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The closed analytic form for bound-state transitions due to projectile impact is found in the

intermediate representation. The coordinate integral is obtained by evaluating the remaining

two integrals in the general multicenter integral derived previously [J.C. Straton, Phys. Rev. A

41, 71 (1990)]. Evaluating the remaining time integral depends upon relating a sum of modified

Bessel functions of the second kind Kiv+ilq(z) to a simple polynomial in 1/z. The results of
Van Den Bos and De Heer [Physica 34, 333 (1967)] are shown to be missing a phase factor of

)(e +e)

I. INTRODUCTION

The amplitudes for excitation from the hydrogen ground
state into the n = 2 and 3 excited states that were found
by Van Den Bos and Be Heer have provided the basis for
comparison in many experimental and theoretical
studies. It would be helpful to have transition amplitudes
into the n = 4 manifold, for which Park et ajs have
experimental results, and higher. Likewise, as the ex-
perimental study of multiple excitation of many-electron
atoms by projectile impact proceeds, a full catalog of
transitions between the excited hydrogenic states will be
required for calculations using configuration-interaction
wave functions (weighted products of one-electron wave

functions). McGuire et ajiz have contributed to this
catalog by calculating the 2s~2p transition amplitude,
and Straton and McGuireis have given the entire set of
transitions within the n = 1 and 2 manifolds, including
21m —+ 21m' transitions, in cases where there may be a
change in the screened nuclear charge. Since the latter ef-

fort required some 250 pages of notes (125 for each of two
independent methods), it may be expected that includ-
ing just the full n = 3 manifold would be an enormous
undertaking.

The present paper presents the alternative of deriving
the transition amplitude once, for all states nlmA (with
A = Z7/ao) to all states n'Pm'A' In Sec. II, th. e co-
ordinate int, egral is evaluated by utilizing the author s
results for the general multicenter integral. The time in-

tegration is performed in Sec. III by utilizing a relation
involving sums of modified Bessel functions of the second
kind I~~+ilq(z) to a polynomial in 1/z. The proof of this
relation is given in the Appendix.

II. SPATIAL INTEG RATION

1
anlel m'Al, nem—i (4'~ &)

scut yA'

where

3V ieI e (R) = d r u el (r) V(R, , l') u e (r')

(3)
and in the semiclassical approximation (SCA) the projec-
tile of velocity v follows a rectilinear path as a function
of time,

R. = Bi+ vtk. (4)

B is the impact parameter;
The first-order SCA has been shown to be the interme-

diate representation equivalent of (the two-dimensional
Fourier transform of) the plane-wave first Born approx-
imation (FBA) of Schrodinger representation. i4 is This
consideration dictates the choice of asymptotic Hamilto-
nian HpT and thus the interaction potential V(R, ,r) in

(2). In initial-state Jacobi coordinates, is the three-body
Hamiltonian reduces to a Hamiltonian for two fictitious
bodies when the center-of-mass momentum is set to zero,

.H = Hyl +Hp+V;, (5)

where the asymptotic translational Hamiltonian, of which
plane waves are eigenstates when Z~ ———Z„ is

Zp(ZT + Z, )
PT —

2M
+ g s

in which M = mp(mT + m, )/(mp + IT + m, ) is the
three-body reduced mass of the fictitious projectile. The
atomic Hamiltonian is

The first-order one-electron transition amplitude in in-
termediate representation is

—V'„Z~Z,
Q ~ +

2
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in which m = mT m, /(m~ + m, ) is the reduced mass of
the fictitious electron, and the interaction potential is

1 1V;=V(R, , r)=ZZ, j

(
( jR+ (m/mT )rj R)

Atomic units (h = e = m~i«z, » —1) are used through-
out. If the bound particle is an electron m, = m, ~, t,~„——
1, then m 1. Thus 1/jR, + (m/mT)rj I/R, and the
internuclear term is canceled to one part in a thousand,
consistent with the rectilinear SCA approximation (4).

For generality, however, the present calculation will be
of the quantity

A~irl ~i ~r~(4), B,v, Z) = dt e d z' zl~gp ~ (I1)ZpZ j, ,
—— tl~r~(rl

q!R, —vrj R

so that the exact relation

m
+(—i) Ag; j ~, B,—,Z~ jmT'

may be used when desired.

The reduced form for the coordinate-space integral has
been given by the author as a two-dimensional integral.
In Sec. IV of that paper, the final two integrals are eval-
uated in a special case, giving the I/jR. —rj term of the
transition amplitude for 2, 1, rn —+ 2, 1, —m. The follow-

ing closely parallels that reduction. Equations (n) from
that paper will be referred to herein as (n-l).

The amplitude (9) may be written as

r . r (4J, B,PZ)A' isn't -m, ' o&, oo ol
Ch e' (—1) Zz Z S~'e'm'xl;mern&;zi 0; 0&

— ——
~~l gll & l,~e~g (0; 0)

where, from (31-I),

~ ii (0'0 y) = ~
OO ~

—A/A

"p~ e ~'x, nevi, (piqi) ~i)"' (p~ q~)

In this expression

'e x, z x(pi qi)

(-1) (~/ ) +' ~„,~'~'
X

(n —E —1 —s)!(2E+1+ s)!s!

(~) ~ (2E'+ 1)(2E+ 1)(2I.+ 1))
4~I—L' xnin

i!' g I g' E j 2 II"+e'+.+z I.+)', (7/2~Pi)—
000 ' ' + (q) ('+'++ — ++ l/

Py

in which

A'
+ +g& ) (14)

jjz = max(jE' —Ej, jm'+ mj)

p jf g'+ g+ p is even

p+ 1 if S'+ 8+ p is odd,

2
N r, = —y (n —E —I)!(zz+8)!,

n

and the index "('2)" on the last sum indicates that the
sum proceeds in steps of two. The second term in (12) is
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As with (57-I)—(61-I)

A= P1+P2

e """' &~.(»/2M»)
(i+; )/2

p
(18) Finally, the Hermite polynomial may be expanded in

1// »

HM (y/2~Pg )
(I/2+ 1/2+ 1)

2~ = P1P2 9 )

P2X
q.1= 92=

A

(20)

(21)

(M- x)/a

I=O

(—2)I(2I —1)!!M!
(M —2 I)!(2I)!

—(M/2+1/2+M/2 I) 1—-
XP P1

Then the p dependence of the solid spherical harmonic
may be factored out, with the upper (lower) limit for M even (odd). Defining

%+21 = M —I+21 =8I+El+8+~-I.+ jl —I+ 12

One may change variables from p2 to

(»)
and

so that for j2 ——0

~P2 q, O 2e q2(1-(2 )/-(I 4p1 d~
A, /', &"."(/2 q2) =

~Pl P1
(24)

~'(1 —~')
p = . + p

the p1 integral may be done giving

(27)

(o o &)

(—)' (&'/ ')'+'

(—()'(2/zz)'+z ) (z) z z (21'+ 1)(21+1)(2I, + 1)

)
'

(n —l —1 —s)!(2l+ 1+ s)!s! 4m.s=o L=Lvain
M/2

t' E' E L ) ( E' g I & (—2)I(2I —1)!!M! 2M

q 0 0 0 ) ( m'm —m' —m ) . (M 2I)!(2I)! + (~ &&+1+1

1 /'
y

2%+1 /'2q 1/2

(/J~V) +' '
I&sr+1/2(/J~i/) .

&/)
(28)

The final integral may be evaluated if » —0 so that
p = p. Consider this integral (with argument z = pR/v)

f~(z)
f1 (z) z»+1

Then2O

1

Izzz(z) = J dz z
l

—
(

(zz) I1lvzz/z(zzz) .N+1 j2
0

~1.1V (z) = do (T e ' f~+(zo)

Define a function19
1/2

Then

z(Z)k(N 1/+)I2g (Z) (g0)

~ - f'I(/ + k „(2I+ I(/ —k)!

k=o

Xi 1 —e

2L+N —k)..=0 "')
The spatial integral is thus reduced to a finite series

of exponentials. Before performing the time integration,
the second term of (11) is needed. But this is a simple
overlap integral that may be written down by inspection
of (14-I)—(16-1):



1384 JACK C. STRATON 43

e x(00) = « "n em (r)u r (r)

s'=O

(—1)'(2A/n)'+r (—1) (s'+ &'+ s+ &+ 2)'
—1 — ).'(Ã+ 1+ )

« —
(s=o

III. TIME INTEG REIGN

Because many of the terms in (33) involve negative
powers of R = QB2 + v2t2, using term-by-term integra-
tion of derivatives of the simple integral

2L —1 u-2L —&

&L(z) = ). ). f, (z)
(2L —1)!', [2(L —i)j"

.-«"+" .o.bt dt

S~, ('qb(((ba + ba) (bb)

will not suKce. This diKculty is surmounted by a partic-
ular grouping of terms. It is shown in the Appendix that
the simple sum in the last term of (33) may be rewritten
in terms of the function f+ (30),

2L+9+1

TLq(Z) = )
u=2L

f;(.) '. ' .,"f.'( )
(2I)! ) )„(2I+ 1+j)! (37)

where the a" are given by (All). Then the time integral
2

may be evaluated using

CX3 ~ 1/2 3 2((c y ba)(c/a) b a (a/(a ~ ba) ( a(a(c() Z( = — a" b + ( c(a + c ) ( " Ic „a(a (bd +ca)2

(38)

r/2
(t2 + b2)+(i/2lbc I& (&gt2 + b2) cos(ct)dt &wb' bl/2 pv((22 + c2)+(1/2)v —l/4

2

xI&~„ l/2(be + c ) (Rea ) 0, Reb ) 0, c ) 0) (39)

where IC is the modified Bessel function of the second kind.
In order to use (39) one must first expand the solid harmonic,

a-. v -,.„, 1 (—i+ —~k e' ' =
L XLM ~

Bi+ v i k le'—

~)q+M(~)q( )L M 2q- —

x) ' —i
~

e'',
22q™(q+ M) iq'(I —M —2q) i c)~ p

(40)

where the sum runs over all values of q for which the factorials are non-negative.
The final result for (ll) is
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A(B~z)
I gI(,)- ' ~ g,, ~ ()i))s]2 )- (—1)' (&'/n')'+' "): (—1)'(&/n)'+'

V (n' —I' —1 —s')!(28+ 1+ s')!s! (n —E —1 —s)!(2)q+ 1+ s)!s!

(2) L (2E' + 1)(2E + 1)(2I, + 1) E' E I. I' & L) 47t 0 0 0 rn'm —rn' —m
I111IL

M/2

(—1) (2I —1)!!M! 1 M i 1 2L + 1.

(L+ m'+ m)!(I. —m' —m)!
I=O

l

l)q B2q+m m &L m' m —2q——
X —2

qqq+ '+
(q + m' + m)!q!!I,—m' —m —qq)! !!w)
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2k
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1

(2L 1)!!)j=l

1 ~»+i
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I~ o (B+)
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h=o
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2 y

(2L+1+ )» + ~ ""+'(B~) (41)

where

For example,

(42)

Z~Z, s(2 (A'A)s)'2 f A —A'')
2oo, ioo(~ »i' Z~) =

V

(A —A') B
2[Iso(nB) —I~o(BA)] ———I~i(B&)

~V2 A

pl ~3 Q2
A', (BA)2 V4 A2

where

V
(44)

Note that the first term in (43), arising from monopole
term in (8) [the Kronecker b term in (41)] exactly can-

eels the second term of (43). Thus it is seen that the
proper decomposition of the Hamiltonian to give plane-
wave asymptotic states (6) removes the term in the tran-
sition amplitude that diverges at zero energy dift'erence u.
This is an important consideration for the second-order
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contributions. If there is no change in screening for the
1s~2s transitions, then A =- A' and the monopole terms
drop out anyway. However, elastic scattering amplitudes
do not have a A —A' coeKcient so the cancellation from
the overlap integral (the 6rr~S~~I term) is critical.

Equation (43) is identical to the expression derived us-

ing an entirely different integration schemeis (for v = 1).
Setting Z~ ——A = A = v = —Z, = 1 and multiplying
by the factor (-i) in (10) gives the transition amplitude
found by Van Den Bos and De Beer.

For transitions that change S or rn, the Kronecker 6
term does not contribute. However, a typical result

2

A2| i py| (M, B,I, Z ) = — (2 2) 2 2a Kg(a )B—
~

2A + B ) IID(BA)
4v4

A p'B'
~AB+4—+ ) II, (BA) (45)

is seen to be finite as n ~ 0. Again, this is the result found previously by alternate methods.
Finally, consider

. Z„Z, ~ &~i 10&'l
"4310,100 ((A)I » v Z ) = ' '

5 v s ~~ ~
I

4
I InI&o(nB) —neo(AB)1

37 2

1 A'p B y2 ( 10k' B+ 4— —n I~i(AB)
6 vs As v2 (, 3y A

S X'~' B' ( 5&' ~4 B'
+ — n —

~
I — — n Iiz(AB)I

Setting A = A' = Zy = v = —Z, = 1, (10) gives

3 t'2s Bs 2 B
(i310 100((A) B) 3V 2 n I&o(nB) —n~&o(AB) + l

— n ———n I~i(AB)
r ' 26 (, O' A' 3' A

n —— n
i I~2(AB) (47)

This is (—i) times the result of Van Den Bos and De
Heer. This phase diff'erence of (—i) (r +rl is consistent
with the results calculated on the n = 1 and 2 manifolds
using both independent methods. This phase may be
accounted for by noting that Van Den Bos and De Heer
cite Podolsky and Pauling as the source of their mo-
mentum wave function. Vfeniger~ has shown that those
wave functions are missing a factor of ( i)r +r —The.
present results agree with the calculation using the tech-
nique of Van Den Boss and De Beer, but with the cor-
rect momentum wave functions of Weniger. It should be
noted that the incorrect phase of Van Den Bos and De
Heer does not affect the first-order cross sections used in
comparison with experiment. But the correct phase
is critical when considering a second-order calculation in
which the principal-value part of the second-order ampli-
tude interferes with the first-order amplitude.

IV. CONCLUSIONS

transition of a one-electron atom due to projectile im-
pact. Thus a first-order theory is now available for any
transition, be it ground state to Rydberg state or be-
tween excited states. Because the present result is an-
alytic, the second-order amplitude contains at most a
one-dimensional principal-value integral of a product of
two of these first-order amplitudes. s Likewise a third- or
fourth-order result for excitation may be calculationably
feasible since these amplitudes would involve at most two
or three integrals, respectively.
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APPENDIX

It is first desired to prove (36) that

A closed-farm analytic expression has been found for
the first-order amplitude for the general state-to-state v=0

(Al)
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equals

where (30)

)- f; (z)
(2L —1)", ; [2(L —i)]" * (A2)

Now given that for some L one has Sl, ——SL, let it be
shown that Sl.yz ——SL+, .

First note that
2L+1 u 2I

i+ =):
'( )-0+ / ) ~.&2&' '

f;() =l-. l

= ).I '2 I(» —1)" zN+k+1 (A3)

2L+& u —2L —3+)
u=2I

u —3

- (n i 2L)!

1
2L 1 2—2L—1

Z

Z2 ~- ut
u=O

(A6)

The proof proceeds by induction. First it is seen that

Cl 1)Si=l —+ —
I

=S',
zz zs (A4) Second, using recursion relationszs for K„(z) it may be

shown that

1 1 fl 1) /'1 3 3)s, —— -I —+ —lyl —~ —i —
I3 2 (z zs) (z z z )

1 (1 ~ 2)+ ~ + = S', .
z z z (3)(2) z 3! (A5)

(2n + 1)f„(z)+ f„,(z)
f„p, z

Z2
(A7)

~A (z) '+-' f, ( )
(2I + 1)!! (2L)!! [2(L y 1 —j)]!!

A (z) 1 +- (2i —1)f;:~(z)+ f, ,(z)
(2I. + 1)! (2L+ 1)(2I.—1)!!); z2[2(L ~ 1 q)]!!

(2L + 1)! z~(2L —1)!! (2[L (~ 1)]].!t

1 ). [ j —1 —(2L ~1)]f, ,(z) +' f(. ,),(z)
z (2I + 1)!! (. [2(L y 1 j)]!! (2[L (~ 1)])!t)

f ()
(2L + 1)! z 2(2L —1)!! [2(L —&)]!!

2(q —L, —1) f , (z) . f; ,(,)
z (2L+ 1)!! I, 2(L —j+ 1) [2(I —j)]!! ) [2(L p)]!tj=2 k=1 )f() +1, +(2L+ 1)! z z (2I + 1)!! ( O!! (2L 2)!!)

/1 11 2L
z ( + ). kz z ) z1'l 2+ 3 I+ s — ~+ (A8)

Thus it has been shown that for any L one has Sl. = SL.
For powers of z greater than z 2, that is

2L+9+1 u —2L —y

Tl. y(z) = )
u=2L

+(2L)'z . (2L y 1 y i)!'
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one may simply note that the set f+(z) spans the space of polynomials. In fact

(Alo)

where the a's are given by recursion,

Q~
—11

k

i, 2k —2m)

(A11)

Combining common factors of f1+, (z) gives

(A12)
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