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Emission spectrum of coherently driven three-level atoms
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Analytical expressions for the emission spectrum and intensity correlation functions are derived
for a V-type three-level atom driven by two strong, resonant coherent fields. It is found that
coherent mixing of the atomic states by the strong fields modifies the atomic decay dynamics, which
results in dramatical narrowing of spectral features predicted by Narducci, Oppo, and Scully [Opt.
Commun. 75, 111 (1990)].

Spontaneous decay of excited atoms can be changed by
the modification of the electromagnetic vacuum reser-
voir. For example, spontaneous decay of excited atoms
confined in an optical cavity can be enhanced if the cavity
is tuned into resonance with the atomic transition fre-
quency, or inhibited if the cavity is tuned off resonance.
In the strong atom-cavity coupling limit, exchange of en-
ergy between the atom and cavity field occurs, and the
single peaked free-space atomic emission spectrum is
modified so as to display two spectral features with a
linewidth that can be up to a factor of 2 smaller than the
atomic-decay linewidth.

Quite differently, atomic-decay dynamics can also be
modified by the strong field dressing of atoms. Such
modification is manifest in the atomic fluorescence spec-
trum. Recently, Narducci, Oppo, and Scully have stud-
ied the fluorescence spectrum scattered by a strong atom-
ic transition sharing the same ground state with a weak
transition in a V-type, three-level atom driven by two in-
tense, near-resonant coherent fields. ' Their numerical
calculations show that the linewidths of the fluorescence
spectrum scattered by the strong atomic transition can be
less than the natural linewidth when the weak atomic
transition is strongly saturated. This new effect has been
experimentally demonstrated very recently. In this pa-
per, we show that the spectral narrowing can be motivat-
ed by an analysis based on the dressed-state picture. '

We derive analytical expressions for the linewidths and
intensities of scattered spectrum, and the intensity corre-
lation functions in the strong field regime. We show that
coherent mixing of the atomic states by the intense driv-
ing fields n1odifies the spectral content of the quantum
fluctuations in the atomic dipole moment, and leads to
the dramatical narrowing of spectral features.

Consider a V-configuration, three-level atom with the
ground state IO), and excited states I 1) and I2) as de-
picted in Fig. 1. The transition 0) —+

I 1 ) of frequency
coo, is driven by a resonant coherent field of Rabi frequen-
cy fl, . The transition I0) —+I2) of frequency cocz is
driven by another resonant coherent field of Rabi fre-
quency Qz. y, (yz) is the radiative decay rate of the ex-
cited state

I
1 ) ( 2) ). Under the rotating-wave approxi-

mation, and in the interaction representation, the Hamil-
tonian is

Q2
aiS,0+a iSQ, + a2S20+a2S02

2

Here a,. (a; ) is annihilation (creation) operator for the
field i and S, = Ii ) ( jI.

The atom-field product states form manifolds accord-
ing to their energy as shown in Fig. 2(a). For the mani-
fold with energy E(n„nz)=n, coo, +nzcooz, the three de-
generate atom-field product states are I0)In, )Inz),
I 1) In, —1) Inz), and I2) In, ) nz —1). Diagonalizing
the Hamiltonian H in the basis set for the manifold X, we
obtain three eigenvalues: E =A/2, 0, and —fl, /2 where
0—=(0, +Qz)'~ . The corresponding eigenstates (dressed
states) are

(2a)

I2, n&, nz) = 1)n& —1) Inz) — I2) nI& ) Inz —1),Q2 Q,

1 /2
1

I3,n„n, &=

(2b)

10& In, & Inz &+
'

I
l & I n, —1 &

I nz &

+ (2c)

FIG. 1. Energy-level structures of a three-level atom. y 1 (y2)
is the spontaneous decay rate of state I 1 ) ( I2) ). coo, (cooz) is the
IO) —+

I
1 ) (IO) —+ I2) } transition frequency.
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(a) atom - field product states (b) atom — field dressed states

FIG. 2. Energy level structures of (a) atom-field product states with threefold degeneracy, and (b) atom-field dressed states. In (b),
the degeneracy has been removed. Within each manifold, the spacing of neighboring levels is 0/2. There are two sets of transitions,
centered at frequencies ~» and ~02, respectively.

+ g I,;o. (n, + l, nz, t)
J

+ g I,', o,, (n „nz+ l, t) . (3)

Here o;;=(i,n, , nz~o(t)~i, n1, nz) (i j =1,2, 3). I; (I,'~)
is the spontaneous decay rate from the dressed-state
~i, nn )zto ji, n, —l, nz) (j~,n„nz —1)), and can be
calculated by Fermi's golden rules.

For intense coherent driving fields, we have
o;;(n1,nz, t)= o;, (n1+ 1—, nz, .t)=—o';;(n1, nz+1, t). Solv-
ing Eq. (3) in the steady state, we obtain

nl, n2

nl, n2

a» ni, n2 033 ni n2
n1)n2

o zz(n, , nz ) =0, (4)

where the normalization condition [ +1,„„1
oo(n1, nz)

7 17 2= 1 j has been assumed. It is seen that in the steady state,
the atomic population is equally distributed among the
dressed states

~ 1,n „nz ) and
~
3, n „nz ), but there is no

population in the dressed states ~2, n, , nz). This is not
surprising if one notes Eq. (2b) that ~2, n1, nz) contains

The energy-level structures of the dressed states are de-
picted in Fig. 2(b). Using the technique developed by
Cohen-Tannoudji and Raynaud, we can write down the
density matrix equations in the dressed-state representa-
tion. For the diagonal density-matrix element
o'„(n „nz, t), which represents the population probability
on the dressed-state ~i, n„nz ), the equation of motion in
the strong field regime, 0))y i, y2, is given by

do, ; (n „n.z, t) = —g (I,+ I,'~ )o „(n„nz, t)
dt

the superpositions of excited atomic states ~1) and ~2)
only. In the dressed-state picture, spontaneous decay
corresponds to transitions from the dressed states of man-
ifold X to the dressed states of manifold X —1. For non-
vanishing transition matrix elements, the atom must
change its state from ~1) or ~2) to ~0) with no accom-
panying change in the number of photons for the two
driving coherent fields. Such spontaneous transitions
from the upper dressed states to ~2, n, , nz ) are forbidden.
So any initial population in the dressed states ~2, n„nz )
decays away quickly, and in the steady state, there is no
population in the dressed states ~2, n„nz). Projecting
the dressed state population into the atom-field product
states, we find that in the steady state, the population dis-
tributions are

P= —' P=

0
P =

2A

where P is the population probability on the atomic state
~j ) . Equation (5) shows that when Q, )&Qz, the popula-
tion probability for the state ~2) is negligible. The simple
physical reason for such population trapping is due to ac
Stark shift of the ground state ~0) induced by the field of
large Rabi frequency Qi. The large detuning Ai for the
Autler-Townes doublet transition prevents the atom from
reaching the state ~2). For Qz)&Q, , the situation is re-
versed.

%'e next consider the oA-diagonal matrix elements
which are related to the transition dipole moments.
There are two sets of transitions; ~i, n „nz )
~~j, n 1l, nz), and ~i, n1, nz)~~j, n1, nz —1). Each set
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contains three-frequency components located at
mo1, coo1+0, and coo2, mo2+0, respectively. For the transi-
tions at frequencies mo1 and coo, +0, the corresPonding
density-matrix elements are

o,j(n„n2, t)=(i, n„n2~o j~, n, —l, n2), i j =1,3 .

S (co —
a~02)

T
02y22 r
40 (co —coo2) + I /4

3I /2
(ai —aio~

—0) +(3I /4)

Using the secular approximation and including the cas-
cade interference contributions, the equations of motion
for the components of the dipole moment, (D(coo, ))
[(D(aio, +0))], evolving at frequency coo, (coo, +0) are
given by

d ( D (aioi ) )
iso, +—(D(,)), (7a)

d (D (cooi+0) )
dt

i (aio, +Q)+ (D(~oi+&) ),3I
4

(7b)

where

+1V1++2 V2r=
Q

I(aioi)=TI ii g [crii(ni, n2)+o33(n, , n2)]
n&, n2

TQ1y1

4Q

where T is the signal average time. Similar calculations
can be performed to determine the fIuorescence intensi-
ties at frequencies cuo1+0 coo2 a d ~o2+&- The fi a e

pression for the spectral distribution S(co—coo, ) of the
fluorescence light near mo, is

S (ai —aioi )

T
+1~1 r
4n' (~—~„)'+r'/4

3I /2
(co —cooi —0) +(3I /4)2

3I /2
(co —cooi+L2) +(3r/4)

(10a)

and the spectral distribution S (co —co02) near a~os is

The equations of motion for the components of dipole
moments evolving at frequencies coo2+0 (coo&) are found
to be the same as Eq. (7b) [7(a)]. Equation (7) shows that
the dipole moments decay exponentially, and the corre-
sponding spectral profiles are Lorentzian. The Auores-
cence intensity at frequency coo, is given by

3I /2
(co —a~02+Ii) +(3I /4)

(lob)

For on-resonance excitation and in the strong field re-
gime, the Auorescence spectrum of a V-configuration,
three-level atom driven by two coherent fields consists of
two triplet spectral features centered at frequencies coo,

and coo2 with sidebands separated from the central peak
by an effective Rabi frequency Q. For each triplet, the
height for the central peak is three times that of the side-
band peaks, and the linewidth for the sideband peaks is
1.5 times broader than the central peak linewidth I
which is the weighted average of the decay rates y1 and

y2. This is quite similar to the fluorescence spectrum of a
two-level atom driven by an intense monochromatic
field. ' ' For the special case of), ))y2, ~0) —+~1) is a
strong transition, while

~
0 )~ 2 ) is a weak transition.

Since y, ) I )yz, the spectrum, S(co—aio, ), scattered by
the strong transition demonstrates subnatural linewidth
behavior while the spectrum, S(co—

a~o2), scattered by the
weak transition demonstrates supernatural linewidth be-
havior. This indicates that spectral distributions of quan-
tum fluctuations of the atomic dipole moment have been
modified. The quantum fluctuations near frequency coo1

have been reduced at the expenses of increased quantum
Auctuations near frequency coo2. When Q2 »0„ the
fluorescent light scattered by the strong transition is
dramatically reduced, and the linewidth approaches that
of the weak transition. The spectrum scattered by the
strong transition collapses. This is consistent with the
prediction of Narducci, Oppo, and Scully. Inspecting
the content of the dressed states expressed by Eq. (2), it is
clear that the reduction of the spectral linewidth is due to
the Rabi-frequency-dependent weight of the slow-decay
state

~
2 ) in the equally occupied dressed states

~
1,n, , n 2 )

and ~3, n„n2).
In order to gain more physical insight into this prob-

lem, we next analyze the intensity correlation functions in
the strong-field regime. It is convenient to calculate the
intensity correlation functions' if we transform three
atomic states into a new basis set ~0), ~a ) =(A, /
Q)~1)+(Q~/0~2&, and ~b & =(0,,/0 1& —(Il, /Q)~2& as
shown in Eq. (2). It is easy to check that the ground state
~0) is coupled to ~a) only. The state ~b) is decoupled
from ~0) and ~a ), and cannot trap population because it
is initially unpopulated and remains inaccessible. In the
strong-field regime, we know from Eq. (10) that the
effective decay rate for the excited state ~a ) is 1. So the
atom is cycling between the states ~0) and ~a ) with an
effective two-level Rabi frequency 0,, and damped at a
rate I . We can immediately write down the intensity
correlation function for this effective two-level system:"



43 EMISSION SPECTRUM OF COHERENTLY DRIVEN THREE-. . . 1505

g„(t)=1—exp(3t r/4)cos(Qr) .

Here g„(r) is proportional to the probability per unit
time of detecting a photon from the ~1)~~0) or
~2) ~~0) transition at a later time r after such a photon
has been emitted at r=0. Let g; (r) (E,j =1,2) represent
the probability per unit time of detecting a photon from
the ~i ) ~~0) transition at a later time r after a photon
from the ~j) —+~0) transition has been emitted. Project-
ing g„(r) into the basis states ~1) and ~2), we found that

AI
g»(~) =g,z(~) = I [1—exp(31 r/4)cosQr], (12a)

0,2
gzz(r)=g~, (r)=

z I1—exp(3t r/4)cosflr] . (12b)

As expected, Eqs. (11), (12a), and (12b) demonstrate an-
tibunching behavior. When y&))yz, and 0, , ))Qz, from
Eq. (7) we have I —=y„and g„(r)—=g„(r), gzz(r)-=0.
The atom emits photons spontaneously with a rate I
through the ~1)~ ~0) transition with very little chance
of being interrupted by a transition to the state ~2 ) due to
the large detuning A, induced by the ac Stark shift.
However, as Az increases, the transition probability from
0 )~ 2 ) becomes larger. The fiuorescence from
1)~ 0) will be interrupted. This is consistent with the

study of quantum jumps. ' When Qz ))Q, , then
I —=yz, and g»(~) —=O, gzz(~) —=g„(r), the atom cycles be-
tween ~0) and ~2), and is rarely interrupted by a transi-
tion to the state

~
1 ) . Due to the reduction of the effective

decay rate I, the emission of the Auorescence photons is
dramatically reduced and the fluorescence spectrum col-
lapses.

In conclusion, we have derived analytical expressions
for the fluorescence spectrum and intensity correlation
functions of a V-configuration, three-level atom driven by
two intense coherent fields. Our results demonstrate that
mixing of the atomic states by the intense coherent fields
modifies the atomic decay dynamics, and leads to dramat-
ical spectral narrowing in the emission spectrum.

Tote added After submission of this manuscript, a pa-
per by Narducci et al. appeared in Phys. Rev. A 42, 1630
(1990) in which they gave a more elaborate analysis by
solving density-matrix equations.
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