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Hydrogen in intense laser fields:
Radiative close-coupling equations and quantum-defect parametrization
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A system of radiative close-coupling equations for a hydrogen atom in a circularly polar-
ized intense laser field is derived. The radiative scattering matrix is parametrized within a
multichannel quantum-defect; formalism. The quasienergy spectrum corresponding to nonper-
turbative shifts and ionization widths of the bound atomic states is computed from the poles
of the radiative scattering matrix. For an intensity range up to oe 1.5ao (with o.e the oscil-
lation amplitude of the free electron in the laser and ao the Bohr radius), numerical results are
presented in the frequency regime where two-photon ionization and above-threshold ionization
of the ground state is possible. For one-photon transitions a stabilization of the atomic states
for strong fields is predicted.

I. INTRODUCTION

During recent years there has been increasing inter-
est in multiphoton transitions in atomic and molecu-
lar systems induced by intense laser fields. The pro-
cesses studied include multiphoton ionization [above-
threshold ionization (ATI)], harmonic generation, and
(low-energy) electron scattering in the presence of a
laser field (for a review of recent theoretical work, see
Ref. 1). On the theoretical side this has stimulated
the development of nonperturbative techniques to model
these strong-field interactions. Examples are L2-basis
calculations, direct numerical integration of the time-
dependent Schrodinger equation for one-dimensional
model problems and (realistic) atomic systems, s s vari-
ants and improved versions of the Keldysh theory,
high-frequency approximations, ~i and the solution of
close-coupling equations. ~ In a previous paper we
have developed a theory of a hydrogen atom in an in-
tense laser field, based on the following observations. 3

A free electron in a laser field oscillates with the fre-
quency io of the light and amplitude no proportional
to the electric-field amplitude So. Quantum rnechani-
cally, this is described by the Volkow solution of the
Schrodinger equation. To study the motion of an elec-
tron moving both under the influence of a laser and a
binding Coulomb potential, it is convenient to transform
the Schrodinger equation to a moving frame, to elimi-
nate the asymptotic free-electron oscillations (Kramers-
Heisenberg transformation, see references in Ref. 11). By
means of a Floquet ansatz in time it will be possible to
reduce the time-dependent Schrodinger equation to a
system of radiative close coupling equatio-ns (RCCE's) for
a given quasienergy of the electron. The potential
in these RCCE's is asymptotically a Coulomb potential
(this is a consequence of the fact that the elastic compo-
nent of the free-electron oscillations has been transformed
away). The radiative channels in the close-coupling equa-

tions can be identifed as dissociation channels of the
electron-ion complex where the electron moving away
from the ion has absorbed (or emitted) a definite number
of laser photons. The coupling between these radiative
channels is induced by the laser field. In our previous
work we have argued that for optical frequencies these
coupling potentials are finite-range interactions. A ra-
diative scattering matrix that describes transitions be-
tween the dissociation channels can be determined from
a solution of the RCCE's. In particular, this scattering
matrix will exhibit series of laser-induced capture-escape
resonances. Widths and shifts of these resonances (de-
termined from the complex energy poles of the S matrix)
can be identified with multiphoton ionization rates and
ac Stark shifts of the bound atomic states. In practice,
solution of the RCCE's can be performed numerically by
a suitable truncation of the infinite hierarchy, where the
number of channels that must be included depends on
the light intensity.

The finite-range character of the radiative interac-
tion leeds to a considerable simplification in solving the
RCCE's by allowing us to solve the problem in two steps.
As a first step the close-coupling equations must be solved
in the radiative interaction region. This gives us at
the boundary a short-range reaction matrix which is a
smooth function of energy and thus needs to be tabu-
lated only on a coarse energy grid. The second step con-
sists of enforcing the proper asymtotic behavior of the
wave function for the open and closed radiative chan-
nels. This step can be performed analytically using the
properties of the Coulomb functions, and for the closed
channels leads to the appearance of a resonance struc-
ture. Formally, this is equivalent to applying multichan-
nel quantum-defect theoryi7 i9 (MQDT) to the radia-
tive interaction problem. Thus the finite-range property
of the interaction allows us express the radiative scatter-
ing matrix with the help of QDT formulas in terms of
a set of intensity dependent smooth MQDT parameters.
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The goal is then to compute these parameters directly by
solving the RCCE's.

Among the advantages of this theory is that it pro-
vides a systematic variational approximation to compute
a Coulomb-Volkov solution and the radiative scatter-
ing matrix. Furthermore, it accounts properly for the
Coulomb potential, and includes and describes analyti-
cally the infinite series of Rydberg resonances. This im-

plies, for example, that in the weak-field limit our expres-
sion for multiphoton ionization (MPI) rates, etc. , reduces
exactly to the standard perturbation theory results, in-
cluding the resonance structure.

In a previous paper we solved the RCCE's by includ-
ing only open channels in the calculation and apply-
ing MQDT to extract the total and partial ionization
widths of Rydberg states in strong laser fields (corre-
sponding to ATI) in the range where one-photon ioniza-
tion is possible. It is the purpose of this paper to extend
this work to low-lying atomic states and to present nu-
merical results for hydrogen in circularly polarized light.
Inclusion of the low-lying states in the theory is achieved
by implementing the concept of deeply bound channels
in a QDT formulation.

The paper is organized as follows. In Sec. II the
RCCE's are derived and a radiative scattering matrix is
defined which is parametrized in terms of a set of smooth

quantum defect parameters. Section III presents numeri-
cal results for hydrogen in circularly polarized laser light.

m(d /Ct )n(t) = eE(t) in the oscillating electric field.
In the present case of circularly polarized light this gives
a circle n(t) = no[e cos(ut) + e& sin(ut)j with radius
no —~2e/0/mu . Below no will play the role of an in-
tensity parameter, The new Schrodinger equation for 4~
has the Hamiltonian

H~ —— -p '+ V,(x+ cx(t)) + —cx'.
2m 2

(4)

For large distances
~

i
~

a multipole expansion of the oscil-
lating Coulomb potential shows that the leading term is

a (time-independent) Coulomb potential, while the next-
higher-order term is a dipole oscillating with the ampli-
tude no. "lhis identification of the asymptotic interaction
as a Coulomb term will be essential below in defining
dissociation channels of the electron-ion system in the
presence of the laser field.

Separating the Hamiltonian (4) into an unperturbed
and an interaction part

Ho — p +V(x),
2m

hV = V,(x+ n(t)) —V,(x),
we have for 6V at large distances r =~ x

~

a rnultipole
expansion

e2 n(t)x +
4~p p3

II. THE SGHR.ODINCER EQUATION
AND WAVE FUNCTION

A. The interaction Harniltonian

which falls off faster than the (time-independent)
Coulomb potential in Eq. (5). This property will be es-
sential below in defining radiative reaction channels and
a radiative scattering matrix.

%'e consider an electron moving under the inhuence of
a Coulomb potential V, and a laser field which we de-
scribe classically. The corresponding Schrodinger equa-
tion with minimal coupling Hamiltonian is

Hv = [p —eA(x, t)j'+ V, (x),2m

B. Ansatz for wave function
and close-coupling equations

We separate in Eq. (2) the rapid optical oscillations by
means of a Floquet ansatz

iB~@v(x, t) = Hv@v(x, t) . (2) l~(t)) = ). (NI+(t))~
N= —oo

We take the laser field to be monocromatic and assume
the validity of the dipole approximation in the space re-
gion of interest. The vector potential corresponding to
an electric field E(x = 0, t) with amplitude Zs, frequency
cu, and polarization vector e is

A(x=0, t)= . ee ' '+c.c.—l'4)

The problem simplifies considerably by chosing circu-
larly polarizated laser light, e = —(I/~2)(e + ie„).
The application of standard multichannel scattering the-
ory below requires us to transform away the asymp-
totic free-electron oscillations. This is achieved by a
time-dependent frame transformation 4~ ——e'~
where n(t) is just the solution of Newton's equation

where the sum over N denotes Fourier componets.
~@(t))& can be understood as a F'loquet vector in a
Hilbert space I (IR ) {~N)) with {~N)) a Floquet basis
(N = 0, +I, . . .). The Floquet state vector satisfies

~ I+(t))~ = H I+(t))

with the Floquet Hamiltonian

2

(N~Hy ~N') = Nh~b~iv + b'av—iv +V (x+n(t)) .
2m

If the field amplitude is assumed to be constant in time
the Floquet Hamiltonian is also time independent, which
leads to a Floquet-Schrodinger equation (FSE)
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with E as a quasienergy. In order to get a system of close-
coupling equations we expand ~@)& in a basis of spherical
harmonics and Floquet states,

In order to write the equations for the I"; s explicitly we

need the matrix elements of the (N —N')-st Fourier coef-
ficient of V,(x+n(t)) in the basis of spherical harmonics.
These are readily read oA' from a multipole expansion

(~ le(~))~ = ). ZENlrra(r)/r [&im(~ p) I&)~] e
( p)i i

(12)

The collection of quantum numbers i = (X, I, m) is a
channel index which identifies a radiative reaction chan-
nel. As a further step and as a preparation for the MQDT
treatment in Sec. II C we write the wave function as a sum
of two contributions, "

with r& —min(r, np), r& —max(r, np), and

= (—1) + g(2l+ 1) (2P+ 1)

I+(~))z = ) Ie*)+).c IV )

(xle*) = * Ã(0 ~)l&*)~l

(xl~ ) = [I' (0, V)l& )~]
P.(r)

(14)

(15) ) (Z;, +bv„)F, = —) U,...—) a;.P. , (22)

0 0 0 —m N —N' rn'

(21)

The Cy's are unnormalized sperical harmonics. Only
channels with m —m' = N —N' are coupled. Note that
the sum over k is finite. The potential (20) has a cusp at
r = np. Thus Eqs. (17)—(19) reduce to a system of radial
close-coupling equations,

The first term in Eq.(13) describes the continuum and
highly excited atomic states and the nonresonant contri-
butions from closed channels, while the second part is
chosen to explicitly display the admixture of a set deeply
bound atomic states p with state index o, = 1, . . . , Ny

where n includes both an atomic and Floquet label (be-
low we will chose for y the atomic ground state and the
first few excited states of the unperturbed atom). We
require orthogonality between the two contributions to
the wave function, (F~~P ) = 0, for N; = N, I, = I

and m; =rn
Inserting the ansatz (13)—(15) into the time-

independent Schrodinger equation leads us to a sys-
tem of coupled equations for the radial wave functions
F;(r) and the coefFicients c of the deeply bound states.
These equations can also be obtained from a variational
principle

(bC [E —H&[4) = 0,
where the scalar product ( ~ ~) is meant to be in the Flo-
quet Hilbert space and therefore denotes an integration
over space and one optical period. The orthogonality
condition requires the introduction of Lagrange multi-
pliers A; if the Floquet and angular part of a channel
wave function coincide with one of a bound state. The
variation of I";(r), c, and A; yields

bF~ .. (bO, ~E' —II~(iII) ~ ) A; (b8;(p ) = 0,

bc-: (~-I& —II~I+) = o

bA;: (b8;ip ) = 0.

).(7f p
—Eb ~)cp = —).(U ) *I&*

p

P'IP )=o (24)

with

1 d2 l, (t;+1) 1+*' 6;. ,2dr2 r2 r (25)

U,.= bV;.(r)P.(r),

'8
p ——N ~b p + 'H

p + b V p, (27)

and bV& ——V&
'

&

' (r, o.p) —V, (r)b,z. Here e, is the
electron energy in tlie radiative channel i, defined by
E = —¹hw+ e; with —¹Acu the channel threshold. For
a given energy E a radiative channel can be open (e; ) 0)
or closed (e; ( 0). The set of indices i of open and closed
channels will be denoted by 0 and C, respectively. In
practice, the RCCE has to be truncated to a finite num-
ber N of channels ~O, ), depending on the light intensity.
We call N, the number of open and N, the number of
closed channels (K = N + N, ). 'H is a Hamiltonian ma-
trix between Ni, bound states (in the calculations of Sec.
II C below we will take the bound channels functions as
eigenfunctions of the unperturbed atomic Hamiltonian

Hp [see Eq.(25)] with energy E l and belonging to the
Floquet state

~
N ~)) U, describes t.he coupling of the

bound states to the channels ~e;). In writing Eqs. (25)—
(27) we have adopted atomic units.
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C. Radiative reactance and scattering matrix

To solve the RCCE's (23)—(25) we have to specify
boundary conditions for large and small r. At the
origin r = 0 we require the physical solutions F; (r) to be
regular. For large r Eq. (23) is dominated by a (diago-
nal) Coulomb potential. Thus, for a given energy E, the
components of the wave function F, (r) in the open chan-
nels (e; ) 0) will be linear combinations of the regular
and irregular Coulomb functions for r ~ oo, and will be
exponentially decaying in the closed channels (e; & 0), Xx(r) = p, (r)b;~ —p+(r)y;~ (i g 0U0 ), (32)

function for the given e; is much larger than the range of
the interaction r, ; deeply closed channels have large neg-
ative values of e;. We denote the set, of channel indices
corresponding to the weakly and deeply closed channels
by C and Cs, respectively, where C U |."s = C. MQDT
considers solutions X;~ (r) of the RCCE's with asymptotic
behavior for r ) r, where the meaI-ly closed channels are
forced fo be open,

FR( s;(r)b,, +c,(r)R,, (i g 0)
0 (igC).

(28)

(»)
&.", (r) :0 (i e Cg), (33)

s, (r) = s(e;, I;, r) and c,(r)—:c(e;, t, , r) denote the reg-
ular and irregular Coulomb functions in the fragmenta-
tion channel i = JN, , I, , m;) with energy e, .i For N,
open channels the RCCE's have N, independent solu-
tions (specified by the second wave-function index j).
Equation (28) defines a radiative reaction matrix R with
dimension N, x N, . In a similar way solutions with scat-
tering boundary conditions are

with j g 0 U C . g (7Z) is a smooth radiative scat-
tering (reactance) matrix as it is built up from a finite
interaction region r & r, . j;z(r) will in general contain
exponentially growing terms in the weakly closed chan-
nels. To relate the QDT wave function (32) and (33)
to the N, physical solutions F~(r), MQDT eliminates
the diverging components by forming appropriate linear
combinations of the X;i(r). This gives an expression for
the scattering (reactance) matrix in terms of the smooth
MQDT scattering (reactance) matrices,

F', ( )
~, (r)~*& —V,+(r)S*, (i & &)
0(igC),

(3o)

(31)
R = X„—'R„ Itan(harv) + 7Z„] R„, (34)

with p+ (e, t, r) = c(e, I, r ) 6 i s(e, I, r) outgoing (in-
going) Coulomb waves. S is a radiative scattering
matrix that is related to the reactance matrix by
S = (1 —iR)/(1+ iR).

The matrix element S;& describes the scattering of elec-
trons from the radiative dissociation channel i to channel
j, which is accompanied by the absorption of N~ —N;
laser photons. The scattering matrix 5 will, as a func-
tion of energy E, display series of Rydberg resonances.
These resonances are associated with laser-induced re-
combination resonances of the electron-ion complex, i.e. ,

they correspond to the decay of quasibound states in the
closed channels to the continuum due to (multiphoton)
ionization. Below we will concentrate on calculating the
width and shift of these states as a function of laser in-
tensity, particularly in the region of intense light fields
where perturbation theory becomes questionable.

To parametrize these series of Rydberg resonances we
use MQDT. is The application of QDT is possible in
the present case because of the finite range of the radia-
tive interaction, i.e. , we can effectively set hV+(r) = 0
for r ) r, . In discussing the physical wave functions in
(30) and (31) we had to distinguish between open (i g 0)
and closed (i g C) channels. In addition, QDT subdivides
the closed channels into weakly closed and deeply closed
channels: weakly closed channels are defined as channels
with energies e; ( 0 just below threshold in the energy
region of the highly excited Rydberg states, such that
the outer classical turning point of the Coulomb wave

(35)

The subscripts o and c refer to the partitioning of Z. in
block matrices, with respect to open and weakly closed
channels. v is a diagonal matrix of efFective quantum
numbers with dimension equal to the number of closed
channels K„e; = —I/2v, . Equations (34) and (35) pro-
vide us with an analytical parametrization of the reso-
nance structure in terms of a smooth y or Z, matrix.
The widths and shifts of these resonances may be found
from the complex energy poles in the scattering matrix
S. The goal of solving the radiative interaction problem
is then to determine these smooth MQDT parameters
directly.

In a previous paper we reported such a calculation
for hydrogen by solving the RCCE's above threshold at
a single energy, keeping only open channels, and extrap-
olating 'R to the bound-state region to extract in a single
step the partial ionization widths of all Rydberg states.
There are several limitations in this previous work: first
of all, extrapolation is possible only in a energy range
smaller than the optical frequency, i.e. , one is limited
to predict (above-threshold) ionization rates in a regime
where one-photon ionization from the Rydberg states is
possible; and, second, there is the question regarding con-
tributions from the closed channels.

To extend this work to the low-lying atomic reso-
nances, for example, to describe MPI from the ground
state, it is convenient to introduce these states in the cal-
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culation explicitly as bound states p [compare Eq.(15)].
Below we derive, following Seaton, the corresponding
parametrization of the S(R) matrix; the relation to the
time-dependent treatment and construction of an effec-
tive Hamiltonian for bound states by projection operator
techniques is discussed in Sec. II D. We write the solution
of Eq. (22) as the sum of two contributions,

F.,()=F,()+).F''--

R= R' ——R'(E —~ —D") 'R'1 1

7r
(46)

s=s' ——'s'(E-z —D') 's', (47)

respectively, where B and D play the role of smooth
MQDT parameters. The scattering matrix exhibits poles
as a function of energy E at the eigenvalues of

where we require F and F to satisfy the equations
with

det[E —'8'~(E)] = 0 (48)

) Z;, F,'„=—) X,'„.P. , (37) 8' (E) = 8+ D (E), (49)

) Z;, F,'. = —) X,'.p~p —U;. ,

P

with asymptotic behavior

(38)

a non-Hermitian effective Hamiltonian in the %~-
dimensional subspace of the bound states. Note that
Vt" is a slowly varying function of energy so that, in
principle, Eq.(48) is a transcendental equation in energy.
Diagonalizing Q'+ gives

F;,. (r) = s, (r)b;, + c,R,, F; (1) =c;R; (39) ~'"A = A (E"' —i-,'&) (50)

F,o (r) = p, (r)b;, —p+So, F;1S(r) = p+S,' (40)

' = (E-m —D')-'B' (41)

for r & r, and with i, j = 1, . . . , N and o. = 1, . . . , Nh, .
F is a solution with the coupling to the bound states
projected out. So is the corresponding contribution to
the scattering matrix. F, on the other hand, arises from
a coupling of bound states to free channels and consists
of outgoing waves with amplitude Si. We eliminate the
c 's in Eq.(39) by inverting Eq.(23),

S = S' ——(S'A)(E —E'" + i-,'y)-'(As' ) (51)

For isolated resonances, or in the limit of weak ioniza-
tion, we identify

with A = A the transformation to dressed bound
states. E"' and y are diagonal matrices containing the
shifted resonance energies E'-" and total ionizat, ion width
p- (n = 1, . . . , Ni, ), respectively. This allows the scatter-
ing matrix (47) to be written as

with

Bp —) (U)p; iF, ' (42)
2

~;.-= —) S,.A..- (52)

photoionization transition matrix elements from bound
states to the continuum dressed by the laser, and

Ds (UT
i
Fsl) (43)

S' = i-(Bs)~ (44)

Inserting the coefficients c s in Eq.(36) gives in matrix
notation the wave function

Fs(r) = Fso(r) + Fs'(r)(E —H —Ds) 'Bs,
which exhibits a resonance structure due to admixture of
the bound states. Analogous results can be derived for
the standing-wave solutions replacing the superscript S
by R in Eqs. (41)—(45). Finally, the reactance and scat-
tering matrix are

a matrix describing the ionization width and Stark shifts
of the bound states due to the coupling to the continuum.
Furthermore, using Eq.(37) one finds the relation17

as the partial ionization rate (ATI rate) from the dressed
state 6 to the dissociation channel i. This is consistent
with the interpretation of p- in Eq. (50) as total ionization
rate

QQ ~ QLQ'

Equation (53) may be derived with the help of
F1S F1R + .FOR(1 Ro) —1R1

which gives

Im(~efr) (Rl) [1 +. (Ro)2]—1 Rl Sit sl

(55)
It is straightforward to generalize Eqs. (46) and (47) to

the case when some of the free channels are closed. In
this case one finds for the reaction matrix R in terms of
the smooth reaction matrices 'R and Z.
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R = zzv„—R~„ tan(vv& + 'R'„' 'jZ,.——(R'„—'R.', tan(vv& + Z'„Z', ),
—1

X E —Vjbb —Dbb — 1 x Z.b, tan av + Z„
X 'Rb, —7Kb, tan harv + Z.„

where the second term is the contribution from the Ryd-
berg resonances (34) and the third term can be inter-
preted as bound resonances interacting with Rydberg
resonances and the continuum (final-state interaction).
Again a similar result is derived for the S matrix. For
the rate from the dressed bound states n to the con-
tinuum including a final-state interaction with Rydberg
states one finds

~*= =2/~
I (Ã.'-x..(e * "—x..) '~.']~)'; I' (z ~ &)

(57)

D. Connections with a time-dependent treatment

MPI is an intrinsically time-dependent problem. Ini-
tially atoms are prepared in the atomic ground state and
the ejected electrons are measured after the laser pulse
has passed the atom. Thus, in principle, a proper formu-
lation of MPI requires a solution of the time-dependent
Schrodinger equation with appropriate initial conditions.
A description of MPI in terms of rates as in Sec. II D is
approximate and is valid only under certain conditions.
Resonantly enhanced MPI (REMPI) is an example of
a process with (in general) more complicated time dy-
namics. Below we relate the theory of Sec. IIC to a
time-dependent treatment, in particular to the theory of
REMPI formulated with the help of projection-operator
theory and —as a limiting case of weak fields —per-
turbation theory. We close with comments on treating
Rydberg resonances. Since these formulations belong to

I

I

the standard repertoire of the theory of MPI, we con-
fine ourself to an outline of basic principles.

We consider MPI from a low-lying atomic state lg).
We solve the FSE with initial condition for the Floquet
state lg, N = 0) at t = 0 with energy Ez. Let us suppose
now that in the excitation sequence to the continuum a
couple of resonances occur, i.e. , the Floquet energies of
these states are nearly degenerate with E~ (for the mo-
ment we exclude high-lying Rydberg states, see below).
These resonant states define a Nb-dimensional subspace
of the Floquet Hilbert space. Denoting by P a Feshbach
projection operator on these resonantly coupled states,
and Q = I —P its compliment, the FSE can be parti-
tionated according to

i—PI~Ir(t)) = (PH P)PI@(t))

+(»FQ) Ql+(t)) (58)

—
t QI+(t))F = (Q&FQ)QI+(t))F

+(QHF P)PI@(t)) (59)

which should be compared with the RCCE's (22) and
(23) where bound states have been projected out. The
wave function in Q space can be eliminated in Eq. (58) by
formally integrating Eq. (59) and substituting the result
into Eq.(58). Within a Markov (or pole) approximation
this integro-differential equation for Pl@(t))F simplifies
to equations for the Nb level system:

i—&l@(t»v =
I
+Hv&+ J'HvQE H . Q+vt') +l@(&»v = &' Pl@(&»v

E~ — HF + zzl
(60)

Ql@(t)) =
E & . (QH P)PI@(t))

(6I)
with g ~ 0+. This simplification is valid provided the
self-energy lthe second term in Eq.(60)] is a smooth func-
tion of the energy Ez. Equation (60) defines an ef-
fective non-Hermitian Hamiltonian &' in the subspace
of resonantly coupled states. 2 We note that this efF'ec-

tive Hamiltonian is identical to the Q' introduced in
Eq.(49) when parametrizing resonances in the S matrix
due to the deeply bound states. In the standard theory
of REMPI the Q space is defined as the space of non-
resonant and continuum states and the coupling from P
to Q space (ionization of resonant states) and within the
Q space (continuum-continuum processes) is treated in

I

lowest-order perturbation theory. The RCCE's allow us
to calculate this efFective Hamiltonian in a nonperturba-
tive way, including, for example, continuum-continuum
transitions summed up to infinite order (within the set
of channels included in the calculation). Obviously, in the
weak-field limit these results agree with those derived in
perturbation theory. In addition, the Schrodinger equa-
tion (60) can be integrated in time for a realistic laser
pulse envelope, i.e. , without the assumption of a square
or adiabatic pulse.

A further simplification occurs when the ground state
is only weakly coupled to the higher-lying bound and
continuum states. This is the case of MPI via a few
nonresonant steps which provides a bottleneck in the ex-
citation process. The P space reduces to the ground
state and therefore P = lg, N = 0)(g, N = Ol. In the
quasienergy spectrum this manifests itself as an eigen-
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interaction with the light field. The expression (63) for
the ionization rate is the starting point of many theories
of nonresonant MPI, which differ in the approximation
for the final state dressed by the light field. We
emphasize that the RCCE's provide us with numerically
exact solutions for p; (including the resonant structure
of intermediate states).

In the weak-field limit Eq.(63) agrees with standard
perturbation theory where the radiative transition ma-
trix elements are in acceleration form. Perturbation
theory is most easily derived by converting the RCCE
to an integral equation and iterating this equation (see
Appendix A). Let us consider the two-photon ionization
rate as an example. We have in second order

value Fz —(i/2)pz with small imaginary part yz and an
eigenvector dominantly composed of the atomic ground
state. It is not difficult to show that p& may be identified
with the total ionization rate given by

(62)7g ~ 7&g

and with partial (ATI) ionization rates:

(63)

v~ = 2~1 (f I
ex «o Go+ (E& + ~) ex «o

I g) I

and I' s) a solution of Eq. (37) describing a final-state
I

vg =2~1(fl(noe p, Ho)Go+(&, +~)(noe p, Ho)lg)+(fl[noe p(noe v, Ho)]lg)l', (64)

with Go the Coulomb Green function. In a similar way,
the Stark shift of level Ig), which appears as a shift of
the resonance in the radiative scattering matrix and as a
shifted eigenvalue of the efFective Hamiltonian (49), is in
second-order perturbation theory

bEg —
(gl 2[inoe p, (inos' 'p Ho)] lg) + (gl 2['noe* 'p, (canoe p, Ho)] lg)

+ (gl (inoe' . p, Ho)Go (Eg + hu)(inoe p, Ho) lg) + (gl (canoe. p, Ho)Go (Fg —h~)(canoe* p, Ho) lg), (66)

which as expected agrees with the Stark shift calculated
in the dipole interaction form

bEg ——(glex e*to Go+(Eg + M)ex efolg)

+(glex efoGo+(Ez —ku)ex e 8o Ig) . (67)

Furthermore, it is possible to derive an MQDT
parametrization for the Rydberg resonances in the
perturbation-theory transition rates. This is obtained
by specializing the MQDT parametrization for Eq.(57)
to weak fields, in agreement with results derived in Ref.
20.

Excitation of Rydb erg resonances invalidates the
Markov (or pole) approximation in Eq.(60). In this
case the self-energy term Ds(E) in the effective Hamil-
tonian H, rr(E) becomes a rapdily varying function of
energy, reflecting the resonance structure in the weakly
closed channels. In a recent paper we have out-
lined how the time evolution of the bound-state wave
function can be calculated. The idea is to derive a
system of RCCE's by Laplace transformation of the
time-dependent Schrodinger equation [Eq.(5) of Ref. 23].
Eliminating the open and weakly bound channels gives
an expression for the Laplace transformed bound-state
amplitudes (corresponding to P space) where the Ryd-
berg resonances can be parametrized with the help of
MQDT [Eqs. (14) and (15) of Ref. 23]. This Laplace
transform can be inverted giving either a dressed-state
representation, corresponding to a sum over eigenstates
of the bound states mixed by the laser into the Rydberg
states, or —close to threshold —in terms of a multiple
scattering (or classical path) expansion.

The conclusion of this section is that the radiative
MQDT parameters of Sec. II C can be used as input, for
a time-dependent calculation of MPI transition probabil-
ities.

III. RESULTS AND DISCUSSION

We have solved the RCCE (22) for hydrogen in cir-
cularly polarized laser light numerically. The differential
equations were converted to scattering integral equations
(see Appendix A) which were solved by iteration. This
provides us directly with the smooth radiative QDT pa-
rameters R, R, D, &. The multichannel wave function
was tabulated on a grid in the interaction region of ra-
dius r„where typically 0 & r & r, 50 —120ao. The
number of radiative open and closed channels included
in the calculation was increased systematically until, for
a given intensity and laser frequency, convergence of the
radiative reaction matrix was achieved. For a given en-
ergy range there are resonances in the scattering matrix
corresponding to MPI of deep-lying atomic states. The
corresponding eigenstates of the unperturbed Hamilto-
nian were projected out as bound channels lp ).

As our first example we discuss the elastic transtion
amplitude T(E) = (1j27ri)[S(E) —1] for the frequency
cu = 0.27 and energy range where two-photon ionization
(2PI) of the 1s and one-photon ionization (1PI) of the p
states is possible. The schematic representation of this
process is shown in Fig. 1. Note that for this frequency
the excitation step from the 1s to the p states is non-
resonant. Figure 2 corresponds to a (relatively small)
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FIG. 1. Schematic representation of 2PI of the hydrogenic
ground state. 10

—0.54 —0.44 —0.34 —0.24
(au.)

intensity parameter no ——0.2 (a.u.), I = 1.5 x 10~s

W/cm2. In the calculation the states (1s, N = 0) and
(2p —4p, N = 1) were projected out as deeply bound
states Ip ), and the np, n ) 4, were treated as a weakly
closed channel, the total number of channels was 15
(—4 ( N & 4, I & 4). The leftmost resonance in Fig. 2
is associated with the 2PI of the 1s state; the other reso-
nances belong to the 1PI of the np Rydberg series. In the
energy range —0.54 & E & —0.31 the 1s, 2p, and 3p reso-
nances were calculated according to the parametrization
(47), while the Rydberg resonances n ) 4 were obtained
by solving the RCCE's above the Rydberg threshold, and
extrapolating the QDT parameters to the bound region
using Eq. (35). In Fig. 2 the line profile in the energy re-
gion around the 4p resonances was calculated using both
procedures (marked by the arrow). The good agreement
is an indication of the weak energy dependence of the
QDT parameters. Figure 3 is the analogous plot for
no ——0.7 (a.u. ). Our results for the elastic scattering
amplitudes are consistent with those of Franz et al. ,

5

who have solved the RCCE's in the neighborhood of the

FIG. 3. Same as Fig. 2 with no ——0.7 (a..u. ) (I = 1.8 10
W/cm ).

1s and 2p resonances and the first few members of the
Rydberg series for intensities up to o.p & 0.2.

The line profiles in Figs. 2 and 3 are series of isolated
resonances so that the widths reAect the ionization life-
time of the atomic states. The partial and total ioniza-
tion rates are given by Eqs. (52) and (53), respectively.
According to Figs. 2 and 3 the ionization width of the
1s state increases with intensity. The dependence of the
total and ATI partial rates (K = 2, 3, 4) of 1s on the
light intensity is shown in Fig. 4. As expected, for low
intensities we get an I dependence consistent with per-
turbation theory for N photon absorption. For higher
intensities a deviation from the power-law behavior is ob-
served. It is suprising that for intensities, where the par-

10

10
10

10

10

10 10

10

—0.54
I I I I I I i I I I I I—0.44

I I I I I I I I I I I j I I [ I I [ I—0.34 —0.24
(au.)

10
a

'l 0
10 " 10

I I I I IIII I I I I IIIII I I I I IIIII
12

1 0 13
1 p 14

1 p 15

(vr lc~')
FIG. 4. Ionization rate of hydrogen 18 by a circulary po-

larized laser with frequency ur = 0.27 (a.u. ) (2PI). (a) Total
rate; ATI rates: ionization into channel (b) N = 2, l = 2; (c)
N=3, l=3; (d) N=4, 1=4; (e) N=4, /=2. (Thevalue
of no = 1 corresponds to I = 3.7 x 10 W/cm .)

FIG. 2. The modulus of the elastic transition amplitude
I T(E) I

for (N = 2, I = 2, m = 2) —+ (N = 2, l = 2, m = 2) is
plotted as a function of energy E (a.u. ). The parameters are
n = 0.2 (a.u. ) and u = 0.27 (a.u. ) (I = 1.5 10 W/cm ).
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tial rates already deviate significantly from lowest-order
perturbation theory (np 1), the total rate still shows an
I (N = 2) dependence. There is no point to calculate
ionization rates for higher intensities than those given in
Fig. 4 in the present case, since the total rate becomes
comparable to the frequency (ionization within one opti-
cal cycle), which is not consistent with the present formu-
lation. The rates shown in Fig. 4 were computed ignoring
the energy dependence of the effective Hamiltonian (49),
i.e. setting '8' (E) = '8' (E = —0.5) in Eq. (48). Again
this is justified by the weak energy dependence of the
QDT parameters. This approximation is not possible,
however, when channels becomes closed due to the Stark
shift.

Figure 5 is a plot of the ac Stark shift of the 1s state
as a function of o.o. Obtaining correct Stark shifts in
the acceleration form interaction Hamiltonian is a non-
trivial task, especially for 8 states. The problem becomes
apparent already in the weak-field limit, where perturba-
tion theory is valid. The second-order Stark shift in the
acceleration and dipole interaction forms has been given
in Eqs. (66) and (67), respectively. The first and second
term in Eq. (66) is the shift in the high-frequency limit
that as a function of the light intensity shifts upwards.
On the other hand, it is obvious from (67) that for fre-
quencies below the 18-2p transition the 18 state will shift
downwards. Consequently, in Eq. (66) the upward shift
of the first two terms has to be compensated by the
last two terms involving the Green function. In prac-
tice, both contributions are of same order of magnitude
but have dift'erent signs which leads to an almost com-
plete cancellation. Thus an approximate representation
of the Green function (for example, a truncated summa-
tion over bound eigenstates of the atomic Hamiltonian—

0.01

which is a reasonable approximation in the dipole form)
will lead to even qualitatively incorrect results. One con-
sequence of this observation for our present calculation is
that the wave function in the closed channels [see Eq.(13)j
cannot be represented by a superposition of a few eigen-
states of the unperturbed Hamiltonian. In Fig. 5 the
intensity dependence of the Stark shift of the 1s state is
shown for various sets of channel configurations: curve
a is the results of second-order perturbation theory (in
length and acceleration form); curve 6 is our "best" cal-
culation with 15 channels (—4 ( N ( 4, / ( 4). We
note a surprising agreement between these two curves
up to o.o 0.8. In contrast, curves c and d correspond
to six- and four-channel models (which obviously have
not converged). Curve e was obtained by representing
the 8, N = 0 channel in the RCCE by a single 18 state;
obviously (see the inset in Fig. 5) this gives the correct
low-intensity limit crp ( 0.02 but predicts (incorrectly)
a positive Stark shift for np ) 0.12. Finally, curve f
assumes a wave function with only N & 0 channels in-
cluded, which predicts a positive shift for all oo.

We recall from Fig. 4 that the 2PI ionization rate of
the 18 state increases with intensity. In contrast, for the
same frequency we find a stabilization of the 2p state
(1PI) above I = 10 Wjcm (Fig. 6). Our calculations
predicts an analogous narrowing of the resonances for all

p states. A similar suppression of 1PI occurs for the 1s
state and cu = 0.51 (Fig. 7). This is consistent with
the recent I.2-basis calculation by Dorr, Potvliege, and
Shakeshaft, who for the case of linear polarization find
decreasing rates for no 1. We emphasize that in the
present case this behavior cannot be explained by a Stark
shift towards the ionization threshold where the transi-
tion matrix elements vanish as for negative ions.

Finally, in Fig. 8 the elastic scattering amplitude is
shown for u = 0.49 (a.u. ) as a function of energy. This
corresponds to a frequency where the ground state is

0.00

0.01: 10

—0.02— 10

0.03:

0.04
0.0

cl I 1 ~ I 1 I I

( 0.0 0. 1

0 020 040 0 60 080
~ (au)

10

10

FIG. 5. ac Stark shift of the 1s (relative to the thresh-
olds) for various channel configurations [cu = 0.27 (a.u. )]. (a)
Second-order perturbation theory; (b) 15 channels (see Pig. 2);
(c) 6 channels (without N = 3, 4); (d) 4 channels (without

—2, l = 2 and N = 0, l = 2); (e) 3 channels (without
N = 0, l = 0); (f) 2 channels (without N = —1, / = 1).

10
0 12

111 I I ill I I I I I I f I I I I I

10 "
2 10 "

I (W/o~2)

I'"IG. 6. Total and partial rates of the 2p for cu = 0.27
(a.u. ) where 1PI is allowed. (a) Total rate; (b) — (e) ATI
rates as described in I'ig;.4.
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0.30—
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0.10—

0.000.00 0.50 1.00 1.50
o/ (au)

FIG. 7. Ionization of the hydrogenic ground state for
u = 0.51 {a.u. ) where 1PI is allowed. 15 channels have been
included in the calculation {see Fig.2). {a) Total rate; {b)—
{e) ATI rates to N = 1, / = 1 and N = 4, / = 4.

IV. CONCLUSIONS

In this paper we have derived a system of radiative
close-coupling equations for hydrogen in circularly po-
larized laser light. We have solved these equations nu-

merically increasing systematically the number of closed
and open radiative channels kept in the calculation un-
til for a given intensity convergence was achieved. This
provides us with the best variational approximation for

10

mixed into the Rydberg series around lop, a situation
analogous to an (autoionizing) complex resonance where
a bound state autoionizes to a continuum via the coupling
to many Rydberg states. In this case the time-dependent
ionization probability should be calculated according to
the methods of Ref. 23.

the radiative scattering matrix. Due to the finite-range
character of the radiative interaction, the close-coupling
equations can be solved in two steps: first, a set of ra-
diative quantum-defect parameters (the reaction matrix,
etc.) is determined and tabulated on a coarse energy
gr'id by solving the RCCE's in the interaction region;
in the second step, the proper asymtotic behavior of
the wave function and physical reaction matrix is con-
structed using multichannel quantum-defect theory. The
complex quasienergies (shifts and ionization widths) are
computed as poles of the scattering matrix using the
quantum-defect formalism. In extension our previous
work, we have included closed channels in the calcu-
lation and found them to be very important. In this
work we have presented detailed numerical results for
elastic e-p scattering for frequencies, where the 2p and 18
states couple to the continuum by one- and two-photon
transitions as well as higher-order processes, and have
computed the corresponding quasienergy spectrum pre-
dicting (partial) ionization rates and shifts in the strong-
light-field limit o, o l.

The present work is based on a spherical expansion of
the wave function in the oscillating coordinate system.
We have found contributions from (deeply) closed chan-
nels to be of crucial importance to achieve convergence,
in particular in computing the Starkshift of the 8 states.
This indicates that the interaction region close to the
atomic core should be treated in a coordinate that is bet-
ter adapted to the physical situation, or by working in-
side the interaction region in the dipole length form of the
field-atom interaction. One possiblity is to include "os-
cillating" basis function, moving with the atomic core, in
the variation principle when deriving the close-coupling
equations; the radiative coupling between these oscil-
lating orbitals is then given in the dipole length form
which should significantly improve convergence with the
number of channels. Physically, this corresponds to a
frame transformation where the electron in the laser field
is described far from the atomic core in a frame moving
with the wiggling motion of the free electron and close
to the atomic core, where the electronic motion is domi-
natly governed by the atomic forces, in an nucleus-fixed
frame.
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FIG. 8. Elastic transition amplitude T{E) for {N, /

= 2) —+ {N, / = 2) where the 1s couples resonantly to many
Rydberg states around 10p [u = 0.49 {a.u. )].

APPENDIX: INTEGRAL EQUATION
FOR THE SCATTERING WAVE FUNCTION

We convert the the differential equations (37) and (38)
to an integral equation. First we construct a Green func-
tion of Cog, (r, r') = 6(r r') for the ze—ro'-or—der Coulomb
problem with proper boundary conditions for the open
and closed channels. For the open channels we choose a
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Green function with standing-wave boundary conditions,

g;(r, r') = 2 s;(r&) c;(r&)/W(s;, c;) (e, & 0), (AI)
where r& ——min(r, r') and r& ——max(r, r'), and s (c)
regular ( irregular) Coulomb functions (31) normalized
to a Wrosnki determinant W(s;, c;) = —x. For the closed
channels we have

g; = 2 s, (r&) 8, (r&)/W(s;, 0;) (e; ( 0), (A2)

with 0; the asymptotically decaying Coulomb (Whit-
taker) function. The required integral equation is

P (r) P (r')
Eg —E~

If instead of (Al) and (A2) we use the spectral represen-
tation

(A7)

with a sum over a complete set of Coulomb eigenstates,

the poles in g;(r) corresponding to the energies e, = e~
are seen to cancel. This yields a smooth reactance matrix
a'(E)

F;, = s, (r)b;, +) dr' g, (r, r')A, P (r')
dr s;(r)bVt, (r)F„',(r) (A8)

dr' g;(r, r')bv, , (r')Ft,.(r'). (A3)

We eliminate the A; in Eq.(70) by means of Eq.(24),

(in MQDT the cutoff' radius has to be chosen large
enough so that no bound state contributes to the asymp-
totics). In a similar way an integral equation is derived
for F~' [Eq.(39)j

which gives

dr P (r)be t (r)Fo (r), pR1
l Ct'

dr' g, (r, r')V; (r)

dr' g;(r, r')bVi(r')Fi '(r'). (A9)
F,.',. =.,(.)b,, +)

t

with new Green function

dr' g;(r, r')bV;i(r')F, (r'),

(A5)
Iteration of these integral equations in 6VF gives a pertur-
bation expansion in the light field in terms of acceleration
form matrix elements.
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