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An L approach to the coupled-channel optical method is studied. The investigation is done

for electron-hydrogen elastic scattering at projectile energies of 30, 50, 100, and. 200 eV. Weak-

coupling free-particle Green's function, and no exchange in Q space are approximations used to
coup Ing, ee par xc e
calculate the polarization potential. This model problem is solved exactly using actual hydrogen

discrete and continuum functions. The convergence of an L approach ~th the Laguerre basis

to the exact result is investigated. It is found that a basis of ten Laguerre functions is suKcien

for convergence of approximately 5%%uo in the polarization potential matrix elements, and 270 in

the difFerential cross sections for nonlarge angles. The convergence is faster for smaller energies.

In general, the convergence to the exact result is slow.

I. INTRODUCTION

The coupled-channel optical (CCO) method is widely
used for calculations of electron-atom scattering, see Ref.
1, for example. This a nonperturbative method that in-
volves the calculation of the first-order amplitudes to-
gether with the complex, nonlocal polarization potential
to form the optical potential. The purpose of the polar-
ization potential is to include all channels that are not
treated explicitly in the coupled-channel calculation.

The problem of electron scattering on atomic hydro-
gen, which has not as yet been solved exactly, is often
used in the investigation of various theoretical meth-
ods for electron-atom scattering. The CCO method has
proven to be very successful for many aspects of this
problem; see Ref. 2, for example.

There are a number of approaches for the calculation
of the polarization potential for electron-hydrogen scat-
tering. One is a fully microscopic method2's that uses
exact hydrogen discrete and continuum wave functions.
Another is to use L2 (square integrable) pseudostates
instead.

In this paper we are interested in comparing the two
methods. In particular, we are interested in the conver-
gence of an L approach to the exact result in the CCO
calculations.

In order to compare the two approaches we make some
often used approximations4 to the polarization poten-
tial that enable it to be calculated in both methods. We
use the Laguerre basis to define our pseudostates. This
basis is similar to a Slater basis, but has the advantage
of being complete and orthogonal.

A similar investigation was done by Madison and
Callaway, " where they compared second-order distorted-
wave amplitudes calculated using a number of diA'erent

pseudostates, with exact results.
In Sec. II we define the approximations used to cal-

culate the polarization potentials. The exact (for this
model) diff'erential, integrated elastic, and reaction cross
sections for elastic scattering at 30, 50, 100, and 200
eV are presented. In Sec. III the convergence of the I2
method to the exact result is investigated.

II. DEFINITION OF THE MODEL

The complete description of the CCO method used in
this paper has been given by McCarthy and Stelbovics
and Bray, Madison, and McCarthy.

The polarization potential in the plane-wave represen-
tation without exchange is given by

where i and i' denote target states in P space. The
Hamiltonian of the system is given by

II=I~+Hz +V,
where K is the kinetic-energy operator of the incident
electron, H~ is the nonrelativistic target Hamiltonian,
and V is the potential between the incident electron and
the hydrogen atom.

The projection operators for target states in P and Q
spaces are
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Q = I - P = ) (i)(i~,
iGQ

(k'i'~W«)(ik) = )
a" qQ

d q
(k'i'JV(i"q) (qi" fV(ik)

(E&+& —.;.—qz/2)

where where q represents a plane wave.

AVe use i as a discrete notation that includes the target
continuum in Q space.

The model that we use for our investigations assumes
weak-coupling, free-particle Green's function, and no ex-
change in Q space. 4 5 In this approximation (1) becomes

A. Exact solution of the model
for elastic scattering

In the 'present formulation we can solve (6) exactly. 2

The discrete notation i" denotes a sum over the discrete
states and an integral over the continuum states of the
hydrogen atom. In coordinate space representation these
states are

(r~i) = (r~nlm) = r u„i{a)Yj~(r) (discrete case)
= (r~plm) = r uzi{a)Yj~{i)Y&' (p) (continuum case).

Equation (6) is then

(k'i'~W«~)ik) =
n, t, my Q-

+ )
l, mg Q+

(k'i'
/
V

f
nlmq) (qmln

f
V

f
ik)

d g
E&+& —r„—|l'/2

(k'i'~ V ~plmq) (qmlp~ V~ik)
E&+) —p'/2 —q2/2

where Q and Q+ are the discrete and the continuum
parts of Q space, respectively. The integral over p is
divided into two parts, namely

) 2+ ) I 2

P~&PO Pn&Po

where po
——(2E) l2 and to„and zo„' are Gaussian-type

weights. The interval of integration is divided in such
a way that the Q+ contribution to the imaginary part
of the polarization potential comes only from the first
inter val.

For elastic scattering, both i and i' in (6) are the
ground state of hydrogen. Convergence of the partial-
wave polarization potential matrix elements t, o 0.1% is
achieved by taking in the discrete case n=2 to 20, and
20 integration points p„ in the continuum case. The sum
over l in (9) is done up to l=6. The calculations are at

TABLE I. DiR'erential, integrated elastic (o,) and reaction {a„)cross sections {ap) at 30, 50, 100,
and 200 eV for elastic e-H scattering calculated by the one-channel CCO method. The polarization
potential is calculated with the weak-coupling, free-particle Green s function and no exchange in Q
space approximations. Square brackets denote powers of 10.
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projectile energies of 30, 50, 100, and 200 eV. The re-
sulting diAerential, integrated elastic, and reaction cross
sections are in Table I. An accuracy of 1% requires only
ten discrete and ten continuum states.

B. L solution of the model

Q = ) li)(il,

where j denotes eigenstates of the target Hamiltonian in
the space of finite basis of square-integrable (L2) func-
tions. Denoting the basis set by Qi we have

(i'IH~li) = ~&b& ~ (14)

(.I~) = ( I-~
&

= -'O; ( )&-( )

(i6)

and where

N&

0-i = ).C-'~hi(&) .

The basis size X~ can in general depend on /, however,
we take it to be the same for each /, N~ —N. The
coefficients Ci

& result from the diagonalization of the
target Hamiltonian (14).

In order to compare exact and I theories for the cal-
'culation of P-space phenomena we must have P = P.
This can be achieved by including exact bound states in

(17), or by taking a sufficiently large N
Using L2 states, the polarization potential (6) is

(k'i'I W«l Iik)

n, t,mgQ

V ln~mq) (qm~n I V leak)
(E&+& —~„- i

—q'/2)

An L2 approach in the CCO method4 can be for-
mulated using the above notation as

P = ) l~)bl
jEP

P(k —1)!'"'"' =
'~(2i+ i+ k)!
x(Ar)'+' exp( —Ar/2)L„'+, (Ai.),

which has the advantage of being orthogonal and has
known analytical properties. As we would like to get
the 1s hydrogen wave function exactly, we take A=2. In
this basis, to achieve an accuracy of better than 10
for the 2s and the 2p hydrogen states, we take N ) 7.
For more detail see Table II.

A. Convergence of the polarization potential
matrix elements

VVe calculate one of the most sensitive polarization po-
tential matrix elements, the partial wave expansion J=02

element, to an accuracy better than 0.1% using (9). This
result is compared with the result of (18), for N ranging
from 7 to 100. In Fig. 1 we present the detailed results
of comparison for 30 and 200 eV. The results for 50 and
100 eV are qualitatively similar to the presented results.

The convergence of the I,~ method to the exact result
is not uniform, but is of an oscillatory nature. This result
is consistent with the work of Stelbovics and Winata. i2

The rate of convergence is fast for small N, but is rather
slow for large N. An accuracy of 5% can be achieved with
N 10 for all considered energies. Better convergence
is achieved for smaller energies. An accuracy of 1% is
achieved with N 20 for 30 eV, N = 35 for 50 eV,
N 45 for 100 eV, and N 65 for 200 eV.

B. Convergence of the cross sections

In terms of comparison of theory with experiment it is
necessary to study convergence in the diAerential cross
sections. To calculate a differential cross section one re-
quires the polarization potential partial wave amplitudes
from J = 0 up to convergence. We have taken the maxi-
mum J to be 80.

To study the convergence in the diAerential cross sec-
tions we have selected particular values, N = 7, 10, 20.
Figure 2 shows the percentage relative error with the ex-
act result for each I calculation. The accuracy of the L

where the sum and integral over exact hydrogen states
in (9) has now been replaced with a single sum over L~

states. The sum over I in (18) is done up to t=6, as in
the exact solution.

III. CONVERGENCE OF THE L METHOD

TABLE II. Percentage relative errors b in eigenvalues of
I states at selected values N of the Laguerre basis. N, is
the number of pseudo-states with e~ ) 0 for /=0, The error
columns contain the principal quantum number of the exact
bound state of hydrogen that an I state achieves with the
prescribed error, for each possible l.

6&10 "Fo
Many authors use a nonorthogonal plater basis to

create their I, states. This basis is not convenient for
investigation of convergence as numerical linear depen-
dence does not allow a set of arbitrarily large N. To
avoid this problem we use the I aguerre basis
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FIG. 1. Percentage relative errors for both the real and the imaginary parts of the elastic scattering polarization potential
matrix element (partial wave J=O) at 30 and 200 ev, calculated using L method. X is the size of the Laguerre basis.
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FIG. 2. Percentage relative errors for the elastic difFerential cross sections at 30, 50, ].00, and 2pp ev, calculated using L
method at selected values N of the Laguerre basis. The solid line is the I calculation with %=7, the long-dashed line with
N =10, and the short-dashed line with N =20.
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method improves with increasing ¹ The bigger errors
for large angles are due to lack of convergence of the I
polarization potential for small partial waves.

IV. CONCLUSIONS

We have shown that the I approach with the Laguerre
basis to the CCO method calculations is equivalent to us-
ing exact target states. The convergence as a function of
basis size is slow and has an oscillatory behavior, diAer-
ent for each energy. Higher projectile energies require a
larger number of I~ states in order to achieve the same
accuracy of calculation. A basis of ten Laguerre func-
tions is sufficient for convergence of approximately 5% in
the polarization potential matrix elements and 2% in the
diA'erential cross sections for nonlarge angles.

From the exact calculation for this range of energies
we found that we required as many as 20 bound states
t, o achieve an accuracy of 0.1%. This suggests that the
slow convergence in the I method may be due to a lack
of accurate description of the higher bound states; see

Table II. Because of this we are unable to study the con-
vergence in the continuum part on its own. Using the
results of Stelbovics and Winatai we believe that the
convergence is slow for both the "discrete" and "contin-
uum" contributions to the polarization potential. The
convergence to the exact result as a function of the num-
ber of states is faster using actual target states than using
the I.~ states.

As the model chosen is one of the simplest, we believe
that if a more sophisticated model is chosen for the I
approach to atomic hydrogen or higher atoms, then the
difhculties will only increase. For example, some non-
free-particle Green's functions may lead to pseudoreso-
nances.
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