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Two-mode instability in a CO& laser with a saturable absorber is investigated both experimentally
and theoretically. A strong correlation is found between the mode competition and the passive Q-

switching behavior. The observed two-mode instability is nicely reproduced by our rate-equation
model in which the vibrational relaxation. processes and the spatial mode coupling are considered.
Furthermore, numerical calculation predicts existence of chaos in the two-mode oscillation with a
higher fractal dimension than the single-mode chaos.

Recently, a laser with a saturable absorber (LSA) has
attracted considerable interest as a useful model to exhib-
it fundamental aspects of nonlinear dynamics, such as
limit cycles, chaos, and bifurcations. The passive Q-
switching (PQS) instabilities in the LSA are critically
dependent on the energy-level structure and dynamic
properties of the gain and loss media. This also makes it
possible to use the laser dynamics as a probe of molecular
processes.

So far, most of the studies on the LSA dynamics have
been focused on the single-mode characteristics. Several
types of regular PQS pulsations were observed in single-
mode CO& and N20 lasers; a spikelike pulse, sinusoidally
modulated output, and a pulse with undamped undula-
tion on its tail. ' Deterministic chaos and Feigenbaum's
scenario also appeared in certain parameter regions.
Recently, we developed a rate-equation model (the three-
level —two-level model) for the single-mode CO2 and NzO
lasers. ' Computer simulations based on the three-
level —two-level model (the 3-2 model) successfully repro-
duced the observed regular and chaotic PQS pulsations
and their dependence on laser parameters. '

Introduction of an extra lasing mode, which is non-
linearly coupled to the main mode, may increase the
phase-space dimension and enrich the LSA dynamics. "
In this paper, we report a new type of instability per-
formed by two lasing modes of a CO2 LSA, one of which
is passively Q switched by the saturable absorber. ' The
3-2 model, modified to fit the multimode case, is applied
to analyze the observed characteristics of mode competi-
tion.

An experimental setup and procedures are described in
detail elsewhere. Figures 1(a)—1(c) show observed tem-
poral behavior of the two-mode oscillation. The laser os-
cillation occurs on two lines which are in axial (TEMoo)
and off-axial (TEMo, ) modes of the Fabry-Perot cavity.
The laser line in the axial mode is modulated by passive

I

Q switching. The feature of mode competition is critical-
ly dependent on the PQS behavior of the axial mode.
When a PQS pulse with undamped undulation appears in
the axial mode, the laser oscillation is alternately
switched from one mode to the other mode, as is shown
in Fig. 1(a). On the other hand, both modes simultane-
ously oscillate when the axial mode is sinusoidally modu-
lated through PQS [see Figs. 1(b) and 1(c)]. In the case of
Fig. 1(b), the intensities of the two modes change out of
phase simultaneously. A small change in the grating an-

gle results in the in-phase intensity modulation as shown
in Fig. 1(c). In Figs. 1(a) and 1(b) relaxation oscillation is
observed in the off-axial mode, superposed on the quasi-
cw tail and the sinusoidal modulation, respectively.

The competition between the axial and off-axial modes
comes from cross saturation caused by spatial overlap-
ping between the two modes. By considering this eff'ect,

we modify the 3-2 model to reproduce the observed two-
mode instability. Figure 2 shows a schematic diagram of
the two-mode 3-2 model. As is shown in Fig. 2(a), the cy-
lindrical laser gain medium is considered to consist of
two regions (the center region and the side region). In
the center region, the TEMpp mode saturates the laser
gain more strongly than the TEMp& mode, and vice versa,
in the side region. The gain medium in each region is
represented by three vibrational levels, the upper laser
level (001), the lower laser level (100) or (020), and the
ground level [see Fig. 2(b)]. The vibrational relaxations
are introduced among the three levels. The absorption
medium is represented simply by two rotation-vibration
levels in resonance with the axial mode laser radiation.
The populations in the two levels are assumed to relax to
thermal equilibrium values at the same rate.

Based on the model, the dynamics of the laser system is
described by seven nonlinearly coupled rate equations as
follows:
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two-mode chaos shows two-dimensional distribution, sug-
gesting that its strange attractor has a higher dimension
than the single-mode case. Figures 4(c) and 4(d) show
portraits of the strange attractors in the phase space for
the axial-mode intensity and the population densities in
the upper and lower laser levels. The attractor of the
single-mode chaos has a nearly two-dimensional struc-
ture, while that of the two-mode chaos is distributed
three dimensionally. The correlation dimension' of the
attractors is measured to be 2.01+0.01 and 2.47+0.01 for
the single- and two-mode chaos, respectively. When the
variables related to the off-axial mode quickly follow the
changes in the axial-mode variables and their behavior
gives no effect to the laser dynamics, the fractal dimen-
sion of the two-mode strange attractor remains the same
as the single-mode chaos. A difference in the fractal

dimensionality implies that the laser dynamics is appreci-
ably modified by the cross saturation between the two
modes, leading to the appearance of the new type of
chaos. Experiments to search for the two-mode chaos are
now in progress by use of a CO& laser.

The two-mode instability in a CO2 LSA may have an
analogy with the mode hopping and mode partition gen-
erally observed in diode lasers. ' Although the former is
deterministically driven by PQS and the latter are trig-
gered by the spontaneous emission, both dynamics origi-
nate from the cross saturation of the laser gain. It is im-

portant in analyzing the diode laser instability to describe
detailed carrier dynamics. The present rate-equation
analysis may help to understand the mechanism of the
dynamic mode competition in diode laser systems.
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