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Some approximate positronium solutions to the Breit-Coulomb equation
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Positronium wave functions that are approximate solutions to the Breit-Coulomb equation are
constructed for the 1 'So, the (L +1) LJ, and the non-S n 'LL states. The energies of these wave

functions are accurate up through O(a ), giving the correct Coulomb part of the positronium ener-

gy levels to this order. Using only first-order perturbation theory, the energy eigenvalues of the
Breit-Coulomb equation are calculated to 0 (a ) for these quantum states.

I. INTRODUCTION

In many of the calculations that have been done on the
energy levels and decay rates of positronium, the starting
point has been the Bethe-Salpeter equation, or some vari-
ant of it; an approximate solution is found and used as
the lowest-order wave function in a perturbation expan-
sion. Examples of approximate solutions are those found
by Barbieri and Remiddi' and by Lepage. In positroni-
um, the degeneracy of the Schrodinger energy levels is
lifted by relativistic corrections to the Coulomb potential,
by transverse photon exchange, and by annihilation into
one or more photons. Each of these effects contributes a
term of O(a ) to the hyperfine splitting. Even if we con-
sider only the part of the energy that comes from the
Coulomb potential, the Barbieri-Remiddi and the Lepage
solutions give the correct energy only to O(a ). We can
ask, is it possible to do better than this, and construct ap-
proximate wave functions that give the correct O(a ) en-
ergy term (even if only for the Coulomb part of the ener-
gy)? Such wave functions would presumably be more ac-
curate than solutions which do not.

The Breit equation, with various expressions for the
potential function, has a long history, starting with
Breit's original paper in 1929. It is perhaps the simplest
two-body relativistic wave equation. In a previous pa-
per' (paper I), the equal-mass Breit equation, with a
Coulomb potential, was reduced to sets of four coupled
erst-order differential equations for the radial wave func-
tions of the ' LI and the Po states, and to a single set of
six coupled equations for the LL+1 states. The sets of
four coupled equations were then further reduced to an
equivalent Schrodinger equation. (See also the earlier pa-

per by Partovi and Jabbarian-Lotfabadi. ) In this paper
we will show that the coupled radial equations for the
LL+1 states can also be reduced to the same Schrodinger

equation, once an approximation is made. Then, an addi-
tional approximation is made in the equivalent equation
which allows us to solve for the ground-state Schrodinger
wave functions. From these functions we construct ap-
proximate radial functions and energy levels for the
Breit-Coulomb equation. These energy levels agree with
the Coulomb part of the O(a ) contribution to the
hyperfine splitting, calculated from perturbation theory.

The outline of the paper is as follows: In Sec. II the
coupled radial equations for the Breit-Coulomb equation
(after an approximation is made for the l. =J+I func-
tions) are reduced to an equivalent equation for the func-
tion u (r). In Sec. III solutions are found to an approxi-
mation of this equivalent equation, and in Sec. IV energy
eigenvalues of the Breit-Coulomb equation are calculated
to O(a ) using first-order perturbation theory.

II. BREIT-COULOMB RADIAL EQUATIONS

The equal-mass Breit-Coulomb equation is (in units
where fi=c = 1)

—ia VV(r) —i V+(r) a+m[13%(r.)
—0'(r)Pj ——q'(r)

=E%(r), (1)

where r = r —r+ is the relative separation of the two
particles. Due to the invariance of this equation under
the parity and charge-conjugation operations, the solu-
tions have either the angular momentum structure,

Q+ (r) Q (r)+J+ 11JM + +J—11JM

R (r) +JSJM

P(r) +JSJMr

Q+(r) Q (r)
+J+11JM+ +J—117Mr r

(2a)

(with S =0, 1), or
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r
O'=N

R (
J+11JM+r

R (r)
r

+J —11JM

Qo(r) g, (.)+JOJM + J1JMr
P+ (r) 0 +J+ 11JM

go(r) +JOJMr

P (r)
J—11JMr

Q, (r)
J1JMr

(2b)

(eI+)=2E . (4)

The wave functions in Eq. (2a) will be labeled by the
quantum numbers L =J, S, and M; i.e., by the quantum
numbers of its "large-large*' component. The functions
in Eq. (2b) will be labeled by either L =J+1, S=1, J,
and M, if IP+ I

&& IP —
I ~ or by L =J—1, S=1, J, and M,

We define the dimensionless radial variable p as
p=aEr. Equation (1) is equivalent, for S =0, to the set
of coupled equations below for the radial functions:

dP J+1 dR
dp p dp

i 2J+1+ a J+1

J+1
p

1/2
a1+ Q+ =0,p. (5a)

where the P, Q, and R functions depend only on r, and
the QlsJM(r) are 2X2 matrices defined in the Appendix
which are functions of the angular and spin variables.
The inner product of these wave functions is defined as

(qII@):—fTr ql (r)@(r) dr,
L

with normalization"

dp J dR J
dp p dp p

i 2J+1
a J+1

1/2
a1+ Q =0,
p

(6b)

J
2J+1

J+1
2J+1

dg+ J+1
dp p

dg
dp p

2a

2

1 — + P=O, (6c)

p(E —2m)+a E p
p(E+2m )+a E

(6d)

(To keep the notation from becoming too cumbersome,
we will use the same symbols P, R, Q+, and Q for both
the S =0 and the S =1 wave functions. It should be
clear from the context which state we are referring to.)

As shown in paper I, these two sets of equations are each
equivalent to the single equation

dP J dR
Gp p dp

L (L+ 1)——,'a
", + K

dp 2p p

4
4

2( +g2)2
1/2J i 2J+1+p' - J

a1+ Q =0, (5b)
p

'«s)
p'(p+a') .

J+1
2J+1

J
2J+1

dg+ J+1
dp p
' 1/2

dp

(L S)=
—,'I'J(J+1) L(L +1)—S(S—+1)],

upon the substitution

2m

( 1 +4a 2~2 )
I /2

l
1

2m+a
2a E p

P=O,

p(E —2m )+a E
p(E+2m )+a E

while for S = 1, we get

dp
dp

a1+ Q+ =0,p.

J+1 dR J+ 1

p dp p
1/2

i 2J+1
a J

(5c)

(5d)

(6a)

and

2

P(p)= 1+ +
p p+a

2 1/2

u(p), (9a)

' 1/2J+1
2J+1

J
S1

X
u

p —J—1—d lnu

&p(p+a') dp

1 2—a
2

p+a
(9b)

where we have used a di6'erent normalization for u than
in paper I. Then,
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J
Q = —2ia 6 2J+1

i /2 /+1
S1

1/2

9 d lnu

&p(p+a') dpp

12

R=( —1) 1 — +
p p+O2

1 2—a
2

p+ o.
/2

(9c)

(9d)

1/2 1/2J J+1
2J+1 2J+1

(10)

Then the radial functions in (2b) satisfy the set of coupled
equations below:

+ J+1 1

dp p
+ 2J+1

2&J(J+1)
2J+1 dp

dR+
dp p

J l CX——R + —1+ Qo=0,
p ~ p

(1 la)

dP

dp
J 1——P
p 2J+1

dR

dp
J——R
p

2&J(J+1) dR+ J+1
2J+1 dp+ p

'
2

1+ Q, =0, (1 lb)a p

1

2J+1
dQo J+1-

. dp p

2&J(J+1) dQi
2J+1 dp p

+
20.'

1 dQi J-
2J+1 dp p

2

1+ + R+ =0,p.
2&J(J+1) dQo J-

2J+1 dp p

(1 lc)

For the wave function in expression (2b), we define the
functions Qo and Qi as

1/2 1/2J+1 J
2J+1 2J+1

expect that there will be two independent solutions to
these equations, corresponding to the NR L =J —1 and
L =J+ 1 states. The first solution will have
~P ))~P+ ~, while for the second, ~P+ ~

)) ~P ~. For
our approximate solution to the L =J—1 state, we will
therefore set P+ to zero. Then from Eq. (lie), Qo is also
zero. We are left with four functions and five equations.
Since these are not all compatible (otherwise, P+ =0
would be an exact solution) we have to drop one, and we
choose to delete Eq. (11c). So our approximate solution
for the L =J—1 state satisfies Eqs. (lib) and (1lf), to-
gether with

1 p(E —2m )+a E P2J+1 p(E+2m)+a E

d R(p'+'R, )=2&J(J+1)p"+'
dp dp pJ

(12a)

(12b)

This approximation amounts to neglecting the mixing of
the difFerent-L, same-J states in the large-large com-
ponent of +.

Similarly, for the L =J+1 state, we set P to zero,
which by Eq. (1lf) requires that Q, also be zero. We
drop the requirement that our functions satisfy Eq. (11d);
the remaining four functions then satisfy Eqs. (11a) and
(lie) along with

1 p(E —2m)+a E
2J + 1 p(E+2m )+a2E (13a)

d R

dp p

2&J(J + 1) d

p
21+i d P +

P
(13b)

III. WAVE FUNCTIONS

[Note that Eqs. (12b) and (13b) do not hold simultaneous-
ly, since in the first case P+ =0 and in the second,
P =0.] Now employing the substitution (9a) for P
and P+, respectively, it is easy to show that both of these
sets of equations are also equivalent to Eq. (7). IFor the
Po state, Eqs. (1 la) —(1lf) are equivalent to (7) with no

approximations, since P and Qi are already zero in this
case. ]

The justification for these approximations is that, after
one further approximation in Sec. III, they allow us to
solve for a set of approximate solutions which, when put
into the left-hand sides of Eqs. (11c) and (1 ld), respective-
ly, results in a function which is "small" (of order a6) for
p))a .

dQo

dp

2 2

+ 1+ + R =0,
2&x E p

J+1 — i 2m a
p 2o; E p

(11d)

(1 le)

A. Approximate Schrodinger equation

In this section we make the replacements —'~A, and
( L S)~p in Eq. (7), and consider instead the operator

dp p 2a

2

1 —'+ P =0.
p

A(A, ,p)=p 1

2p

L (L +1)——,'a

p

To proceed further, it is necessary to make an approxi-
mation. By considering the nonrelativistic (NR) case, we

4 2a A, a p (14)
p'(p+ a')' p (p+ a')
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where

P= l
dp

(15)

and A, and p are assumed to be adjustable parameters.
We are interested in the values of k and p for which it is
possible to solve for the eigenfunctions of A (A, , tu). In or-
der for these eigenfunctions to be good approximations to
the solutions of Eq. (7), we require that

(M=(L S) (16)

To find the eigenvalues and eigenfunctions of A, we use
a technique that is described in the elegant little book by
Green we try to write A in the form

A =a*, e, +a'", (17)

A, =O, O', +a'"
and attempt to express A z as

A =O*O +a"'
2 2 2

(18)

(19)

where a'" is a real number and 0, is the Hermitian con-
jugate of the operator 8, . (If this can be done in more
than one way, we pick 81 to give the largest value of a "'.)
We then define the operator A z as

a =
—,'+[(L+—,') ——'a +A, +)M]'

b =-,'+-,'& I+4m,

1

4(a +b)

(26)

and a '"= —~p. The energy corresponding to this solu-
tion is then

2m

[1+,'a I(—L+I —5) ]' (27)

The solutions to Eqs. (25) and (26) for A, and )u are not
unique, although the requirement that p is equal to
(L S) to lowest order determines A. to lowest order as
well.

A(A, , )M) factorizes in the manner shown in Eq. (17)
then for values of A, and )L(, which satisfy Eqs. (25) and
(26). This procedure, however, breaks down at the next
step, when we try to write A2 in the form (19). We again
get four equations, but, once A, and p have been deter-
mined in step 1, we are left with only three adjustable pa-
rameters in 02 and the equations cannot be satisfied. For
this reason we will restrict our attention for the most part
to the nodeless, (n„=O) wave functions.

B. Radial functions

One solution to these equations is A, =@=0. This cor-
responds to the Klein-Gordon equation for a spinless par-
ticle of mass 2m in the field of a nucleus with charge
Z =

—,'. This can, of course, be solved for all values of the
radial quantum number. We have in this case

q(j) —8+8+. . . 8+ y(j —1)
1 2 j—1 (20)

b =0, ~p= 1

4(n, +a )

(28)

a —1 + [(L + 1 )2 )a2]1/2
where P(j " is defined by

8 y(j —1)—0 (21) and

where 02 and a' ' are some other operator and real num-
ber, respectively. This process, if continued, will generate
a series of operators A

&

= A, A2, . . . , and real numbers
a'",a' ', . . . , which are the eigenvalues of A. The cor-
responding eigenfunctions are

If A is given by expression (14), 81 must have the form uo=p'e, F, ( —n„,2 a2 )r()p), (29)

a b
Oi —P +l + /Cp

p p+a (22)

where a, b, and ~p are real numbers. The unnormalized
ground state is then

q() ) —u a( + 2)b ~(P (23)

a+b=L+1 —5 (24)

(5 is analogous to the quantum defect in atomic physics).
Equating

8181+�a�

' " to the right-hand side of Eq. (14), we
get (after some algebra)

ah+a ~pb = —X—
—,'p,

where a, b, and vp are

(25)

We can see from this that, if the wave function is to be
finite at p=0 and go to zero at p= Oo, a and vp must both
be positive and, in addition, a +b =L +1. We define 6
by

where (F)(a, y;x) is a confluent hypergeometric func-
tion. Since p =0, we have S =0; that is, Eq. (29)
represents the singlet states. This solution does not take
into account the 6-function-like potential term

4
4

p2(p+a2)2
(30)

(L =0)
&LS&

2L

(31)

in Eq. (7), and it is not a good approximation to the sing-
let L =0 states.

We now consider only the n„=0 states. When k and p
are not zero, the solutions to Eqs. (25) and (26) can be
found by first setting o; to zero and solving for ap, b p, kp,
and )Mo (the values of a, b, A, , and p at a2=0). We then
use the freedom we have in the correction terms to set
b =bp and X=A.p, and put all of the a dependence into a
and p. Then from Eqs. (26) we get
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and

2

p=(L.S)+ —2L+1+ 5+5

Equation (25) can be rewritten as

5=0, p= —,'a (for L =0)
2

5 —(3L+2)5 + (L+1)(2L+1)+ 5
4

(32)

(33)

a L(L+1)—(L S)
4 L (L + 1)(2L + 1)

+ a L (L +1)—(L.S)
16 L(L+1) (2L+1)

L(L+1)—(L S)
L (2L +1)

(L.S)
L (L+1)

(34)

2

L+1— =0 (L &0) .
4 L

Qf the three solutions to this cubic equation, we take the
one that is of order a . Although it is possible to solve
the equation for L )0 exactly, for the purposes of this pa-
per we only require 5 to order a", and p to order a . To
this order, 5 is

[(L + ~ )2 ~ a2]1/2
2 2 4

The radial functions are

(35)

We list below expressions for 6 and for the radial func-
tions for the various angular momentum states. The cor-
responding wave functions +o are all mutually orthogo-
nal, as shown in Appendix C.

For the non-5 n 'LL wave functions,

2m a2 a+1/2
P(p) = 1+ + e,F, ( n„, 2a—; ~2ap),

Eo p &p+a'
- 1/2

2

Q+ (p) =2ia
—1/2 K 1 a2

e a sop L —1 ————
,F, ( n„,2—a; 2xcp)2J+1 gp+a 2 p+a2

n „Kop
,F, (1 n„,2a—+ 1;2~op)

a

Q (p) = —2ia J
2J+1

1/2 1/2
p e

2

1 aa xop+L ———,F, ( n„,2a;—2xop)
2 p+a

R(p)= 1 — +2m a
Eo

For the (L+1) LI states,

nr Kop
,F, ( 1 n„,2a —+ 1;2vop )

a

a+1/2
KpPe,F, ( n„, 2 a;—2 i~op) .

p+a
I

The radial wave functions are then

1 2L —1

2L 4L 2

2

p, = —1 — +O(a ),
L (2L+1)

(37)

aP(p)= 1+ +
p

J
Q+ (p) =2ia

2
' 1/(2L) —1/2

1+
P

L+1—6 0'

1/2 L+1 a2
KOP+ 5+

2L p+ a2

a L +L+1
4 L(L+1)(2L+1)

a L +L+1
16 L (L+1) (2L+1)

a
' 1/(2L) —1/2

X 1+
p

1/2J+1
Q (p) =2ia

L —6

(39)

1 L +L+1
L+1 2L+1

In particular, p= —1 for the 2 P, level, with

5=1—(1—
—,
'a')'" . (38)

X KoP+ 5+ L+1 a —2L —1
2L p+ a2

2
1/(2L) —1/2

X 1+ L —5 4'

p
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R(p)= —1 — +
Eo P

1/(2L) —1/2
2

1+ L+1—5

p
p e

while the LL+1 functions are

For the 1 'So and the (L + 1) Li +, states, (p)=
2 L+2—5

1+ 201 + (x P KgP

+~2
cx 1b= ——', A, =—', p=L+ +O(a ),4' 4 2L+1

a L + a L(L L ——1)
4 (L+l)(2L+1) 16 (L+1) (2L+1)

J
2J+1

1/2 L+1—5

(~iip+ 5) e
p+a

(42)
5=0 for L =0 .

The radial functions for 1 'So are

(40)
' 1/2J+1

Qi(p) = Qo(p),
2

P(p)= 1+ +
Eo P

2
p —p/4e

p+A
2

Q (p) — P e
—P/4

p+ cx
(41)

(p) =— e2J+1 E p

Q (p)=0,

R(p)= 1 — + P e
Eo p p+u'

The function R+ is determined by the differential equa-
tion (12b) together with the boundary conditions
R+(0)=R+(oo)=0. For R given above, R+ is

,F, (1,2L +4—5; cp)
R ( )=2&J(J+ I) R ( )+ 1 — +' e + X( )+ p (43)

where X(p) is defined as

L+1—5
KgP

e
CX k=0

iFi(1,2L +4—5+ k;mop)
2 2L+3 —5+@

X(p)= '

(a )
2 2L+2 —6

aKO ~ L —6
oo

e +p eL+2 sin(vr5)

k
iFi(1,2L+3 —5 —k;a(ip)

p 2L+2 —5 —k
(p) a').

(44)

[As noted above, 5=0 for the S, state. In this case, we
interpret the expression for X(p) for p) a as the limit as
5 goes to zero. The divergence of the first term in this
limit is canceled by a divergence in the sum over the
confluent hypergeometric functions in the second term.
See Appendix 8 for alternate expressions for X(p).] For
p&)n, R+ is approximately

Then the radial functions are

2

P+(p) = 1+ +
p

' 1/2J+1
Q, (p) = 2ia-2J+1

1/(2L)

1+ cx
p eL+1—5

p

4a +J(J + 1 ) I s
—

«pp
+ P 2J+1 P ' 0

(45)

b= —+1 1 1

2 2L ' 4L2
2 2a L —L —1p= L —1 — +—O(a

4 L (2L+1)
a L+1 a L +4L+2
4 L(2L+1) 16 L (2L+1)

1

4

(46)

4

+O C4,
p

For the LI, states, the solutions to Eqs. (24) and (25)
are

' 1/{2L)

X 1+ L —6

Qi(p)=—
1/2

Qii(p ),

R (
1

1
2m+a

2J+1 Eo p
1/(2L)

X 1+
p

L+1—$

X Kop 2L 1+5+ 2L +1 02

2L p+(y2

(47)



43 SOME APPROXIMATE POSITRONIUM SOLUTIONS TO THE BREIT-. . . 1239

R is zero for L =1 (J=0). For L) 1, with R+ given as above, the solution to Eq. (13b) which is zero at p=0 and oo

1S

R (p)= —2&J(J+1) R+(p)+ 1 — Y(p)+ Z(p)
0 0

where Y(p) and Z(p) are

(48)

L +1—5e (8
Y(p) =

1+1/(2L)

1+
k=0 P+&

k iFi(k+ 1,3 —5;&cop)

2L ( —1+5,k )

L —5
Z(p)=

1/(2L)

1+
p k =o p+

k

L —1
1I (1—5) F — 5'a ~

1 —6 1 1 2L» 0
Kp

L 1 2L +1I (2—5) F
2 —5 1 1 2L

—1+5 a~0
Ko

,F, ( k+ 1,2 —5;~(p)
2L ' (5,k)

(49)

In these expressions, the symbol (a, k) denotes the Pochhammer polynomial, defined as

1 if k=0
(a, k)=

1(tt) a(a+1) . . (a+k —1) if k)0,
For p ))a, R is approximately

4 J J+1 4

R (p)= ' e I4L —1 —[(2L —l)~0+ ,')p+x~cp I —+0 a,2J+1

(50)

(51)

At this point, it is useful to go back to the original ra
dial equations (Sa)—(Sd), (6a) —(6d), and (lla) —(1lf), and
ask which of these equations are still satisfied by our ap-
proximate solutions. Of the S=0 equations, Eqs. (5a),
(Sb), and (Sd) are satisfied, since they serve merely to
define Q+, Q, and R in terms of P. Equation (Sc) is not
satisfied since it gives directly Eq. (7), which we have ap-
proximated by Eq. (14). Similarly, Eqs. (6a), (6b), and
(6d) are satisfied while Eq. (6c) is not. Of the L =J —1

solutions, Eqs. (1 la), (1 lb), and (1 le) (trivially, since
P+ =Q0=0) are all satisfied, while Eqs. (llc), (lid), and
(llf) are not [but Eqs. (12a) and (12b) are]. And for
L =/+1, Eqs. (llc), (lid), and (lie) are not satisfied,
while Eqs. (1 la), (1 lb), and (1 lf), and (13a) and (13b), are.

~,F, (1,2L+4 —5; a.(p)
2I +3—5

(53)

and then, to get the corresponding n„)0 term, we multi-

ply the integrand by v(pt ),

+2 fjt e (8 12L + 2 5U

0 0
(54)

Eq. (42), and the R+, L =J+1 function in Eq. (47), are
multiplied by v (p).

(2) In the case of the R+, L =J —, 1 function [Eq. (43)],
the first term is multiplied by v(p)', while for the second
term we use the integral expression

C. Discussion of n, & 0 functions

We conclude with some (rather inconclusive) remarks
on the solutions for n„)0, b&0. We will try the substi-
tution

uo(p)=p'(p+a ) e v(p) (52)

in the equation duo= —aouo, where (for a given L, S,
and J) a and b are the same as in the n, =0 case, but vo is
as yet undetermined. Once v(p) is known, it is fairly
straightforward to construct the radial functions for the
n, )0 states from the n, =0 functions.

(1) All of the P functions above, as well as the R func-
tions in Eqs. (39) and (41), the R, L =J—1 function in

Likewise, for the X, Y; and Z functions, we use the in-
tegral expressions for these functions in Appendix B, Eqs.
(89) and (810) and multiply the integrands by v (pt) to get
the n„)0 functions, while the first term in Eq. (48) is
multiplied by v (p).

(3) The Q+ and Q functions are determined by Eqs.
(9b) and (9c) with the replacement u ~uo [uo given in

Eq. (52)], while for the Qo functions in Eqs. (42) and (47),
we multiply the right-hand side by v(p) and, in addition,
add a —pd(lnv )/dp term inside the square brackets.
The Q, functions are then given by the same equations,
with suitably modified Qo functions.

With the change of variable, x =2Kpp, we get as the
equation for U,
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2 d V
2

x(x+2a ao) +[yx —x(x+2' vo)+4a boa]
dv

dx dx

/3:—a+b —,y —=2(a+b) .1

4Kp
'

This has the approximate solution,

2' KpQ
2

V=O,a+b
(55)

u(x)=vo(x)=, F, (/3, y;x) —4~oa b, F, (/3, y+I; x) .

IV. ENERGY LEVELS

If it were possible to switch off both the transverse-
photon interaction and the annihilation interaction in a
positronium atom, the energy of the n +'Lz state due
to the Coulomb interaction alone would be'

m cxEc =2m
4n

ma' 3 &Lo 1 &1. S)
8u 8n 2L +1 L(L + l)(2L+1)

(56)
+O(a ), (61)

If we denote the differential operator on the left-hand
side of Eq. (55) by 1., then I.uo -a;
Luo=ga a+oh, F, (P+ l, y+2;x )

(y —
) 2b+1

where the O(a ) term has been calculated from perturba-
tion theory using Schrodinger wave functions. (It is un-
derstood that the third term in the brackets is zero for
L =0.) The fourth-order term in the expansion of the en-

ergy Eo derived in Sec. III,

2b
,F, (/3, y+ 1;x )

'V
(57)

2m

[1+—,'a /(n —5) ]'

To ensure that vo does not increase as e as x ~ ~, we
set P equal to a nonpositive integer; P= n„. The—n the
quantization condition becomes

1

4(n„+a+b )

n =n„+L+1,

1

4(n —5)
(58)

in which case the conAuent hypergeometric functions are
both polynomials of order n, . The generalization of Eq.
(27) is then

2 2 2ma mu 3a
4n 8n Sn

m+2 5+4

16n 32n

3 25
+125 +O(a ), (62)

n

agrees with the perturbation calculation, Eq. (61).
The Breit-Coulomb energy for the n„=O states, as well

as for the non-S n 'LI states, can be calculated to O(n )

from first-order perturbation theory using the wave func-
tions found in Sec. III as the unperturbed functions. We
define the perturbation operator 5U by

2m

[1+—,'a /(n —5) ]' (59)
5U% p: icK' $%p l' P% Q

where 6 is determined by Eq. (33).
If we attempt to solve for u(x) as a double power series

in the variables a and x+2+ Iro (to allow the possibility
of a summation over negative exponents while keeping v

finite at x =0),

+ rn (/3'Ilo —%0/I ) — Eo +-
r

(63)

Then the sixth-order contribution to the Coulomb energy
1s

v(x)= g g c (cL )i'(x+2cL ~0)~,
p =p q= —oo

E ~Eo+~E
where

(64)

we get a four-term recursion relation for the c
coefficients. It is easy to show that, for all values of p, the
quantization condition (58) is sufficient to terminate each
of the sums over q at q =n, . For p =0, 1 we can set

cpq
=c

&q
=0 for q (0. However, for p & 1 the recursion

relation demands that c WO for negative q, and in fact
these coefficients behave as ~q~! for ~q~ &)1. As a result,
the series above does not converge for any x.

While Eq. (27) is an exact solution to A ( A, ,p )u o= —~ou o, Eq. (59) is (apparently) only approximate.
Nevertheless, as we will show in Sec. IV, Eq. (59) does
agree, up through O(a ), with the Coulomb energy calcu-
lated from perturbation theory.

6

~E mcx 5

32n 16n
2 4

35 35
+ +5,

2n
(65)

and

is the first-order (in 5U) correction to Fo. As noted pre-
viously, Eqs. (5a) and (Sb), (6a) and (6b), and ( 1 la) and
(lib) are satisfied by our approximate solutions. As a
consequence, the A and D components of 5 U+o are zero:
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(5U+ )

(5U+o)~
(67)

The 8 and C components of 6U%'z, along with the details
of the calculation of AE&, are given in Appendix D, and
we will just give the results:

6

bE(1 'S~)= j —",, +ye+in( —,'a )),o

6
bE(1 S, )=

2

—,",, +yz+In( —,'a )+

b,E(2 PD)=— 1079
884 736

m+6 5bE(n 'Lt )t. &o=
64n Sn

3 3 2 9n —3L(L +1)
n (2L + 1) n (2L + 1)~ (2L + 1) n L(2L +3)(L + 1)(2L + 1)(2L —1) '

(68)

bE{(L+1)sL, )= ma 5 1 + 2L(L L —1)—
64(L +1) 8 L+1 (L +1)(2L +1)

3L L+1 1

(2L+1) L(2L+1) L(2L+1) (2L+3)

bE((L +1) 'L, ) =—
64(L +1) 8 L(2L +1)(2L —1) L (2L +1)

3(L +L+1) (8L+5)(L +L+1)+
L (2L+ 1) L (2L+1)

ma 5 1 3(L L —1) 2(—L +1)(L +4L+2)
64(L+1) 8 (L+1) L (2L+1) L (2L+1)

1 L —3+ 1

L (4L 1)—L (2L +1)
4L

(L +1)(2L —1)
(L & 1),

where yE is the Euler constant. Note that these results
disagree with those in a recent paper by Papp, where he
calculates the energy to O(a ) for the n 'Lt, the n Lt,
and the n Po states. In particular, there is no ln(a) term
in Papp's results, and his expression for the energy of the
n 'L~ state has a different dependence on n. '

V. CONCLUSION

We have constructed a set of approximate, orthogonal
solutions to the Breit-Coulomb equation in coordinate
space, which may be useful in perturbative positronium
calculations, as well as in giving insight into the structure
and behavior of the exact solutions. We have also found
an expression for the energy eigenvalue of this equation
which is accurate up through O(G. ) for all quantum
states.

We summarize our approximations.
(1) For the 1 'S~ state, the 2 PD state, the singlet n„~ 0,

L )0 states, and the triplet n„=0, L =J states, we made
one approximation, that of replacing the coeScients —,

'
and {L S) in Eq. (7) by A, and p (although A. =—' for both
the 'Sz and the Lt + &

states).
(2) For the triplet n„=0, L =1+1 states, we made two

approximations: the one above, and that of neglecting
the mixing of the L =J —1 and the L =J + 1 states in the
large-large component of 'k.

(3) Finally, with one more approximation, that of re-
placing u(p) by uz(p) in Eq. (56), we obtain approximate
wave functions for all n ' LJ states.

The Breit equation is an "equal-time" equation, in that
it does not depend on the relative time separation
t =t —t+ of the two particles. The full wave function
P(r, t) (i.e., the solution to the Bethe-Salpeter equation)
does depend upon t. As pointed out by Salpeter, ' in
Dirac hole theory, the Bethe-Salpeter (BS) equation
reduces to the Salpeter equation when the interaction
kernel is instantaneous, while in single electron theory
the BS equation reduces to the Breit equation. In order
to use the approximate functions above in actual calcula-
tions, where there are usually noninstantaneous interac-
tion kernels, it is necessary to continue +D(r) off' of the
t =0 hyperplane, and to incorporate the difference be-
tween the Breit and the Salpeter equations in an addition-
al perturbation kernel. We will not discuss the second
point here, but the first point was addressed in Ref. 11,
where an equation relating g(r, t) to the Fourier trans-
form

@(p)=J 4(r)e '~'dr (69)

(70)

of 4'(r) was found. In momentum space, Eq. (18) in Ref.
11 is

i A'+'(p) + i A' '(p)
p() 2 O p lC pO+ 2 p p lF

i A'+'( —p) i~'-'( —p)—@ p
p()

—
—,'E() E i e p()

——
—,'Eo—+Ep ie—



1242 JEROME MALENFANT 43

P(p)=[iSF(p+ ,'P—)/3+2vro(po+ —,'Eo+E~)A' '(p)]C&(p)

APPENDIX A: ORBITAL-SPIN MATRICES

The 2 X 2 matrices in Eqs. (2a) and (2b) are defined as

with

—@(p) [i/3SF (p —
—,'P )

—2~5(po —
—,'Eo E—)A'+'( —p) ],

E +(a p+m/3)
S~(p)=, A' —'(p) =

gf
—m+i E

(71)

(72)

1 1 0 M~+LoLM(r)= —
0 1 YL (r) ~

2 . (Al)
+1 O'&m

AL, JM(r)= g (LM —m lm ~L1JM) YL ™(r),
m= —1 2

=4~( —i) &LsJM(p) f rF(rj)L(pr)«, (73)

and P=(Eo,0).
For a typical radial wave function F(r), we can do the

integration over the angular variables in the Fourier
transform integral in Eq. (69), with the result,

ALSJM(1 )e dr
F r isJ~ r e

~ ~
~ r

r

x+iy
E+ I ) Eo Z)

V2
x —iy (A2)

We use the phase convention of Condon and Shortley for
the Clebsch-Gordan coefficients and the spherical har-
monic functions. ' These matrices are eigenstates of the
operators L, S,J, and J„and are normalized accord-
ing to

where jL(x) is a spherical Bessel function,
L

)
L 1 d sin(x)

X dX X

(+L'S'J'M'+LSJM ) in~ d~ d0 ~L Lfis'S'8J'JfiM'M

(A3)

(74) Further properties of these matrices are given in Ref. 10.

As we saw in Sec. III, the R+, L =J—1 approximate
function, Eq. (43), is quite complicated. With F=R+,
we can use the recurrence formulas for jL

[x'+'j, (x)]=x'+'j, ,(x),
(75)

APPENDIX B: ALTERNATE EXPRESSIONS
FOR THE FUNCTIONS X, F, AND Z

Expression (44) for X(p) in the region p(a was
analytically continued into p) n by first absorbing the
exponential factor into the conAuent hypergeometric
functions using the identity'

d jL
dX

jL+ i(x)
xL

e ',F&(a, y;z)=&F&(y —a, y; —z)
and then using the series expansions

(B1)

R (r)
AJ+„JM(r)e ' 'dr

r

= —81r( —i )
' &J (J+ I )Q,J+ „JM( p )

X f rR (r)jJ,(pr)dr .
0

(76)

Similarly, for L =J + 1, F=R [Eq. (48)], we get

R (r)

together with Eq. (12b) to express this integral, after in-
tegrating by parts, in terms of the much simpler R
function, Eq. (42), (B2)

x —L —2

X(p) = e
A k=0

x L —2 ~ (
—Ir~—)"

p
o n!(n +x)

,F, ( l, k+x+ I;s.op)

)F, (a, y;z)= g (a, n) z"

o (y, n) n!

F, ( Pa, y, ) —zg (a, k)(/3, k) z"

.=o

Summing over the index k, we get

= 877( i ) &J (J + 1 )QJ i iJM ( p )

X f rR+(rj)J+,(pr)dr .
0

Therefore, the momentum-space wave function may be
more convenient to use in a perturbation calculation; it
allows the perturbation kernels to be expressed in terms
of Feynman diagrams, and it results in a considerable
simplification in the "small-small" component. It has the
disadvantage, however, that the integral on the right-
hand side of Eq. (73) does not appear to be expressible in
elementary form.

X2F& 1,n +x, n +x +1;—

(B3)
with x =2L+3—6. The hypergeometric functions were
then continued into the region p/o. ) I by using the
identity

~F, (a, /3, y;z )

I (y)I (/3 —a)
r(/3)r(& —a)

X zF &
a, a+ 1 —y, a+ 1 —P; — + (a~/3), (B4). 1
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expressing the hypergeometric functions as power series,
and then summing over n. The result is the expression
for X(p) in Eq. (44). If, however, we use the identity

(2L+ 1)/(2L)

I'(p)= —p~+' 'f "e '~'t' ' 1+ dt,
1 pt

(810)

,F)(a,g, y;z)=(1 —z) ',F, a, y —13, y; z —1
(85)

1 j(2L)

Z(p)= —
p f e t 1+

1 pt

in Eq. (83), we get

x L —2 —co (
—)(~)"

X(p)= z
o n!(n +x)

XzF) 1, l, n+ 1+x; . (86)
p+n

y( )
L+) —s "Oe y

k=0

k
CX 2L +1

2L

Thus sum converges for all p in the range O~p( ~.
Equation (44) is more useful for expanding X(p) in
powers of a /p, but the expression above has the advan-
tage of being a single power-series expansion for X, as
well as all terms remaining finite as 5~0.

Similarly, we get the alternative series expansions for Y
and Z, which converge in the region p & a,

APPENDIX C' ORTHOGONALITY OF % 0

The set of wave functions %'0(' LI t I+()—are all mu-
tually orthogonal under the inner product (3). That
'Ilo('Lt ) and %0( Lt ) are orthogonal to each other and to
4'0( Ll+, ) is apparent from the orthogonality of the
Qtsj~ matrices. It is not so apparent that %0( Lt +, ) is
orthogonal to 'Pp( LI )), since these are eigenfunctions
of different Hamiltonians. In this section we will distin-
guish the radial J=L+1 functions from the J=L —1

functions by a superscript. We have for their inner prod-
uct

(%o( L t+)()4 (oLt —)))
~(+)~(—) (+) ( —)+ (+) ( —)

CXE0 O

+R'++'R'+ '+R'+'R' ']dp. (Cl)

,F, (1,3 —5 —k;)(.Op)

2 —6—k

But

g(+)g( —)+g(+)g( —) —0 (+)g ( —)+0 (+)0 (
—

) —0

1(2—5) Fp 2L +1
2 —5 1 1 2L

—1+5 a~0
Ko

(87)

(C2)

which leaves only the terms containing the R functions.
We can write the term with the R+ functions as

Z( )
t.—s ~0(' y

k=0

k
Qf 2

p

1

2L,

1
(

J+)R(+) )( J+)R( —)
)

o
+ 2J+1 o

,F, (1,2 —5 —k;)cop)

1 —6—k

d 1

2J+1p p
(C3)

L —1
1I(1—5) F — 5a a

1 —5 1 1 2L» 0
IC0

r() )r(l —a)
,F, a, y;z =—

2~i I (y —a)

X f e "( t ) '(1 t )' —'dt—(8&)

where C is a contour that starts at 1+is above the real
axis, passes around the origin counterclockwise, and ends
at 1 —iE below the real axis. Substituting this into Eq.
(83), we get

These three functions can be expressed more compact-
ly in integral form. We will use the integral expression
for the confluent hypergeometric function

R'++'R'+ 'dp= —f R'+'R:''dp,
0 0

(C4)

which proves the orthogonality of two wave functions.

APPENDIX D: EVALUATION OF FIRST-ORDER
ENERGY PERTURBATIONS

We wish to evaluate (%0~5U(IIo) to leading order. To
this order we can, after factoring out of the integral an
o.', set a to zero in the integrand as long as the resulting
integral does not diverge at p=0. We have

((Po~5U@0)= fTr[((IIO)~(5U(I(0)s+()Po)c(5U(Po)c]dr

By integrating by parts a couple of times and using the
relations (12b) and (13b) to eliminate the R+ functions in
favor of the R ones, we get

t2(L +1)—5

o pt+a
while from Eqs. (87) for Y and Z we have

(89) 3 fTr[(+o)~(5U(IIO)~
(aEO)

+(%0)c(5U'Po)c]dp . (Dl)
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Consider, for example, the S =0, L =J states. The B
component of 6U+0 is equal to the left-hand side of Eq.
(Sc) multiplied by (2iX/r)Q~o~M. This would equal zero
if we had not made the approximation in Sec. III. We
define 5A(l, ,p) as

4
A, (I .S)

5A (k,p) =a +a~
p (p+a ) p (p+a )

Then, in general, the B component of 5U+0 is

uo(p)
(5U+o)~ =4%a EO5A(k p) GISM

p(p+a )

The normalization constant X is, to leading order,

(D2)

(D3)

(5U+o)c =( —1) (5U%'o)~ . (D5)

Nz= 2m a (n +L)! +O(a ) . (D4)
(2n ) +

( n L —1—)!I (2L + 1 )!]

The evaluation of the integrals for the L =J states is
straightforward, because, for these wave functions,

Then,
6

bE, (1 'So) =
I I+y~+1n( —,'a )],

bE, (n 'LI )

mes 9n —3L(L +1)
64n~ L(2L+3)(L +1)(2L +1)(2L—1)

bE, ((L+1) LL)

ma 3

64L(L + 1)~(2L + 1)

1 2(L +2)
L(2L+1)

Adding these expressions to AE0, we get the results in
Eqs. (68).

The integrals for the L =J —1, (L =J+ 1) states are
more complicated due to the R+, (R ) functions. For
L =J—1, the Ccomponent of 5U+0is

(5UWO)~ E02N 2m a 4ia&J(J+ I )

E0 p
+ 2J+1 dp

J+1-
p

+J+11JM (D7)

Then,

2J+1
L+2—6

4a 5A( —',p) e
p+ ct

2m+ a Rz + 4ia&J(J+I) dQI

E0 p
+ 2J+1 +

dp

J+1—

This integral can be simplified considerably by using the same trick as in Appendix C to eliminate all but one of the

R+ terms. Integrating by parts and using Eq. (12b), we have

f R+dp=4J(J+1) f R dp, (D9)
0 0

and

dQ,
Q, dp=2&J(J+I) f R + —Q, dp,

p 0, dp p
(D 10)

R Rf dp=4J f dp+2

Then,

1/2 R R+
dp

0 p
(D 1 1)

2L+ 1 25

(0'o~5U+o)=4aX f 2a ((I S) —p) e + —R R
0 (p+a ) p 2&J(J+I) dp (D12)

So far, no approximations have been made in the integrand. To leading order (for non-S states), we can use the ap-
proximation (45) for R+, as well as approximating the (p+a ) factors in the integrand by p . Then we get

mbE, ((L+1) LL+, )=— 1+ (L &0) .
64 L(L+1)4(2L+1)~ (L+1)(2L+3) (D13)

For the 1 SI state, we have to be more careful about making approximations in Eq. (D12); otherwise, the integral
will diverge logarithmically at p=0, which indicates an e in+ term in AE1. Since this integration is more involved
than the ones above, we will give some of the details of the calculation. We have



43 SOME APPROXIMATE POSITRONIUM SOLUTIONS TO THE BREIT-. . . 1245

bE, (1 Si)
oo p , . a4 , +

p+ cL p+ (x

22m+ cx

Ep
2 e -~'4 2 2

0 0

(D14)

We can write this as

bE, (1 S, ) =I, +I2+I3

where

+5~2 ~ peI) =—— dp
o (p++2)2

6

16
[I+y&+In( —'a )]+O(ma 1na),

(D15)

(D16)

2alV

9E.
2m - p'e-«'1—
Ep o p+ cx

1 — +,F, (1,4;p l4)d p
p

6

[41n(2) ——']+O(ma Ina),
96 2 (D17)

4ma N /4 2m pX(p) 2 X(p)
e 1' 1— +0! dp .

3E o o p+ p+
[

(D18)

For the 1 S, wave function it is more convenient to use expression (B6) for X(p),

(
—

—,'p)"
X(p)= g, 2F& 1 1 n+4; = —,'e p &F&(1 3 p/4) (for p))a ) .

p+~2 „on!(n+3) ' ' ' ' p+o.2
(D19)

In the first term in (D18) we can set a in the denominator to zero and use the approximation above for X(p):

f e P dp= —,
' f e P &F&(13p/4)dp=4[1 —1n(2)] .X( )

p+~2 p
(D20)

For the second integral we have

X( )
oo (

—~ )" n 1 +—p/4
e P P dp= g &F& 1, 1,n+4; dp

o p+~~ „on!(n +3) o (p+~2)~ ' ' ' ' p+~2

—
p l'4 ( ——,

' )"
= —,

' f zF& 1, 1,4; dp+ g 2F&(1, 1,n+4;1)f p" 'e P/ dp
o (p+~2)2 p+~2 „,n!(n +3) o

k+1 —P/4 co
( 1 )n

(k+3)~ o ( + 2)" +2 n (n +2) (D21)

We have for the second summation

( —1)"

, n(n+2) (D22)

By integrating by parts k + 1 times,
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p a
e

~

p ~~ I
I

~ I

a
d

p e
~

p
k+1 —P/4 1 1 d k+1

P d
1 d

(
@+I p/4)g

0 ( + 2)k+2 (k+1)t 0 + 2 d k+I
p a p

@+I (
——) (k + 1)! e

—p/4 m

=0 (m!) (@+1—m)! 0 p+a
—p/4 k+i ( —

—,') (k+1)!= f "', dp+ y, ' f "e p-'"p--'dpp+a, (m!) (k+1 —m )!
k+1

= —[y~+ ln( —,'a') ]—g
1m

(D23)

where we have used the identity'

1)m+INi

, m(N —m)!m! i m
(D24)

in the second term. Then,
k+1 —p/4 oo k1 oo k t k+1

dp= —[ye+in( —'a )] ~
(k+3)t fo ( +a2)"+' ' ' ' (0+3)t (@+3)i m

= —
—,'[ye+in( —,'a )]— + —,

' (D25)

I3 is therefore

2

—,'+ —,
' ln(2) —

—,'yz —
—,
' ln( —,'a ) — +O(ma lna)

6

I = ma
12

(D26)

and AE, is

6

bE, (1 SI)=
2

—,', +ye+in( —,'a )+ (D27)

For L =7+1, we have

2m a 4ia&J(J+1) dQ0 + J—
0 I—j IJM

0 p P P

(5U+o)s
2J+1

(D28)

2m a . d~o J+1-
P+ —2ia

Eo P . dP P

Q2
(q/0~5U%'0) = — f [P+ +(2J+1)R+ ]

CX 0

I+1 R
+4a (1—50J) R+ R++

p 2 J(J+1) 'dp

(L +1)/L
2

2 1+
p

R
e 5/l(A, p)+(1—5 ) R R + 2&J(J+ 1)

=4aN f dp

(D29)

Approximating R by expression (51) and making other approximations in the integrand, the energy perturbation is

mabE, ((L+1) Li, )= L —3+
64L (L +1)4(4L 1) L(2L+1)—

4L
(L +1)(2L —1)

(L)1)
(D30)

EE, (2 Po)=
18 432

Again we can simplify the resulting integral for (40~5U+0), this time by using Eq. (13b) to eliminate the function R as
much as possible. The result is
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