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We have formulated the quantum inverse problem for an alternative version of the nonlinear

Schrodinger equation (NLS), which is a variant of the derivative NLS (DNLS) equation. While the
DNLS equation is nonultralocal and cannot be formulated as a problem of the quantum inverse

scattering method, our equation is ultralocal, and hence it is possible to construct the quantum R
matrix and the commutation rules for the scattering data. Next we have constructed the algebraic
Bethe ansatz, from which the eigenvalue equation for the excited states is derived. This eigenvalue

equation admits stringlike configurations, and the density of states corresponding to real and com-

plex eigenvalues is explicitly derived in the thermodynamic limit.

INTRODUCTIO'N

The quantization of nonlinear integrable systems is an
important problem that has received' serious attention
over the last decade. There exist at present two impor-
tant techniques to formulate the quantization of non-
linear systems. One is the semiclassical approach and
the other is the quantum inverse scattering method
(QISM) developed by Sklyanin. The difficulty with the
second approach is that it cannot be applied to systems
with nonultralocal symplectic structure. It was for this
reason that the derivative nonlinear Schrodinger (DNLS)
problem could not be quantized using QISM. In this pa-
per we discuss the problem of quantizing an alternative
equation that actually describes the propagation of
Alfven waves in a plasma. This new equation is very
similar to the original DNLS equation; however, since it
has an ultralocal symplectic structure it is possible to for-
mulate a QISM for this equation. In the following we de-
scribe in detail the construction of the QISM and that of
the algebraic Bethe ansatz. Then we set up an equation
for the determination of the eigenmomenta of the excited
states, which admit stringlike solution. Finally, explicit
expressions for the density of states of real and complex
eigenvalues are obtained.
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This Hamiltonian generates Eq. (1) via

At present there exists two approaches to the quantiza-
tion: (a) the diff'erential equation approach, which has
been critized severely by Gutkin, and (b) the space
discretization approach, which does not have the
difficulties of (a). However, it is still considered to be ap-
proximate unless a limit X is properly taken, where X is
the number of subdivisions of the interval (O, L) of the
real axis in equal subintervals of length A. Here we pur-
sue the second approach.

By converting the Lax equation (2) into a Riccati sys-
tem, we can generate an infinite number of conservation
laws C„. From these it is easy to pick up the Hamiltoni-
an in a given interval (xo, xo+L ) as given by

xo+L Xo+L
H = I C2dx =
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FORMULATION

The equations under consideration can be written as

0ii =t4i.. 2clifzfi. —
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with a as the constant symplectic operator

0 —i

(4)

Equation (1) is an integrable system both in the sense of
Painleve analysis and in having a Lax pair. The Lax pair
has a similar form regarding its dependence on the field
variables. But with respect to the eigenvalue parameter A, ,
it resembles the Kaup-Newell problem. The space part
of the Lax pair for (1) can be written as

in the Poison bracket

&f &g &f
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Thus we proceed with the discretization of the equations
on interval (xp xp+L ) and rewrite the Lax Eq. (2) in the
forI11

and

1 — (cg,„g2„+A, )
—b,A,g, „&c

W. +i=L.W.

where L„ is defined via
xo+L

L„=1+6 L dx,
xo
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tt'in = J,0

xo+L
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The Poisson bracket is defined through
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where I } denotes the Poisson bracket between the ele-
ments of the matrices L and (3 denotes the direct prod-
uct. Computing the 16 Poisson brackets on the left-hand
side we can easily solve for r(A, , u ), and

The classical r matrix is defined following Faddeev via
the equation

IL(&,x) L(u, y)}=[r(X,u ),L(i,,x)1+1L(u, y)],

r(A, , u)=
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This form of r matrix is distinctly different from that of the NLS model, having poles at two positions A, =+u, but the
space-time ultralocal character remains the same.

QUANTUM R MATRIX

For the quantum-mechanical case we start with the discrete form of L, i.e., L„,and observe that g„L„can be inter-

preted as the transition matrix. We now evaluate the equation

R(A, , u )[L„(k)L„(u)]=[L„(u)C3|L„(k)]R(k,, u )

using the ordering of g&„and $2„, and interpreting Eq. (10) as a commutator we obtain

(14)

R(A, , u)=
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It is interesting to note that the form of quantum R ma-
trix follows the same rule as that of the NLS equation,
i.e., if one thinks of c as proportional to A, then Eq. (15) is
true to order A.

COMMUTATION RULE
FOR THE SCATTERING DATA

Since it is written in discrete variable, the space part of
the Lax equation becomes
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0.+ i =L.4. . (16)

One can interpret L„as the transfer matrix over one lat-
tice site.

We define the transition matrix from site n to m as

T(n, m, A. ) =L„(A,)L„,(A, )
. . L (A, ),

and the monodromy matrix from site l to n as

T(A, )=L„(A,)L„,(A, ) . L, (A, )

a(A, )a(u) =a(u)a(A, ),
a(u)b(A)=, a(k, u )b(A, )a(u )

—P(A, , u )b(u )a(A. ),
b(A, )a(u ) =a(A, , u )a(u)b(A, ) —/3(A, , u )a(k)b(u ),
b (u )a(X)=a(A, , u )a(A )b(u) —P(A, , u)a(u)b(k),

a(k)b(u) =a(A, , u)b(u )a(A ) —P(A, , u )b(A)a(u),

where

(21)

=gL;(A, ) . (18)
a(A, , u ) =1- c(A, +u )

a(A, —u )

So from the basic relation (14) we get

R (A, , u )[T(A.) T(u)]=[T(u )Is T(k)]R(A, , u ) . (19)

We define

P(A, , u ) =
Q

REFINEMENT QF THK YANG-BAXTER RELATION

a (A. ) b(A, )

b(A, ) —a(A, )

So forming (19) we obtain

a(A, )a(u )=a(u )a(A, ),
b(A, )b(u )=b(u )b(A. ),
b(A, )b(u) =b(u )b(A, ),

(20)

The above calculations are confined to the periodic
case n~ —L to +L. But for n —+~ the commutation
relations get changed due to the modified Yang-Baxter
relation.

The expectation value of L„(A,)L„(u) between the
vacuum states are

8'(A. , u ) = (O~L„(k)L„(u) ~0) .

Thus

8'(A, , u ) =

1 — (A, +m )
2

—icA, u 6

1+ (I, —u )
2

1 — (A, n)—iA
2

(22)

1+ (A, +u )
2

The normalized monodromy matrix T(A, ) is defined by

T(A, ) = lim v(A, ) L„(A,) L ~+, (A, )v(A, )

The Yang-Baxter relation for T(A, ) is modified to

R i(A, , u )[T(A) T(u)] =[T(u) T(A, ) ]Rz(A, , u ), (24)

where

W1 0
u(A, )= 0

with

where

R, (A, , u)= U, (ui) 'R(A, , u)U, (A., u),

R2(A, , u ) = U2(u, A, )R(A. , u ) Uz(i, , u )

U, (A, , u )= lim W(i, , u ) [v(A, )"u(u ) ],Pf~ oo

1+ g2
2 2

(23) U2(k, , u ) = lim [u (A ) su (u) ]8'(X,u )X~ oo

and where R, (l, , u ) and R2(A, , u ) are given by
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ing with a postulated vacuum. Let us designate the vacu-
um state by

g(A, , u )=

X[1+2~i'(A, —u )(k —u +iO)],
cA, u

u2 2

which shows that the action of L„on lO& yields a tri-
angular matrix, and due to the property of triangular ma-
trices, we find the action of T(0).

If we write

h(k, u )=— 2cXu

u2 2

cA, u

u

X[1—ivr5(A, —u )] .

X[1—2~i'(k —u )(A, —u —io)],
2

then

T(e) lo &
= a(0) b(0)

b(0) a(0) 0 (29)

One can now substitute R i(k, , u ) and R2(A. , u ) in Eq. (24)
to calculate the refined commutation rules of the scatter-
ing data and construct the eigenstates.

CONSTRUCTION OF THE EIGENSTATE

Before we proceed to the actual construction of the
eigenstates it is very important to realize that our R ma-
trix is a function of A, and u, yet it does not depend solely
on A, —u. To remedy this difhculty we set

a(0)lo&=
2 2

lo&,

-(e)lo&=+ 1+ + '
lo&,

2 2

b(0)lo& =o,
and the ith excited state

b(0)lo&=li & .

(30)

ink, =O, , lnu =O2,
Let us designate the one-, two-, and three-particle states
as

whence we observe that

ihrr2 COS11(01 02)
a(0„02)= 1+

2 smh 0, —ez
(26)

n, (0, )=b(0, )lo&,

Q2(e„ez) =b(0, )b(02)lo&,

~,(0„0„0,) =b(e, )b(e, )b(0, )lo &,

(31)

2 sinh(0 —0 )1 2
(27)

which exhibits a dependence on O, —O2.

Then the eigenstates Q, (0, ), 02(e„ez), Q3(ei ep 03),
etc. , of the quantized system can be constructed by start-

and similarly for n-particle states.
The algebraic Bethe ansatz can now be formulated by

operating with a(0)+a(0) on Q;(ei, 02, . . . , 0;) and re-
quiring that it be an eigenstate, which is equivalent to the
imposition of the condition that the unwanted terms gen-
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crated due to the commutation rules (21) must vanish.
For n-particle states this condition turns out to be'

sinh(Z +iy/2)
sinh(Z —i y l2)

sinh(0; +y /2 —6/2)
sinh(0, —y /2+6/2)

sinh(0 —0; —6)

, , sinh(BJ —0;+6)
lWJ

(32)

sinh(Z. —0, +i y )

, sinh(Z. —0;+iy)
sinh(ZJ —ZL+iy )xg .

L sinh(Z —ZI i—y)

where 0., y, and 5 are constants determined in terms of
the parameters of the systems.

For convenience let us set

sinh(Z~ —ZL +i y )
X

sinh(Z —Zl —i y )
(32")

sinh(z+ ic )
z, c =ln

sinh(z —ic )
(33)

In the thermodynamic limit X—+ ~ these equations be-
come integral equations. "

Taking the logarithm of Eq. (32) we obtain

Since Eq. (32) is, in general, very difficult to solve for each
8, we consider the density of such states given by

d(0~)= Lim ( —ir/2~0j~ir/2)I
iv- N 0+,—0 )

sinh(0 +i y/2)
N ln

sinh(0 —iy/2)
sinh(0 —0,. + iy )—gin sinh(0 —0,. —i y )

sinh(BJ —ZL +i y )+gin
sinh(BJ —ZL —i y )

and p( 0) =Nd ( 0).
The solutions of Eq. (32) can be of two kinds: real 0;,

i = 1, . . . , M, and complex ZL = cr I +i gl (I. = 1, . . . , N) .
An important observation is that when Z; is a solution,
so is Z; =o; —i g; Then . Eq. (32) splits into two parts:

sinh(0 +i y /2)
sinh(0~ —&'y /2)

sinh(0 —ZI +i y )+gin ', (34)
sinh(0. —ZL —i y )

or using the definition (33), that is,

sinh(0 —0; —6)
=ln

sinh(0 —0, +6)

we obtain

and

M sinh(0. —0, +iy)
, sinh(0~ —0, +iy)

sinh( BJ.—ZL +i y )

sinh( 0 —ZL i y)—
sinh(0~ —ZL +i y )

sinh(0~ —ZI i y)—(32')

NP(6, , y/2) = g $(0, —0;;y)

+g[p(0 —ZL, y )+$(0)—ZL, y )]
L

+2~I (35a)

Actually these complex roots form a stringlike
configuration, which in the 1irnit of N~ ~ will become a
continuous distribution. In the ground state of the sys-
tem the integers tI I form a monotonic sequence and
I +)—I =1.

Taking the diff'erence between the two forms of Eq.
(35), which use j =@+1 and K,

NN'(0k+i y/2) 0(0k y/2—)l= — &4(0k+i —0;,y)
I I

+Xle(0k+ I ZL y ) 4(0k ZL y )+0(0k+I ZL y ) 4(0k ZL y ) 1
L

+2~(Ik+i Ik ) . — (35b)

Also

lim gf(6k)= f f(B)p(6)d0
N —+ oo k

—~/2

and

Ik+i —Ik N

lim = ——p(0) ——g 6(0—Bk) .
m N(0k+i —Bk) N Nk

Dividing (35b) by N(0k+, —Bk) and passing to the limit
X~~, we obtain
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7T/2

J dx p(x)p(e —x, y)

=2p(e)+Np'(8, y l2)
—y[y'(e —z, 7 )+y'(8 —z, 7 )]

L

P„;5,(m) =— m5

2~ cos(m5)
—2ima 2—im(5 —

g )
—2im(5+/ )

X e ~e ~+e

+2~ g 5(e—85 ) . (36)

p(e)= X pi. ie" '

P'(x+tyy)= g C (y)e ' (37)

where

C„(y)= 2i s—gn(y+z)exp[ —2/m(y+z)] .

Substituting in Eq. (37) we obtain for the vacuum sector

~e l'mp

P„„(m)=2' cos(m 5)

m 5 2im8&—+ Nh

2sr cos( m 5 )
(m)= h

6=1

(38)

The density of states corresponding to the complex roots
can be classified into two parts; wide pairs and close
pairs. And for these two cases we obtain

To solve this equation we apply the method of Fourier
transform, let us set

DISCUSSION

In our above analysis we discussed the QISM formula-
tion of a class of NLS equations, which is similar in form
to the usual DNLS problem, but with an ultralocal sym-
plectic structure. The role of the nonlinear Schrodinger-
like system is really very important in the analysis of
various nonlinear problems. The original NLS equation
or its analogs have been deduced by many authors from
various systems in plasma or hydrodynamic problems.
Such systems in the presence of a NLS-type equation
have also been stressed by Calogero and Sabatier. ' So a
quantum-mechanical study of such a nonlinear equation
is of utmost relevance. It is furthermore interesting to
note that the algebraic Bethe ansatz can be explicitly for-
mulated and the eigenvalues can be explicitly obtained in
the thermodynamic limit. It will now be very interesting
to consider a finite X correction to the density-of-state in-
tegral equation and compare the conformal invariance of
the system. Such computations are under consideration
and will be reported in the future.

m5

P„„,(m)= 2' cos(m5)
—2imcri —2im(5 gi ) 2im—(5+—gi)

l

(39)
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