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A variational approach to the problem of scattering in a low-frequency laser field is adopted, with
trial functions chosen to be of the type originally introduced by Kroll and Watson [Phys. Rev. A 8,
804 (1973)], who used them nonvariationally. The variational calculation leads to a low-frequency
approximation that includes higher-order correction terms of a relatively simple form. This pro-
vides the basis for an analysis of the accuracy of the approximation as the strength of the external
field varies over a wide range of values. The cross-section sum rule is shown, for the case of a linear-

ly polarized monochromatic field of moderate intensity, to be more accurate than had previously
been realized by virtue of the cancellation of higher-order correction terms in the transition ampli-
tude. The approach is shown to be applicable to elastic and inelastic electron-atom scattering in a
multimode laser field with arbitrary polarization properties; it represents a natural generalization of
the standard Kohn-type variational procedure frequently employed for field-free scattering prob-
lems, reducing to it in the absence of the field. The dressing of the target by the field, an e5'ect

which is known to have a significant inhuence on the scattering cross section in certain cir-
cumstances, is not accounted for in the construction of the trial function, but is properly included as
part of the variational correction.

I. INTRODUCTION

Low-frequency approximations for scattering in a laser
field have been known for some time, but there is still lit-
tle available in the way of systematic analyses of the
domains of applicability and range of validity of these
calculational techniques. The standard procedure of per-
turbation theory, which generates a series of terms of in-
creasing order in some small parameter, and which there-
fore provides a means for judging the accuracy of an ap-
proximation, is not directly applicable for sufficiently in-
tense external fields. The variational approach, which
may be thought of as a generalization of perturbation
theory with the adoption of a trial function replacing the
choice of a model Hamiltonian, can be useful in this con-
nection. A small parameter may be associated, in some
sense, with the error in the trial function, ' with that error
taken to be of first order, the variational principle guar-
antees that the error in the variational approximation
will be of second order. In the class of problems under
consideration, the frequency of the laser field provides a
natural small parameter and one may then be more
specific in the classification of the order of magnitude of
successive terms. One of our objectives is to provide a
more secure basis for this type of classification than has
been available until the present time. Indeed, by examin-
ing the formal expression for the exact error in the varia-
tional approximation one may draw firm conclusions con-
cerning its level of accuracy.

As with ordinary perturbation theory, iterative pro-

cedures may be used to generate higher-order terms in
the approximation. This method was illustrated in an
earlier study of low-frequency approximations. ' In some
cases it will be more efficient to employ an improved trial
function, with fewer iterations required to achieve com-
parable accuracy. The advantages of this latter strategy
in a case where a reasonably simple improved trial func-
tion is available is illustrated in the present work. An ap-
proximate wave function was introduced by Kroll and
Watson who used it nonvariationally to derive their now
well-known low-frequency approximation. Here, follow-
ing a suggestion made by Kaminski, we adopt it as a tri-
al function and in so doing are able to generate a rather
simpler form for the leading correction term than had
been given previously' and to improve on its accuracy.
(The accuracy of the Kroll-Watson trial function, and the
variational approximation obtained from it, can be
gauged in terms of two dimensionless parameters, involv-
ing the frequency and strength of the external electric
field. A more careful discussion of this point is deferred
until the end of Sec. II C. Here we remark that over a
range of "moderate" field intensities, and for sufficiently
low frequencies, both parameters will be small compared
to unity. Since the error in the Kroll-Watson trial func-
tion is quadratic in these parameters it follows that the
variational approximation then contains an error of
fourth order. The approximation is useful over a wide
range of field intensities, though with diminished accura-
cy as the intensity is increased. ) The Kroll-Watson
analysis dealt with potential scattering in a linearly polar-
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ized laser field. It is one of the virtues of the variational
approach that extensions to more complex systems can be
introduced in a straightforward manner through the
choice of appropriately generalized trial functions. The
generalizations of the formalism treated explicitly here
are to elastic and inelastic scattering by a compound tar-
get. Allowance is also made for a slowly varying field of
arbitrary spectral distribution and polarization proper-
ties. The Kroll-Watson trial function contains as a factor
the exact field-free scattering wave function which, of
course, is rarely known in practice. The variational pro-
cedure allows for more fIexibility' , replacement of the ex-
act scattering function by an approximation to it will in-
troduce an error in the calculated transition amplitude of
second order in the error in the trial function. This is a
familiar feature of variational methods for field-free
scattering calculations, here generalized to account for
the presence of an external field.

The improved low-frequency approximation for the
transition amplitude can be used to obtain a more accu-
rate evaluation of the sum, over all final states of the field,
of the partial cross sections for scattering with the emis-
sion or absorption of a definite number of photons. It is a
remarkable fact that, under circumstances to be specified
below, the higher-order corrections to the amplitude can-
cel in the calculation of the sum, which can then be eval-
uated in terms of the cross section for scattering in the
absence of the field. The resultant sum rule is not new,
but is here shown to be of higher accuracy than had been
realized previously.

The basic features of the theory are outlined in Sec. II
in the context of the relatively simple problem of scatter-
ing by a local, short-range potential. In Sec. III A the ex-
tension of the formalism to allow for the use of the inex-
act field-free scattering functions is presented and the ad-
ditional complexity introduced when the target is taken
to be a compound system is analyzed in Sec. IIIB. A
summary of results appears in Sec. IV. Throughout the
discussion a nonrelativistic treatment is employed and
the field is taken to be spatially uniform.

II. VARIATIONAL PRINCIPLE

A. Formulation

An electron, of mass m, charge e, and initial momen-
tum p, scatters from a potential V(r) in the presence of
an external electric field described by the vector potential
A(t) The field is .assumed to be slowly varying, in the
sense that some suitably defined average frequency of the
field is small compared with any of the characteristic fre-
quencies associated with the field-free scattering problem.
(In particular, the scattering energy is assumed to be well
separated from all resonance and threshold regions. ) The
time-dependent Schrodinger equation for this system
takes the form (in units with fi= 1)

e—i V ——A( t)
C

2

+ V(r) . (2.2)

The motion of the electron after it has entered the field,
but before it interacts with the center of force, is de-
scribed by the Volkov solution

r

y (r, t)=(2~) exp i—f dt'+ip. r, (2.3)
tp (t')

0 2m

where we have defined

p(t)=p ——A(t) .
C

(2.4)

As written here, the Volkov solution does not reduce to a
pure plane wave in the limit t ~—~ but rather contains
a constant phase factor multiplying the plane wave; the
presence of this factor is of no physical consequence.
(Plane waves are used here rather than localized wave
packets to simplify the presentation. ) The scattering ma-
trix may be expressed as

S(p', p) = lim f d rg', '*(r, t )y (r, t ),
g —+ —oo

(2.5)

+ f dt' f d r' H i, q&~,(r—', t')

X G(r', t';r, t ), (2.6a)

where the retardation property of the Green's function 6
guarantees that

(2.6b)

More generally, the Volkov wave in Eq. (2.6a) may be re-
placed by a trial function that satisfies the proper bound-
ary condition (2.6b). This more general version, ' or rath-
er its analog satisfied by the outgoing-wave solution, will
be of use to us here. Thus the solution that evolves from
a Volkov wave in the remote past, as expressed by the re-
lation

lim f d r G(r', t', r, t)y~(r, t)= —ig' ~(r', t'),
I; —+ —oo

(2.7a)

has the representation

where the superscript ( —) indicates that the solution
satisfies incoming-wave boundary conditions, evolving
(backwards in time) from a Volkov wave function in the
distant future. This exact solution may be represented
formally as

[g„' '( r, t ) ]*=
tpz ( r, t )

(2.1) X H —i at'

with (2.7b)
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where g' '(r, t) is a trial function which reduces to
y (r, t ) for t ~—~. Making use of Eqs. (2.6a) and (2.7a)
in Eq. (2.5), we find that

. e . e
exp —i—A r H exp i —A-r

C C

+2 + V(r), (2.13)
2m

&(p', p) =&(p', p) —iT(p', p),
with

T(p', p)= f dt f d r H i — (p.(r, t)
oo at

xy,(+)(r, t) .

(2.8a)

(2.8b)

and the version of Eq. (2.11) in which p is replaced by
p(t), one finds that

H i — Q(+)(r, t)=exp i —f dt'—(+) . ),p (t')
Bt P '

0 2m

. e+i A—(t).r
C

Rather than adopting Eq. (2.8b) as the basis for ap-
proximations we replace the exact solution appearing in
the integral by the representation given in Eq. (2.7b) and
thereby obtain the variational identity

T(p, p)= f dt fd'r. H i —p, , y',+'
at

+q( —)e H i q(+)
P jSC g P

(2.9)

If the exact incoming scattered wave in the second term
on the right is replaced by an approximation to it,
differing by a quantity of first order, the error in the tran-
sition amplitude thereby introduced will be of second or-
der, bilinear in the errors in the two trial functions. In
the following we examine in some detail the variational
approximation obtained through the choice of trial func-
tions of the form introduced by Kroll and Watson.

X ( —i V~(, )
—r).e E( t) u '

(,)'(r ) .

(2.14)

„(r,t)=exp. i dt' —+i A(t) —r( ) . , p'(t') . e
0 2m C

X u'. (,').„(r) . (2.15)

Since the electric field E(t) is defined in terms of the
derivative of the vector potential the error will be re-
duced, roughly speaking, as the characteristic frequency
of the field is diminished. The linear dependence of the
error on the strength of the field can also be seen from
Eq. (2.14).

As mentioned, a variational approximation is obtained
from the identity (2.9) by replacing the exact incoming
scattered wave, appearing in the second term on the
right, by a trial function. In analogy with the choice
(2.10) this is taken to be

B. Variational approximation

Kroll and Watson considered a purely monochromatic,
linearly polarized laser field. When their approximate
solution is adapted to the more general class of external
fields considered here we obtain the form

i)j+((r), t) =ex p i f dt'—, p (t')

The variational expression for the transition amplitude is
the sum of two terms

T.(p' p) = T'"(p' p)+ T"'(p' p» (2.16)

T'"(p', p) = f dt exp[ —iC&(t)]f(p'(t), p(t) ), (2.17a)

corresponding to the two terms in Eq. (2.9). With the
form (2.10) taken as the trial function the first term is
evaluated as

+i A(t) r—up(, ))(r), (2 1()) where

where the function u'+' is the field-free outgoing-wave
scattering solution of the time-independent wave equa-
tion

4(t) = dt'(E (,,
) Ep, (,,

) ), —
0

and where

(2.17b)

f(p', p) =(2') f d r exp( —ip' r) V(r)u'+'(r)
p2 + V(r) Eu'+'(r)=0-,
2m P P (2.11) (2.18)

up+'(r)=(2~) ~ exp(ip r)+up+. „'(r) . (2.12)

with E =p /2m. This function (which at this stage is
assumed to be known exactly) may be decomposed into
incident- and scattered-wave components as

is the (off-shell) field-free scattering amplitude. In
evaluating the second term in Eq. (2.16) we make use of
Eq. (2.14) to obtain

T"'(p', p) = f dt exp[ —i4(t)]

A measure of the error in the trial function is obtained by
determining the extent to which the Schrodinger equa-
tion (2.1) is violated. Using the (gauge transformation)
property

xg(p'(t), p(t)) eE(t) .

Here we have defined the vector function

g(p', p)= fd r (up. ,', )*(r)(—iV —r)u'+'(r) .

(2.19)

(2.20)
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This function may be identified with the correction to the
low-frequency approximation to the single-photon brems-
strahlung amplitude, as will be demonstrated below.

Suppose that the field is suf5ciently slowly varying so
that the correction term T' ', which is proportional to
the electric field, is negligible compared with the leading
term. This leading term may then be approximated, in
many cases of interest, by an expression of the same form
but with the scattering amplitude evaluated on the energy
shell ~ Thus let us represent the scattering amplitude ap-
pearing in the expression (2.17a) as a function of the three
scalar variables E ~, ~, ~=(p' —p), and

C. Monochromatic field

To make the simplest choice for the time dependence
of the vector potential, we consider a linearly polarized
monochromatic field, with A(t) =a coscot. With the aid
of a Fourier expansion the integration over the time vari-
able may be performed in the variational expression for
the transition amplitude, which then becomes

T„(p',p)=2' g 6(E, E ——neo)(T„'"+T„' ') .

(2.23)

Here we have
Ep'(t) Ep(t) (2.21)

2m- QBT„"'(p',p) = f e xpi(nO —p sinO)f {p'(8),p(8) },
0 2'

The scattering amplitude is on the energy shell when 6
vanishes. With the energy of the incident particle taken
as the reference, we note that 6 will be small if the energy
transferred to or from the field is small (the basic low-
frequency assumption) and if the field intensity is low
enough so that the energy of interaction of the electron
with the field is small. With the amplitude expanded in a
Taylor series in the variable 6 about its on-shell value at
b, =0, the contribution to the integral in Eq. (2.17a) aris-
ing from the term linear in 6 takes the form

with

ep= (p' —p) a .

mccoy

The shifted momenta are redefined as

e
p(8) =p ——a cosO; p'(8) =p' ——a cosO .

C C

(2.24)

(2.25)

(2.26)

f dt exp[ —i@(t)]b, = —i f d I exp[ —iC&(t)] I

(2.22)

with the derivative understood to be evaluated at 6=0.
This may be integrated by parts, with the surface terms
discarded in view of the infinitely rapid oscillation of the
integrand for t~ ~ oo. [Formally, one may introduce a
convergence factor exp( r)~ t~ ), with i—l taken to be a posi-
tive infinitesimal which is allowed to vanish at the end of
the calculation. ] The contribution arising from the
differentiation of the scattering amplitude is of higher or-
der since it involves a time derivative of the slowly vary-
ing vector potential. The term shown in Eq. (2.22) is then
seen to be of the same order as the variational correction
T' '; they are each proportional to the electric field.
When both of these terms are discarded we are left with
an approximation for the transition amplitude of the
form shown in Eq. (2.17a), with the field-free scattering
amplitude evaluated on the energy shell. A similar result
is obtained in the strong-field limit, in which the phase N
in Eq. (2.17a) is a rapidly varying function of time. A
stationary-phase evaluation of the integral places the
scattering amplitude on the energy shell since the condi-
tion of stationary phase is just 6=0.

It appears likely that the arguments given above,
which justify the use of the on-shell amplitude in Eq.
(2.17a) in the intermediate- and strong-coupling regimes,
can be generalized to apply in a uniform manner for field
intensities lying in a continuous range between these lim-
its. Indeed, when the field is taken to be purely periodic
the proof is quite straightforward, as shown below in the
discussion leading to Eq. (2.32)

X g(p'(8), p(8)).eE(8), (2.27)

with E(8)=(co/c )a sinO.
It is of interest to examine the weak-field limit of Eq.

(2.23) since that allows us to establish a relationship be-
tween stimulated and spontaneous bremsstrahlung ampli-
tudes; in particular, we will arrive at a physical interpre-
tation of the matrix element g, defined in Eq. (2.20), in
terms of the amplitude for single-photon emission in the
absence of an external field. This latter amplitude may be
obtained by expanding the function T'

i + T i in powers
of the field strength and retaining only the linear terms.
(This is exact since the error in the variational approxi-
mation is of higher order in the field strength. ) For the
purpose of this discussion the field-free scattering ampli-
tude may be taken to be a function of the parameter
(e/c )a cosO with its dependence on the remaining vari-
ables temporarily suppressed to simplify notation. Then,
to first order, with a prime denoting the derivative, we

We have eA'ectively taken the independent variable to be
B=cot rather than t for notational convenience. The ex-
pression shown in Eq. (2.24) was derived nonvariationally
by Kroll and Watson who then made an additional ap-
proximation by applying a stationary-phase argument,
valid for p))1. As will be seen below, the stationary-
phase approximation applied to Eq. (2.24) introduces an
error of first order in the frequency. Since we are here
interested in retaining corrections of this order, and since
we wish to allow for ranges of field strengths and frequen-
cies for which p is not large, we do not introduce the
stationary-phase approximation at this stage. The varia-
tional correction term is given by expression

2~dB
T„' '(p', p) = f expi(n8 psinO—)

0 2&
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and

f((e/c)a cos0)—=f(0)+(e/c)a cosgf' .

TIP' =-'p —f(0)+ "f
Cp

(2.28)

nitude to c,. For c2 of order unity —the strong-field
domain —the error is of first order in the frequency and
the first-order momentum shifts appearing in the argu-
ments of the scattering amplitude should be dropped for
consistency.

D. Sum rule

We see that cosO has effectively been replaced by —
p

in the argument of the scattering amplitude. This places
the amplitude on the energy shell since, with

nm co, , nm cop„—=p —, a; p'„—=p' —, a, (2 29)
p p'a p p

we have p„' =p„ for a process in which n photons are ab-
sorbed (n )0) or emitted (n (0); n = —1 for the single-
photon emission process. With the scattering amplitude
once again expressed as a function of the momentum
variables one finds that

(P' P) f(p'—i p —i»2mc co
(2.30)

which is equivalent to the well-known low-frequency ap-
proximation for single-photon bremsstrahlung. When
the correction term in Eq. (2.27) is evaluated to first order
in the field strength it reduces to

. ego
g(p' p) a.

2c
(2.31)

T„"'(p',p) =J„(p)f(p'„,p„)+O(E)E2), (2.32)

where J, is the cylindrical Bessel function; we have intro-
duced the dimensionless parameters

We confirm in this way that the error in the low-
frequency approximation (2.30) is of first order in the fre-
quency since the coefficient of co in the correction term
involves the integral (2.20) which converges for co arbi-
trarily small.

I
The dependence of the integral on frequen-

cy enters through the energy-conservation condition.
The fact that the integral diverges in the zero-frequency
limit when the wave functions satisfy Coulomb boundary
conditions at infinity is an indication that the standard
approximation shown in Eq. (2.30) requires modification
in that case, as does the approximation (2.24) for scatter-
ing in an external field, when terms of higher order in the
frequency are included. '] Equation (2.31) provides us
with a physical interpretation (and possibly an indepen-
dent method of determination) of the matrix element g
which appears in the correction term (2.27).

It follows from Eq. (2.24), after a process of repeated
partial integrations, that

It was suggested some time ago, in the context of a
relativistic formulation of the problem of scattering in a
radiation field, that the summation of the cross section
over all final states of the field may, through a cancella-
tion of higher-order corrections, give a result (a sum rule)
more accurate than expected on the basis of the accuracy
of the input amplitudes. A demonstration of such a can-
cellation was provided in an earlier treatment of the
problem of nonrelativistic scattering in a laser field.
Here we are able to simplify the derivation of the sum
rule considerably and to further extend its domain of ap-
plicability. In particular, with the parameters c& and cz
(introduced above) both taken to be small a sum rule is
derived which is correct to third order and which in-
volves only the field-free scattering cross section. The
contributions from the correction terms shown in Eq.
(2.27) cancel in the evaluation of the sum, as do the off-
shell components of the field-free scattering amplitude
which appears in Eq. (2.24). Interestingly, the sum rule
may be interpreted in terms of the classical motion of the
electron in the field, with the collision taking place in-
stantaneously and without influence from the field.

With the variational approximation (2.23) adopted, the
sum to be evaluated is

4 co

o = g Jd p'o(E, E neo)— —
n=—

X
I
T„"'(p',p)+ T„"I(p',p) I' .

(2.34)

The unitarity relation satisfied by the transition ampli-
tude provides us with a convenient method for the evalu-
ation of the sum over final states. With the use of stan-
dard methods of time-independent scattering theory, the
exact amplitude T„(p',p) for scattering with the ex-
change of n photons with the field may be shown to satis-
fy the generalized optical theorem

ImTO(p, p) = ~g jd'q I

T—, (q, p)l'
oo

X5(E E —neo) . (2.3—5)

co ea

p /2m cp
(2.33)

The variational approximation T, = T,'"+T„' ' is used in
the evaluation of the left- and right-hand sides of this
equation. It is seen from Eq. (2.24) that

We assume throughout that Ei is small compared to unity
and that sz is at most of order unity. [The parameter p in
Eq. (2.25) is roughly of order e~/E&. ] In terms of these
parameters we see that the Kroll-Watson approxima-
tion, reproduced as the leading term in Eq. (2.32), con-
tains an error of second order for c2 comparable in mag-

ImTO" (p, p)= I Imf(p(H), p(9)) .
0 2&

(2.36)

The optical theorem satisfied by the field-free scattering
amplitude may now be used to arrive at the relation
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ImT,"'(p, p) = f ~f d'qlf(q(6)), p(0)) '

X5(E (g) E—(g) )

bilinear in these parameters are counted as second-order
quantities.

It will be convenient at this point to make use of Dirac
notation, in which case Eq. (2.18), for example, is rewrit-
ten as

(2.37)
f(p', p) =

& p'I I'I u '+'
& . (3.2)

From Eq. (2.27) we have

ImT,"'(p,p)= f 2~dO ego
sinOImg(p(8), p(0)) a .

0 2& C

(2.38)

When the exact scattering functions are replaced by trial
functions, and terms of second order are discarded, the
variational approximation becomes

T, (p', p)= f dt exp[ —iN(t)]

This integral vanishes since, with x =cosO, it can be ex-
pressed as an integral of a function of x with upper and
lower limits both equal to unity. Gathering together our
results we obtain the sum rule

o. = f f d qlf(q(8), p(0))l

X 5(E (g) E (g) ) (2.39)

III. SOME EXTENSIONS OF THE FORMALISM

A. Inexact field-free wave functions

If, as is almost always the case, the scattering wave
functions u ' +—' are imprecisely known one must introduce
trial functions

u ' —'=u' +—'+5u' —+'
P P P (3.1)

in their place. The error in the variational approximation
thereby introduced will be of second order, that is, bilin-
ear in the errors (from all sources) in the time-dependent
trial functions that appear in the approximation (2.16) for
the transition amplitude. Let us now verify this explicitly
by demonstrating that contributions which are linear in
the error functions 6u' —' cancel when the integrals are
evaluated. This is equivalent to showing that the new
version of the variational approximation is, to first order,
identical to the one originally obtained using the exact
field-free wave functions. To simplify the discussion the
field will be taken to be monochromatic. The small pa-
rameters in the problem may be identified as c.

&
and

5uz
—', with E2 at most of order unity. We follow standard

conventions in treating the small parameters as being,
formally, of comparable order so that, for example, terms

The error in this sum rule is of order (E)Ez) . In the
domain where c2-c., the error is of fourth order, as stat-
ed above. The level of accuracy which can be claimed de-
creases as c,2 increases; for r2 of order unity the error is
estimated to be of order E,

The phase-space integration in Eq. (2.34) was allowed
to run over all directions of the scattered electron. More
generally, the integration may be restricted to an arbi-
trary infinitesimal domain. The sum rule holds for this
case too, but the derivation is rather more complicated
since the optical theorem cannot be utilized; the details of
the derivation will not be presented here.

J(p'(t), p(t)) = &p'(t)
I
I'lu ',+„,'&

+ & u,', (,');,.IHO —E,(,) I
u ',+,' &, (3.4)

where H0 is the field-free Hamiltonian. It remains to ver-
ify that the approximation (3.3) is unchanged to first or-
der when f is replaced by f, and we now turn to this
matter.

We write the difference between the first term in Eq.
(3.3) and the expression shown in Eq. (2.17a) as

5T")=f dt exp[ —i&(t)]Sf(p'(t), p(t)) (3.5)

with 5f =f f. To show—that the integral is of second
order we prove that this is the case for each of the
Fourier components

5T„")=f expi(no —psing)6f(p'((9), p(g)) .
0 27T

(3.6)

Following our earlier procedure, we treat 6f as a function
of (e/c)a cos9 and expand the function in powers of this
variable. By a process of repeated partial integrations we
find that

5T("=J„(p)5f(p'„,p„)[1+O(E, E~)], (3.7)

with the momentum shift defined in Eq. (2.29), so that
p„' =p„. The error term in Eq. (3.7) may be ignored since
the leading term is itself at least of first order. We now
demonstrate that it is in fact of second order. Bearing in
mind that the initial and final momenta are equal in mag-
nitude we drop the subscript n, to simplify notation, and
write out the expression for the error in the on-shell
scattering amplitude as

&f[p', p] =
& p'I I'I»,'+' &+ & u,(-,', l~, —E,I»,'+'

& .

(3.8)

In the second term on the right we integrate by parts
(Green's theorem), and note that the surface terms vanish

X [f(p'(t), p(t))+g(p'(t), p((t)) eE(t)] .

(3.3)

The function g diff'ers from g defined in Eq. (2.20) in the
appearance of trial rather than exact field-free wave func-
tions. Since g eE is of first order it is clear that no first-
order error is introduced by the replacement of g with g
in this expression. The replacement for the exact scatter-
ing amplitude is
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since the two functions in the integrand behave asymptot-
ically as outgoing waves of the same energy. From the
relation

(H E—) u ',', ) = —VIp')+O(6u( '), (3.9)

valid for p'=p. This identity represents, clearly, the
time-independent analog of Eq. (2.9). The variational
principle is similar to the well-known Kohn version' and
may prove to be more convenient in some cases; the lead-
ing term is given explicitly, rather being defined in terms
of the asymptotic form of the trial function, and it ap-
pears (if the use of the Born approximation for the trial
function is a good indication) to provide a better first ap-
proximation than the trial amplitude in the Kohn princi-
ple. Both of these potential advantages were realized in
the application of the analogous time-dependent version
discussed above. We saw, in fact, that the leading term
reproduced the Kroll-Watson approximation which, for
fields of moderate intensity, includes the correction term
of first order in the frequency. On the other hand, the
amplitude defined by the asymptotic form of the trial
function is difficult to represent in explicit form; for a
similar, but somewhat simpler version of the trial func-
tion' the trial amplitude can be readily determined, and is
seen to be missing the term of first order in the frequency.

it is seen that the terms of first order cancel in Eq. (3.8),
and hence in Eq. (3.6) as well. This completes the proof.

It may be worth remarking, in passing, that the above
considerations suggest a variational principle for the
field-free (on-shell) scattering amplitude based on the
variational identity

f(p', p)= &p'I VIu p+')+ &up. ,', IH() —EpIu p+'),

(3.10)

(p =(2') ~ b, (R)exp iE, t —i I—dt', p'(t')

. e+i A—(t) R+ip r
C

(3.11)

where the ground state of the isolated target satisfies

(HT E, )b, (—R)=0 . (3.12)

The wave equation for the scattering system in the ab-
sence of the field is

(H() E, E)—u '+'(—r, R)=0, (3.13)

where IID=HT+K+ V is the sum of the target Hamil-
tonian, the projectile kinetic-energy operator and the
projectile-target interaction energy. In terms of these
solutions (which we take to be known functions in the fol-
lowing) a trial function is introduced of the form

'(r, R, t)=exp iE, t i —dt'—~, p (t')

(2.17a)], should be replaced by one which refiects the
first-order perturbation caused by the electric-dipole in-
teraction. A direct generalization of the procedure de-
scribed above for potential scattering (with undistorted
target wave functions used in the construction of the trial
functions) shows that these expectations are correct. To
focus on the essential features the target will be assumed
to be in its ground state before and after the collision and
the particles will be treated as distinguishable —the effect
of the Pauli principle can eventually be included by form-
ing the appropriate linear combination of direct and ex-
change amplitudes.

Volkov waves are defined in the case under considera-
tion as

B. Scattering by a compound target

The variational approach to the development of im-
proved low-frequency approximations will now be gen-
eralized to allow for scattering by a bound system of
charged particles. It is known from earlier work" that
the Kroll-Watson approximation preserves its form un-
der this generalization, to first order in the frequency,
and that modifications appear in second order. These
modifications will be determined here. [To be somewhat
more specific concerning the orders of the correction
terms let us consider the situation in which the parame-
ters Ei and E~ of Eq. (2.33) are comparable in magnitude,
each of the order of the small parameter c. The varia-
tional approximation developed here is, in that case,
correct to third order in E.] With the target-field interac-
tion described in the length gauge, one might anticipate
the modifications to include that in which the dipole in-
teraction in Eq. (2.20) is altered by the replacement of r,
the projectile coordinate, by r+R, where R represents
the sum of all the position vectors of the bound particles.
In addition, the target wave function, as it appears in the
construction of the scattering amplitude present in the
leading term of the low-frequency approximation [see Eq.

+i A(t) (—r+R) u'(()'(r, R),

+ ' ' II—i '+' (3.15)

where the double bracket indicates that both space and
time integrations are to be performed in the definition of
the scalar product. A variational approximation is ob-
tained by replacing the exact incoming scattered wave by
a trial function, constructed here along the lines indicated
in Eq. (3.14). We note that the generalized Volkov func-
tion satisfies

aH i (I() .=( V —eE.R)cp—~ .
ut P

(3.16)

(3.14)

with p(t)=p —(e/c) A(t), as defined previously. To sim-
plify notation the variational identity (2.9), which applies
directly to the problem at hand, is rewritten as

r
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and that & b, ~R~b, ) =0, assuming the ground state to
have well-defined parity. These relations are used to
write the variational approximation in the form

is the target Green's function, and

F(E)=V+ V(E H—o) 'V (3.23)

—T(1)+T(2)+ T(3)
U

Here we have

(3.17)

(3.18)

is the scattering operator. In evaluating the second term
on the right in Eq. (3.20) we encounter the matrix ele-
ment

&yp IRlup+, „' &
= &b) IRgT(& —

&p )&p'IF(&)Ip&lbi & .

7' '= « g', ', ~[
—iV („)

—(r+R)].eE~Q'+. „')) .

T"&= « @,',',
~

—eE R~q, ))+ && q, ,
~

—eE.R~q,".„')& .

(3.19)

(3.20)

To clarify the structure of the last term let us decompose
the field-free scattering function as the sum of a plane-
wave component ~y~) = ~b, ) ~p) and a scattered wave

lu,'+. „' & =g, (Z rC )r(F—-)Iy, &, (3.21)

where E =Ei+Ep is the scattering energy,

(3.24)

T, =2m+6(E E —n—co)(T„'"+T„' +T„' ') . (3.25)

This structure suggests that the sum of the amplitudes
T' "and T' ' may be expressed in terms of the matrix ele-
ment of the field-free scattering operator, taken with
respect to the perturbed bound-state wave function. The
result will be written out here for the case of the mono-
chromatic field considered earlier. The variational ap-
proximation is of the form

gT(E) =(E HT)— (3.22) For the second term on the right we have

2KT„'2'= expi(n 9—
p sin8)& u~ ~a~. „~[ i V~~—e~

—(r+R).eE(8)]~u~~~'~. „) .
0 27T

The first and third terms are combined to give

T„"'+T„' '= J expi (n 0—
p sin9)f(p'(0), p(8) ) .

2~ dO

0 27T

(3.26)

(3.27)

Here we define the modified scattering amplitude

J(p'(|)),p(~))= &b( —~)I &p'(~)IF(&~~e~+&~ )Ip(j9) & lb(~) &, (3.28)

with

~b(b, ) &
= ~b, &+g (E, +6)[—eE(e) R]~b, &, (3.29)

and 6 E
p ( p ) Ep( p) The modified amplitude in Eq.

(3.28) differs from the field-free (off-shell) scattering am-
plitude in the replacement of the target wave functions by
field-distorted states. With the neglect of the energy shift
6 in Eq. (3.29) these states correspond to the result of ap-
plying first-order time-independent perturbation theory
in the presence of the static external field E(0). [In arriv-
ing at Eq. (3.27) a term quadratic in the electric-dipole in-
teraction has been added, which is consistent since the er-
ror in the variational approximation is of this order. ]
The picture suggested by this equation is one in which
the collision takes place instantaneously, with both the
projectile momentum and the distortion of the target
determined by the phase of the field at the moment of col-
lision, ' the resultant amplitude is then averaged over the
phase.

The dressing of the target by the field, in the form
shown in Eq. (3.29), can lead to a dramatic enhancement
of the cross section for the forward scattering of an elec-
tron by a neutral atom. Virtual excitations of the target
by the field induce virtual inelastic collisions which, if op-

tically allowed, behave in the forward direction as the in-
verse of the momentum transfer. This effect has been
studied in detail in the context of a Born approximation
approach to the scattering problem, with no restriction
on the frequency. ' The approach adopted here is
confined to the low-frequency domain but the field-free
scattering is treated without approximation. We em-
phasize that the dynamical effect leading to the forward
enhancement is not accounted for in the (generalized)
Kroll-Watson trial function but is properly included in
the variational correction term.

IV. DISCUSSI(ON

It is a characteristic and useful feature of low-
frequency approximations that they allow one to evaluate
the rate for a radiative process in terms of one of lower
order, which can be either calculated or measured more
easily. The Kroll-Watson approximation represents the
amplitude for scattering in a laser field in terms of the
field-free amplitude, with an error which is of second or-
der in the frequency for fields of moderate intensity.
Here we have seen that through the use of a variational
procedure still higher accuracy can be achieved (a
second-order error in the trial function introduces an er-
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ror of fourth order in the amplitude) by including a
correction term, shown in Eq. (2.19), which can be deter-
mined from a knowledge of the amplitude for the spon-
taneous emission of a single photon during the collision.
These error estimates are based on the use of the exact
field-free wave function in the calculation. If this func-
tion contains a first-order error one expects that an addi-
tional error of second order will be introduced in the final
result, and this has been verified here explicitly. We have
illustrated a remarkable cancellation of correction terms
in the calculation of the cross section summed over final
states of the field. As a consequence we obtain a sum
rule, expressed in terms of the measurable field-free cross
section, whose accuracy exceeds that of the input ampli-
tude. The approach is applicable to electron-atom
scattering, with the variational procedure accounting in a
natural way for the dressing of the target by the field.
The calculational method must be modified before it can
be applied to scattering in the neighborhood of a reso-

nance, or near an excitation threshold, where the scatter-
ing amplitude is a rapidly varying function of the energy.
The appearance of the momentum gradient in the varia-
tional correction term [see Eqs. (2.19) and (2.20)j provides
an indication that the numerical value of the correction
can be large as a result of a strong energy dependence in
the field-free scattering problem. This difFiculty may be
avoided through the choice of a more physically ap-
propriate trial function, a matter which we plan to dis-
cuss in a separate paper.
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