) the intensity of the field is increased
by a factor of 10. Finally, Figs. 4(a) and 4(b) give the six-
wave-mixing signals under strong excitation conditions.
Figure 4(a) shows the first odd subharmonics at twy /3.
These odd subharmonic resonances acquire a hole at the
line center at higher pump powers [Fig. 4(b)]. In addi-
tion, at such intensities, the six-wave-mixing signal also
exhibits the next odd subharmonics at twpg /5.

IV. CONCLUSIONS

In conclusion we have shown how the coupling of
Stokes and anti-Stokes processes leads to the generation
of the odd subharmonics in the signals generated by the
nonlinear mixing of fields.!> The analysis also shows that
it is possible to have gain not only at the Raman-shifted
frequency but also at a frequency which is shifted by
wgr /3. The odd subharmonics can also be understood
from the structure of our effective Hamiltonian (2.4) and
from what is known in case of transitions in rf fields.!?
We rewrite (2.4) in the original frame, assuming that
g =8,=8&>

H=wgrS*+4gS*cosvt . 4.1)

Note that the effective Hamiltonian for Stokes and anti-
Stokes processes is equivalent to the Hamiltonian for a
two-level system (with two levels separated by the Raman
frequency) interacting with a field of frequency v. It is
well known that such a system allows multiphoton pro-
cesses of all odd orders as the coupling parameter g in-
creases. Clearly each multiphoton resonance corresponds
to the existence of an odd subharmonic. Finally, note
that the results of this work can be generalized to deal
with the case of many Raman transitions.
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