
PHYSICAL REVIEW A VOLUME 43, NUMBER 1 1 JANUARY 1991

Conditions for zeros in the generalized oscillator strength:
One-electron atom and diatomic molecule examples
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Requirements for the existence of isolated zeros in the generalized oscillator strength (GOS) for
one-electron atoms and molecules are considered. It is shown that in certain limits the atomic GOS
cannot be zero for any value of the momentum-transfer magnitude fiEWO unless it is zero for all
values. A relationship between the existence of a zero and the angular momentum of the target's
states is pointed out for the atomic case and a numerical example is provided. The conditions for
the existence of an isolated zero for a molecular GOS are derived and, using the atom case as a
model, they indicate that one is unlikely for 0 & K & ~ and the internuclear separation R restricted
to 0&R & ~. Minima, or possibly zeros, in the molecular GOS occur in both experiment and
theory. It is postulated here that these structures are minima and not zeros. They appear to be due
to zeros in a matrix element related to the leading term of the small-K GOS expansion while higher
terms remain finite. Several numerical examples are provided and the speculation is supported by
the correlation of the GOS minimum as a function of E and R to a zero in the dipole oscillator
strength. Attention is brought to the existence of zeros in the molecular dipole oscillator strength
when a nodeless function appears in this matrix element, contrary to the atomic case, and an ex-
planation for this diA'erence is given.

I. INTRODUCTION

The predictions of isolated zeros in the dipole oscilla-
tor strength (DOS) and generalized oscillator strength
(GOS), and their implications with respect to observa-
tion, have been of interest for many years. One of the
most discussed examples is the zeros in the photoioniza-
tion cross section for atoms, which are termed Cooper
minima. This idea has been extended to include transi-
tions between discrete states. The recent literature con-
tains advances in the mathematical characterization of
these structures as well as many numerical examples. See
Ref. 4 and its citations.

The situation is similar for the GOS function where the
isolated zero for a given transition occurs as a function of
the magnitude of the momentum transfer AK. Their im-

portance has long been recognized. Theoretical " and
experimental' ' GOS zeros for atoms have been studied.
In the case of molecules, theoretical' ' and experimen-
tal' ' ' examples are also available. The verification of
a GOS zero in the associated electron scattering experi-
ment is dificult because of accuracy loss in measuring a
necessarily small cross section. However, observed
nonzero minima are often associated with theoretical
zeros and in one case the experimental GOS for a mole-
cule H20 is compatible with the existence of an isolated
zero. ' The term minimum implies a nonzero minimum
in the following discussion.

The present study of zeros in the GOS starts with a
consideration of atomic transitions. The main result
achieved here is to quantify the role of the target's initial

and final electronic state's orbital angular momentum
quantum number 1.. The published examples show that
most, if not all, zeros are associated with transitions in-
volving an ns with n ) 1 orbital, although minima may
still appear when this condition is not satisfied.
Continuum-state transitions, when summed over all
partial-I cross sections, appear to have only minima.

A proof is presented that identifies conditions for
which the GOS must be zero for all K if it is zero for any
value of K. This proof systematizes many of the observa-
tions made in the above paragraph and shows that the
essential parameter for a discrete transition is min(Lf, L; )

where i and f indicate the initial, final target electronic
states and min( ) is equal to the smallest number con-
tained in the parentheses. A numerical example in the
spirit of Ref. 6 will be used to show why zeros for the
min(Lf, L; ) = l case are not common and why no exam-
ple appears to exist for the min(L f,L, ) =2 case.

Equations for the existence of an isolated zero in the
GOS for a one-electron diatomic molecule at some K and
R, where R is the internuclear separation, are presented.
They require an infinite number of two-dimensional ma-
trix elements to vanish. A proof that these equations
make the existence of an isolated zero impossible was not
found but, by analogy with the atom case, one is unlikely.
These equations express in a mathematical form the point
made in the discussion on the last page of Ref. 14 where
it is stated that the GOS may vanish for a particular
orientation of the molecule, but it will probably not be
zero for all orientations.

It is postulated on the basis of these results that a
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molecular GOS cannot have an isolated zero for
0&K & ~ and 0&R & ~. The observed structures in
theory' ' and experiment' ' ' are minima and, like
the minima seen in the atom case, are due to the vanish-
ing of just one of a number of matrix elements that ap-
pear in the GOS expression. The speculative nature of
these statements must be emphasized, especially since one
experiment' measured a GOS for which a local zero is
within the error limits. Consequently, a proof or nega-
tion of these speculations is required to clarify the present
situation.

The first of the infinite number of matrix elements that
must vanish for the existence of an isolated zero in the
molecule case becomes proportional to the dipole matrix
element as K becomes small. Since this is expected to be
the largest term for small E in a dipole-allowed transi-
tion, the vanishing of this matrix element would have the
most effect on the shape of the GOS. Also, if this is the
responsible term, the minima in the GOS must correlate
as a function of IC and R to a zero in the DOS. Several
numerical examples of this behavior for Hz+ dipole-
allowed transitions are presented. The individual matrix
elements are investigated for one case and the leading
term has an isolated zero that correlates like the GOS
minimum while higher terms remain finite.

Similar data exist for all transitions discussed in Ref.
21 and it is interesting to note that no dipole-forbidden
transition for all R in that list shows the structure found
in earlier publications' ' and here for the dipole-allowed
transitions. The small undulatory behavior observable in
some of the data shown here is not the subject of the
present discussion. These secondary features have been
explained as interference between the two atomic
centers for the homopolar molecule and, if seen, occur for
KR ~2. The final example shown here is for a dipole-
allowed transition that has isolated zeros in the DOS for
R =0 and R =—5.5a0. The GOS structure associated with
the R =5.5a0 zero is evident and is similar to the other
examples. The structure found for the R =0 DOS zero is
quite different and is dominated by multiple zeros in a
higher term. This latter behavior seems not to have been
previously reported.

This raises the question of zeros in the molecule DOS.
In the Hz+ case the dipole matrix element for R =0 and
R~~ are two different hydrogenic matrix elements,

with differing nuclear charges, determined by the Hz+
correlation diagram. The established fact that the hy-
drogenic DOS matrix elements cannot vanish requires
that they all have the same sign. Since the sign of the hy-
drogenic matrix elements does not change as a function
of nuclear charge, the conclusion that only an even num-
ber of zeros can occur for a given molecular DOS and
0&R & ~ seems safe. This argument is faulty, as shown
below, and many examples of an odd number of zeros are
known. ' Of equal interest and partly as a consequence
of the situation just described is the occurrence of zeros
in the DOS for a molecular transition involving a node-
less function. This is unlike the atom case, for which it
appears that no zeros are known for this type of transi-
tion.

Most of the theoretical treatments cited above and the
present analysis employ a one-electron model for the
target's electronic structure. Also, the presentation is
strictly nonrelativistic. The generalization of both the
atom and molecule results to cases requiring the Pauli ap-
proximation is a matter of notation. The present analysis
does not apply to the Dirac equation. Hence any refer-
ence to experiment ignores complexities due to many-
electron and certain relativistic effects.

II. ATOMIC TARGETS

The GOS is too familiar to present in any detail beyond
that required to define the terms to be discussed. Follow-
ing Ref. 6, the target wave functions for the atom case
are taken as discrete states defined by

g(r;Z)=P~L(r;Z) YLM(r),

where YL~ is a spherical harmonic and I'zl is some radi-
al orbital. I'&L is a hydrogenic orbital with an effective
nuclear charge Z in Ref. 6 and this approximation is used
without loss of generality in the present context. The
standard definition for the quantum numbers N, I, and
M is assumed. If the expansion

e' '=4~ g i'gI(Kr) Y(* (k) YI (r)
I, m

is used, the generalized oscillator strength is related to
the Born matrix element s(K) and is proportional to

2
E(K)~ /K =(1/4~K ) J de, (n) Jdr g/(r;Z/)e' 'P;(r;Z;)

' & IG(L;,Lf l Mf, M;)a(. , ), l',
1=0

where N;WN/, the only nonzero terms must satisfy the
Clebsch-Gordan triangle relationship,

IL/ L, I

~ 21 +a ~LJ +L, ,
—

0, I;+I.
&

even

+~f od

a/, /2
=— r dr P/y L (r;Zf)P~I (r;Z;)j~/+~(Kr) .

0 f f I

(4)

The solid-angle d A(n) integral is over all angles between
K and the quantization axis for the target atom. The
constant G contains the expected Clebsch-Gordan
coeScients plus other constants not needed here and
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GWO for the 1 values discussed following Eq. (3). This
development is given in more detail by Ref. 6 where it is
shown that the GOS, defined by Eq. (3), depends on the
two parameters K/Z, and Zf /Z;, where Z; and Zf are
the effective nuclear charges for the initial and final
states.

The special nature of the K =0 point can be seen by
examining the K —+0 limit of Eqs. (3) and (4). Under the
stated conditions, all but the 1=0 and a= 1 term in Eq.
(3) vanishes in this limit. This remaining term contains
the well-known' relationship between the DOS and the
K =0 limit of the GOS.

Each term of the sum in Eq. (3) must vanish if a local
zero exists in the GOS at some K and this in turn requires
the integral defined by Eq. (4) to equal zero for this K and
each l satisfying the triangle relationship. One integral
must vanish if min(Lf, L, ) =0. jln general,
min(Lf, L,. ) + 1 matrix elements must vanish. ] This
represents one transcendental equation in two unknowns
and any solutions that may exist will be curves or points
in the K/Z; —Zf /Z; plane if the Ref. 6 parametrization
is used. These solutions are easier to locate by working
with Eq. (4), which changes sign near the zero, than with
Eq. (3) or the GOS.

Two integrals must vanish if min(Lf, L, ) =1 and the
GOS can only vanish at the points of intersection for the
corresponding solution curves. An example is shown in
Fig. 1 where two vanishing points for the GOS were
found. The search shown in Fig. 1 was not restricted to
be representative of a known physical system. In the
same vein, three curves must intersect at the same point
if min(Lf, L, ) =2. This presents an ill-posed problem for
the present model since there are only two adjustable pa-
rameters. However, it would be a simple matter to con-

N o
N

struct a model with three parameters, etc.
It is interesting to note that no examples of GSO zeros

appear to have been published for the min(Lf, L, )=2
case. The above discussion makes it clear that such a
zero could be found but the added constraints imposed by
the system being modeled have, to date, excluded this
possibility.

The circumstances for which the increase in
min(Lf, L; ) cannot be continued indefinitely and still
display a local zero in the GOS are now pointed out. If
min(Lf, L, )~ ~ such that

~ Lf L; ~

=—iz, the product
Pz i Pz i must be a trivial function (zero for all r) if thef f i i

GOS is presumed to vanish for any point with K&0.
The proof starts by noting that the Eq. (4) matrix ele-

ment must equal zero for 0 ~ l & ~ if the given conditions
on Lf and L, are satisfied and if Eq. (3) equals zero for
some 0 & K & ~. The formal expansion

f (x)= g (2(x+ 1+4l)J2i+ +, /~(x)
1=0

& J dt t 'f (t)J2i+~+i/2(t)
0

= g (2~+ I+41)~2l+ +1/2(x)al, a —1/2
1=0

can be written, where

f (x )
=&(~x /—2 )x K P~ i (x /E; Zf )P~ i (x /K; Z; ),f f

and a& &/2 is defined by Eq. (4). If certain continuity
and integrability conditions are satisfied, Wilkins has
shown that the above Neumann series converges to f (x).
These conditions are satisfied for the cases under con-
sideration. Since a& &/&=0 for all l and f (x)=0 for all
0~ x ( ~, Eq. (6) requires the product of radial orbitals
to be zero if 0 & K & oo. This can only be true if the prod-
uct of radial orbitals is zero for all allowed r or, in other
words, if the GOS is equal to zero for one K value it must
vanish for all K in the allowed range.

A continuum transition can be treated as a series of
discrete transitions, one for each partial wave. In this
case 0 Lf ( ~, so the condition min(Lf, L;)~ oo with

~Lf L, ~

=ca reduce—s to considering a partial wave in the
L, ~ oo limit. The above proof requires this partial wave
to be identically zero if the GOS vanishes for any K )0.
All partial waves must be trivially zero if one is, so a local
minimum cannot exist in this somewhat unphysical
L, ~ oo limit for a continuum transition.

C)
D

0.0 1.0 2.0
K/ZI

3.0 4.0

FIG. 1. Zeros for the I =0, a=1 and 1=1, a=1 com-
ponents, defined by Eq. (4), for the 3p ~4d transition are shown

by the solid and dashed lines, respectively. The two points at
which the CxOS is zero are indicated by the open squares. The
magnitude of momentum transfer is AK and K is in units of a,

III. MOLECULAR TARGET

The molecular case studied here applies to a randomly
oriented one-electron diatomic with no vibronic degrees
of freedom. This is a common model and the manner in
which it relates to more realistic approximations to
molecular inelastic scattering problems is discussed in a
number of places. This system is one of the few for
which the electronic structure is well known and at the
same time accurately models a target for which measure-
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g, (r; R ) = r, (A, ,p; R ) [exp(iM, P ) /&2~],
where the prolate spheroidal coordinates 1 ~ A, & ~,—1 &p & 1, and 0& / & 2' are indicated since the one-
electron diatomic molecule electronic Schrodinger equa-
tion separates in these coordinates. The integral over P
in Eq. (7) can be carried out with the result

E(K, 5,R) =(R /2) f dk dp(A, p)I &(k,p—.;R)

Xe' '" J ( Y'sin5)r, (A, ,p;R),
~= /M/ —M, f,
Z:—(KR /2)kg,
F= (KR /2)—[(A, —1)(1—

p,~)]'~

(8)

and J is a Bessel function of the first kind. The right-
M,. —M

hand side of Eq. (8) is multiplied by ( —1) ' if
M; & M&. The Legendre functions P, form a basis for
E(K,5,R) and symmetry arguments limit this expansion
to the form

2t 'l!(l +a+ —,
'

)
E(K, 5,R)= go. I +2a-! E/ (K,R )PP+ ( cos5 ),

(9)

and symmetry requires some E&(K,R) to be zero in the
homopolar case. The expansion coefFicients EI can be
evaluated using the methods given in Ref. 29 to produce

EI (K,R) =(R /2) fdldp(A, p, )I /(A, ,p;R)—
X~, .(cose)&, .(z)r, (X,&;R),

(10)
where

cosB—=Ap/[(X +p —I)]'~

ments can be made.
The Born matrix element for this model is usual-

ly' ' ' written as

E(K, 5,R)= f dr g/(r;R)e' 'g, (r;R ), (7)

where the internuclear axis is taken to be collinear with
the z axis and 6 is the angle between K and R. See Fig. 1

of Ref. 29. The initial and final electronic state's quan-
tum numbers are indicated by i and f with iaaf. Equa-
tion (7) can be reduced to a sum of one-dimensional in-
tegrals that parametrically depend upon 5 for the exact
Born-Oppenheimer wave functions ttj(r; R ). This tech-
nique does minimize the numerical dim. culty, but the re-
sult is awkward in the context of the present problem.
An alternative method is now outlined that is more gen-
eral and illuminating. It requires the evaluation of a
series of two-dimensional integrals, but avoids consider-
able manipulation of the parameters in the problem.
Contemporary computers can efhciently calculate the
two-dimensional integrals.

The azimuthal symmetry of the wave functions appear-
ing in Eq. (7) can be utilized by writing the wave function
in the form

2(I)!(I+a+ —,
'

)

(I +2a)! Ei(K, R)i

where the volume element dO(n) is for a vector n paral-
lel to R in some space fixed axis. ' ' As argued for the
atomic case, Eq. (11) requires every s& (K, R ) in Eq. (11) to
equal zero for any 8 and K for which the GOS vanishes.
Unlike the atom case, the range for l in Eq. (11) is in-
dependent of the initial and final states for the target and
spans [0, oo ). The atomic case to date indicates that re-
quiring two such matrix elements to vanish is not com-
mon and no examples of finding three simultaneously
equal to zero have been reported. Hence it seems unlike-
ly that a molecular GOS can have a local zero for
0&E & ~ and 0&8 & ~.

The likelihood of a local zero seems remote and sug-
gests that a proof of impossibility could be achieved using
the atomic case techniques. As pointed out in Sec. I, this
same speculation was stated in Ref. 14. Such a proof was
not found. The proof was also attempted by expanding
the plane wave of Eq. (7) in prolate spheroidal coordi-
nates ' to take advantage of the separability of the one-
electron diatomic molecule wave functions in these coor-
dinates. This does reduce the problem to a relationship
between one-dimensional matrix elements. The lack of
recursion relationships for the spheroidal wave func-
tions ' prevents the establishment of linear dependency
between these matrix elements if a local zero in the GOS
occurs. Hence a proof that a local zero cannot occur is
yet to be established.

The existence of striking structure in both the experi-
mental' '' and theoretical' '' molecular GOS is a fact.
The postulate made here that this structure is due to the
vanishing of just one of the sI(K, R) is tested for the
1so. ~3po.„ transition in H2+. Data for the total GOS
and this transition are given in Ref. 15 and for the in-
tegrand of Eq. (11) in Ref. 16. Figure 2 shows
~E(K, R)~ /K for this transition in a region of K and R
near a minimum. The GOS does not have a zero here.
Further, values for ~EI (K,R)

~
with l =1,3, 5 and ca=0 are

displayed. [Symmetry for this transition restricts Eq. (9)
to a=0 and odd l.] It is clear that EI(K,R) vanishes for
l =1 and +=0 at the minimum in the GOS while the
l =3,5 terms remain finite.

z =(KR /2)[(A, +p —1)]'

and j, is a spherical Bessel of the first kind.
Equation (10) is more general than the derivation sug-

gests. The same steps can be performed in any coordi-
nate system with azimuthal symmetry. Different coordi-
nate systems only require the replacement of z, Z, Y,
cosB, and the volume element appearing in Eqs. (8) and
(10) by the appropriate quantities. For example, it in-
cludes the single center expansion where additional in-
tegrals can be evaluated in terms of simple functions. '

The GOS is defined for the molecule case by replacing
Eq. (3) with

IE(K,R) I'/K'
—:(I/4vrK )f dA(n)~ (EK, 5, R)~ 2
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in calculating the DOS matrix elements for R =0 and
R —+ac the ls-3po and is-2po (the ls-2s components
necessarily vanish) matrix elements reflect this change in
sign convention by having different signs. This, then, al-
lows an odd number of zeros to appear in the DOS for
the 1so. ~3po.„ transition.

The molecule case is also quite different from the atom
case in that the atom DOS appears not to have zeros for
transitions involving one state that is nodeless. The
1scr state is nodeless, so isolated zeros in the
1so. —+npo. „, n )2 sequence do not have atomic ana-
logs. This difference is clearly due to the phase change,
noted in the above paragraph, that is unique to mole-
cule s.

IV. SUMMARY

The existence of an isolated zero in the atom general-
ized oscillator strength was shown to depend on
min(Lf, L;). Many examples of zeros are known when
min(Lf, L,. ) =0 and one example was given here for
min(Lf, L,. ) = 1. A number of examples of nonzero mini-
ma are known to occur due to the vanishing of just one of
the matrix elements in the GOS expression. It was
shown that the atomic GOS cannot have an isolated zero
in the somewhat unphysical limit of both L, and Lf ap-
proaching infinity in a certain manner.

Equations were derived for the one-electron diatomic
molecule case and, using the atomic results as a guide,
the possibility of an isolated zero appears unlikely. How-
ever, a proof that one cannot exist was not established
here. Theoretical results for H2+ show minima' ' as
does HzO. ' The equations for H2+ were investigated
and the minima were shown to correspond to a zero in a
matrix element related to the dipole oscillator strength
while other nonzero matrix elements in the GOS expres-
sion keep these minima from attaining a zero value. The
known theoretical minima for H2+ were shown to corre-
late, as a function of internuclear separation as the
momentum-transfer magnitude approached zero, to a

zero in the dipole oscillator strength. Additional numeri-
cal examples were considered and the existence of a zero
in the dipole oscillator strength always predicts the ex-
istence of minima in the generalized oscillator strength
for finite magnitude of the momentum transfer. Unusual
structure due to pairs of zeros in a higher term of the ex-
pansion derived here was shown for the 2so.s ~5fo „
transition.

A required change in phase convention as a function of
internuclear distance was noted for the neo „, n )2
homopolar one-electron diatomic molecule wave func-
tions. This is responsible for the existence of isolated
zeros in the 1so. ~npo. „dipole oscillator strengths,
the structure found in their generalized oscillator
strengths, ' ' and the qualitative differences between the
properties of atom and molecule dipole oscillator
strengths discussed in Sec. III.

Experimental data show characteristics qualitatively
like some of the examples given here. The CO case' has
a shallow minimum and appears more like the
1so ~6h o „ transition than those with dominant dipole
transitions. The existence of an experimental local
minimum consistent with a zero in a generalized oscilla-
tor strength for H20 (Ref. 18) motivates the need for ad-
ditional information. A rigorous proof of the specula-
tions made here about their improbable existence, if pos-
sible, would be useful because of the difficulty of estab-
lishing a zero by experimental techniques. The relation-
ship between the GOS and DOS structure claimed here
implies a zero in the H20 DOS for this transition for
some internuclear configuration, perhaps not too far from
the equilibrium internuclear configuration, exists. Exper-
imental or theoretical evidence concerning this possibility
would be of interest.
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