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Analytic form for the nonrelativistic Coulomb propagator
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An analytic form for the nonrelativistic Coulomb propagator is derived, thus resolving a long-
standing problem in Feynman's path-integral formulation of quantum mechanics. Hostler's formu-
la for the Coulomb Green's function is expanded according to the theorem of Mittag-LeRer, then
Fourier transformed term by term to give the Coulomb propagator. The result is a discrete summa-
tion over the principal quantum number n, involving Whittaker, Laguerre, Hermite, and error func-
tions. As is the case for other nonquadratic potentials, the Coulomb propagator does not have the
canonical structure K =F exp(iS/A). Part of the expansion resembles a form derived by Crandall
[J.Phys. A 16, 3005 (1983)]for the case of retlectionless potentials.

Feynman's path-integral approach' is now one of the
standard formulations of quantum mechanics, with a re-
markable record of success in such applications as quan-
tum electrodynamics, statistical mechanics, and molecu-
lar reaction dynamics. Lacking for over 40 years, howev-
er, has been a solution within Feynman's formalism of
the hydrogen atom or Coulomb problem. In this paper
we derive the first known analytic form for the nonrela-
tivistic Coulomb propagator. This result promises to
stimulate new applications of propagator techniques to
atomic and molecular problems. Earlier work had pro-
duced asymptotic and semiclassical approximations to
the Coulomb propagator as we11 as numerical computa-
tions of the related density matrix. Several workers, not-
ably Duru and Kleinert, have carried out path integra-
tions for the hydrogen atom, but no explicit forms for the
propagator have resulted thereby.

The nonrelativistic Coulomb Green's function, first de-
rived in closed form by Hostler, can be expressed as fol-
lows:

6 (r&, r2, E)=G (x,y, k)

Thus the Coulomb propagator is the Fourier transform of
the Green's function in the form'

K= ' f (G+ —G-)e-'~'dE .2'
Assuming a structure for K analogous to Eq. (1),

(7)

1K(x,y, t) =—
~(x —y) t)x

we have

k(x, y, t),a
By

(8)

I and 8' are Whit taker functions as de6ned by
Buchholz. We will only need those functions with
p/2= 1/2, which we write for brevity as M, and W, .

The known Green's function and the sought after
propagator have the following spectral representations in
terms of the complete set of eigenstates:

E —E„+tc
—iE t

K(r„r2,E)= y ~/r„(r]) /tj(r~)e

1 8
~(x —y) r)x

g+(x, y, k), j" (g+ —g
—

)e '~'dE
2'

where

g (x,y, k)=(ik) '1(1—iv)M, ( iky)W, ( —ikx—),
(2)

+ —~1+ 2+~», y
—=~i +~2 —I »

The energy is related to the wave number k by

E=A k /2p=k /2;
in a.u. , A =p =e = 1. Also,

v=—Z/k .

(3)

(4)

the latter function representing a pseudo-one-dimensional
Coulomb system. The coordinate variables x and y are
deGned by

y II) (g+ —g )e '~'dE
n

n

j (g+ —g
—

)e '~'dE,
2K 0

where each C„ is a sma11 counterclockwise circle enclos-

ing the pole at E =E„= Z /2n . The s—um above
represents the bound-state contribution to the propaga-
tor. Setting E=k /2 and noting that g (k) =g ( —k),
we obtain

k(x, y, t)= g Z„M„(Zx/n)M„(Zy/n)e

+ ' J'" g+(x,y, k)e "'t'"kdk .
2'jT
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It has been noted that W„=(—1)"+'n!M„ for integer n.
For compactness in subsequent formulas we have intro-
duced p=it Fourier transforms will thus appear as La-
place transforms and the propagator will have the form
of a density matrix (with /3 standing for 1/kz '1).

The problem now is to carry out the integration in (18).
This becomes possible after we represent g+(x,y, k) in a
Mittag-Le@er or rational fractional expansion. " If a
function f (z) is meromorphic, i.e., analytic and bounded
everywhere in the complex z plane, except for simple
poles at z =z„z2, . . . , with corresponding residues
r „r2, . . . , then f (z) can be represented as a series of ra-
tional fractions, viz. ,

f (z)=f (0)+ g r„
1

z z

Identifying f (z) with g+(x, y, k) in Eq. (2), we set z =iv,
z„=n (at the poles of the gamma function), and

r„=(ik) M„( —iky) W„( —ikx)1 (
—1)"

(n —1)!
= —(ik) 'nM„( —ikx)M„( —iky) .

+—g (n i v—) 'M„( ik—x)M„( i—ky),
n =1

(12)

where go+ is the free-particle Green's function

go+ (x,y, k) =(ik) 'Mo( iky)—Wo( —ikx)

= ——sin( ky /2 )e '"'/2.
k

(13)

An equivalent representation of the Coulomb Green's
function as a discrete summation over n had been earlier
given by Hostler, ' viz. ,

Note that the variable k is left intact, notwithstanding its
relation to v. We obtain thereby

g+(x,y, k) =g() (x,y, k)

g+(x,y, k)=ik g n '(n —iv) 'xye' ' +y'/ L„"',( ikx)L„—"', ( iky)—
n=1

=go+(x, y, k) —kv g n (n —iv) 'xye' '+y' L„"',( ikx)L„"—', ( iky) . —
n=1

(14)

This has become known as the Sturmian expansion of the Green's function' since it contains hydrogenic functions with
arguments independent of quantum number n, in contrast to Coulomb eigenfunctions, which involve n in both index
and argument. The above Laguerre polynomials are related to our Whittaker functions as follows:

M„(—ikx)= —— e'"" L„"',( ikx) . —
n

We will make use of the Rodrigues formula for Laguerre polynomials:

L ( m )( &Z ) ( n 1 )
—

1Z ™eazL) nZ n +me
—az

n Z

Thus, for the Whittaker functions (15), we may write

M ( ikx) = — (D—". 'x'"e("("'—x/2))ik
n X X =X

(15)

(16)

With (5) and (17) in (12), the Green's function can be expressed as

g+=g() —k g (k iZ„) 'Z„—(n!) [B„", 'By, '(x'y')"e'"&],
n =1

having introduced the abbreviations Z„—:Z /n and g =—x '+y ' —x /2 —y /2.
Substituting (18) into the propagator expression (10) and interchanging the order of g„and f dk, we obtain

oo Pz /2k(x,y, P)= g Z„M„(Z„x)M„(Z„y)e " + f go+(x, y, k)e ~" / k dk

(18)

OO ik g
—Pk l2

Z (n))
—2 Bn

—1Bn —1(x»)n f k2dk
2~ =1 —oo

The second part of (19) gives the free-particle propagator

(x y p) (2~p)
—1/2(e —(z y) /8p —(x +y) /8p)

X'=X,y'=y
(19)

(20)

The operation of Eq. (8) on the second term in (20) gives zero, so that only the first term contributes to the three-
dimensional propagator E. In fact,
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K (x,y, P)=(2~P) e

The following integral can be evaluated

(21)

ikg —Pk /2

k i—Z„
PZ„ /2 —Z„g

dk =i~e " e " erfc
Z„P

&2P
(22)

To get the extra factor k in Eq. (19), we take —2 t)/Bp. Thereby

k(x, y, P)=ko(x, y, P)+ g Z„M„(Z„x)M„(Z„y)e
n=1

n
( t)

—2 gn —lan —i( i i)n n (23)

The discrete spectrum in (23) can be subsumed into the larger summation after using (17) for the Whittaker functions
and the error-function refiection formula: erfc( —z) =2—erfc(z). We have now

—Z„P
k(x,y, P)=ko(x, y, P)+ g Z„e " (n. ) 8„" '8" '(x'y')"e " erfc (24)

Leibniz's rule for differentiation of a product is applied in the form

n —1n —1

[g" 'g" 'x'"e ~ '"e ~ f(g)] = y g (D," ' x "e ~ )(D" ' iy "e " )y'+ f(g) .
p=0 q=0

(25)

g
—Z„P

Bprfc V'2P

—(g —Z„P) /2P
e

Laguerre functions are introduced via (16). Also
1/2

(26)

and

/3Z /2 —Z g
—(g —Z P) /2P g2/2P (27)

Higher derivatives generate Hermite polynomials:

—
(

—Z P)2/2P g —Z„P
&2P

(28)

After substituting x'=x and y'=y, the variable g can be redefined to

g—= (x —y)/2 .

After some lengthy algebra, we arrive at our principal result:

(29)

a ", ftz„'n g Z.p-
k(x, y, P)=ko(x, y, P)+ g Z„'M„(Z„x)M„(Z„y)e " erfc

n =1 2P
n —1 p+1 q+1

+ e ~'"i' g n 'y (
—V'2P-)-~-~

~ BP „2 0 P.
(p, q&0, 0)

qf

(—Z„P
V'2P

The first sum in (30) contains those contributions from the Leibniz sums in which erfc is not differentiated and the
Whittaker functions reassemble by virtue of (17). The second sum, which excludes p =q =0, is simpler left in terms of
Laguerre polynomials.

The three-dimensional Coulomb propagator is obtained by the operation of (8) on (30). We display here just the diag-
onal element, with r, =r2=r, or x =y =2r:
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pz2r2 2r Z„PK(r, r, /3)=(27rP) + — g Z„(M„'M„' M—„M„")e " erfc~ aP „ ,
" " " " " V'2P

+2Zm. ' e "~gnap'
n —1 p+q+2

( —&2p)-p-q
p, q =0 s 'q'

(p, q&0, 0)

(p+ )(p —~+1)~(p+1) ~(q+1)
4r 2 n —p —1 n —

q
—1

XH +
2r —Z„/3

v'2P (31)

K(0 0 P)=(2~P) ~ + +(2P) '
qr g Z

2mP

+ g Z„e " erfc( —Z„&P/2) .
2 1T

(32)

The omitted arguments of the M and L functions above
are all equal to 2Z„r. A notion of the convergence of the
above series can be obtained from the limit r~0, which
reduces (31) to

K =F exp(iS/A) . (34)

delta-function potential' and for reflectionless poten-
tials. ' The latter result, derived by Crandall, shows a re-
markable resemblance to the first line of Eq. (30). The
analog of the second summation in (30) evidently cancels
out for reAectionless potentials.

The representation of the Coulomb propagator derived
above does not have the canonical structure in
Feynman's path-integral formalism for quadratic forms

g(n)K(O, O, P)
K (O, O, P) ''r "2

(PZ'/2)" ' (33)

A combination of bound eigenfunctions and error func-
tions as in Eq. (30) also occurs in the propagators for the

This can be rearranged to a rather intriguing series in-
volving the Riemann g function:

This accounts for the failure of earlier attempts to derive
the Coulomb propagator from the classical action func-
tion. ' In common with Crandall's result, however, the
short-time approximation to the above propagator does
indeed connect with a path integral.

I would like to acknowledge encouragement from
Richard Feynman to extend the path-integral approach
to the Coulomb problem.
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