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Resonances in mnonic systems
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A number of resonances, shape as well as Feshbach type, have been observed in atomic systems.
It is expected that similar types of resonances exist in muonic systems. Froelich and Szalewicz

[Phys. Lett. A 129, 321 (1988)] carried out a calculation for id' and obtained two resonances, for
J=0 and 1, just above the dp threshold. Our calculation, carried out with large basis sets and
different sets of nonlinear parameters, using the complex-rotation method, shows the existence of
Feshbach-type resonances below the n =2 threshold of tp and dp. Positions of these resonances
are in good agreement with the results of Hara and Ishihara [Phys. Rev. A 40, 4232 (1989)]. The
widths of these resonances are calculated.

A number of bound states of muonic systems, ppp,
pdp, ptp, ddt, ttp, and tdp, have been calculated during
the past few years. ' These states are important in the
catalysis of nuclear reactions in the presence of a negative
muon. The most important of these systems is tdp, in
which an energy release of 17.6 MeV takes place in each
reaction until p gets attached to the a particle, after ca-
talyzing an average of 150 reactions. This attachment,
called sticking, could be very small if fusion takes place
from a resonance state, which is formed due to the three-
body Coulomb interactions between the particles. The
resonances could also enhance the formation rates. A
number of resonances, shape as well as Feshbach type,
have been observed in atomic systems and extensive cal-
culations have been carried out for various systems. It is
expected that similar resonances exist in muonic systems.
Froelich and Szalewicz carried out a calculation of tdp
by the stabilization method. They observed a stable root
for J =0, as well as for J =1. They calculated the widths
of the states by analytic continuation of two nearly cross-
ing levels as a function of the complex parameter. They
found resonance parameters, position above tp and
width, 54.35 and 0.74 eV for J =0, and 54.63 agd 2.04 eV
for J =1. We carried out a calculation using Hylleraas-
type wave functions, and we find stabilized roots for J =0

I

and 1. We look for roots below the n =2 thresholds of tp
and dp by extending our calculation to calculate the
complex eigenvalue E„—iI /2 by the complex-rotation
method.

It is well known that 2s and 2p degeneracy produces an
attractive dipole potential, " which behaves asymptoti-
cally as a/r and—can support an infinite number of
resonances. If the relativistic corrections, e.g. , the Lamb
shift, are taken into account, the degeneracy is broken
and the number of resonances is finite. We do find stabi-
lized roots for J =0 and 1 just below the n =2 threshold
of tp and dp. These roots continue to exist in the calcu-
lation carried out using the complex-rotation method and
therefore these resonances can be predicted with
confidence. These are Feshbach-type or closed-channel
resonances and have been obtained in e+-H and e -H
systems in a number of theoretical calculations using
different techniques.

A Hylleraas type of wave function used by Hu ' in the
calculation of binding energies of the td p system has been
used in these calculations. The wave function for J =0 is

where

f, = g Ci „Pi~„(ai,a2, a3, b„b2, b3)+ g D/~ffg/m„(ei ep e3 gi g2 g3),
l, m, n I, m, n

mWn

and
lm (ai az, a3, bl b2 b3) r12(ri3r23+r13r23)[exp( —airiz —azri3 —a3r23)+exp( bi "i2 b2ri3 b3rz3)]

Q& „(e„ez,e3;g„g2,g3)="12( 13 23 r13 23)[ xp( el 12 2r13 3 23)+ p( glr12 g2 13 g3 23)]

The indices i = 1,2, 3 refer to triton, deuteron, and muon,
respectively, and r, are interparticle distances. The a' s,
b's, e's, and g's are the nonlinear parameters and the a' s
and b's are subjected to cusp constraints described by

Hu. "
The wave function for J = 1 is

'p =f, r i2+f2r,

43 1229 1991 The American Physical Society



1230 C. Y. HU AND A. K. BHATIA 43

TABLE I. Nonlinear parameters' used in J =0 states. The units are the inverse muon Bohr radius.

Set' I
Set II
Set III
Set IV
Set V
Set VI
Set VII
Set VIII

a) =bl

0.301
0.43
0.53
0.63
0.73
0.83
0.93
1.23

b2

0.7265
0.7265
0.7265
0.7265 .
0.732
0.7265
0.7265
0.7265

b3

1.183
1.183
1.183
1.163
1.163
1 ~ 183
1.183
1.183

e) =gl

0.757
0.457
0.557
0.657
0.657
0.657
0.657
0.657

0.491
0.975
0.973
0.975
0.975
0.973
0.973
0.973

'The other parameters are the same for the seven sets and they are a2=1.201, a3=0.71, e2 =0.975,
e3 =0.39, g~ =0.491, and g3 =1.221.
a3 =0.73, g& =1.09.

where f &
is of the same form as f &

in 4 for J =0 and

l, m, n

lmn Qlmn (P I ~P2~P3 i 91r 'V2'V3 )
l, m, n
mWn

c's, d's, p's, and q's are the additional nonlinear parame-
ters, and r is the distance of p from the center-of-mass of
t and d.

Eigenvalues are calculated by diagonalizing the expres-
sion

E = ( O'H'0 ) /( %%' ), (3)

H= T exp( —2ig)+ V exp( i 8) . — (4)

Again the eigenvalues are obtained by diagonalizing the
expression given in Eq. (3), wherein now the eigenvalue
and eigenvectors are complex. Since the rotated Hamil-

where H is the Hamiltonian of the system.
In addition to bound states of the system, we obtain

roots in the scattering region. The eigenvalues have been
scaled to 206.768262 Ry (1 Ry=13.605698 eV), the
binding energy of tp with I,= ~. Consequently,
E(tp)= —0.963748 and E(dp, )= —0.946671. If a root
indicates a real resonance, then it should continue to exist
when the coordinates are rotated through an angle 0 us-
ing the transformation r, =r," exp(ig"), and the Hamil-
tonian is continued analytically in the complex energy
plane. The kinetic and potential parts scale as
exp( 2i 9) and —exp( —i9), respectively, and the Hamil-
tonian can be written as

tonian is complex, complex eigenvalues are obtained. In
this complex-rotation method, a resonance, if it exists, is
"uncovered" for 0 )arg(E) /2 and stays at the same
place, while the other roots follow the branch cut, as the
cut associated with the threshold is rotated through vari-
ous angles. The eight sets of nonlinear parameters used
in the calculation are given in Table I. The angle 0's used
in the calculations for J =0 and 1, and the labels in the
curves, are given in Table II.

In Fig. 1, we plot complex eigenvalues for J =0, using
1101 terms in the wave function for nonlinear parameters
of set III given in Table I, and we see clearly that the
curve has a loop giving an average value of
( —0.318 382 —i 0 64 X 10 . ) for E„—il /2. The other
sets of nonlinear parameters give curves crossing in the
same region, but for clarity only one curve is shown.
This certainly indicates a Feshbach-type resonance at
1815.560 eV above the tp ground state and I =0.036 eV.
The average relative distances for this resonance are
v,&=10.19, v,&=6.29, and r&&=6.44 in muonic units of
length.

In Fig. 2, we plot complex eigenvalues for J =1, using
1070 terms in the wave function for nonlinear parameters
of set IV given in Table III and we see that the curve
has a loop giving an average value
( —0.3164778—i0. 125X10 ) for the resonance param-
eters. Again, for clarity only one curve is shown even
though the other curves have crossings in the same re-
gion. This indicates a Feshbach-type resonance at
1820.920 eV above the tp ground state and I =0.007 eV.
The positions for the lowest resonances in J =0 and 1

TABLE II. Angles (0=45/3 in degrees) used in Eq. (4).

Label Label Label Label

90
45
24
12
9
8

b
C

d
e

6
5

4.8
4

3.43
3
2

90
45
24
12
10
9
8

a
b
C

d

f
e

h

7
6.6
6

5.4
5

4.8
4

3.43
3

q
r
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FIG. 1. J=0 rotation paths through various angles for the complex eigenvalue below n =2 thresholds. The curve is for set III,
which is given in Table I. The labels refer to angles of rotation (cf. Table II).
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FIG. 2. J=1 rotation paths through various angles for the complex eigenvalue below n =2 thresholds. The curve is for set IV
given in Table II. The labels refer to the angles of rotation (cf. Table II).
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TABLE III. Nonlinear parameters used in J =1 states (the
other parameters are the same for the three sets and they are
a2 =0.627, a3 =0.599, b3 = 1.294, e& =g& =p& =q& =0.197,
e2 =0.801, e3 =0.205, g2 =0.801, g3 =0.205, c2 =0.871,
C3 0 1 89 d2:0 0998 d3:0 773 1y pp: 1 121 p3:0.145,
q2=0. 541, and q3=0. 731). The units are the inverse Bohr ra-
dius.

Set I
Set II
Set III
Set IV
Set V
Set VI
Set VII

a, =b)

0.302
0.402
0.602
0.702
0.802
0.902
0.902

1.303
1.303
1.303
1.303
1.300
1.303
1.303

cI =d)

0.508
0.508
0.508
0.508
0.588
0.708
0.588

The above relations are strictly valid for higher reso-
nances that do not penetrate deep and when the n/r po-
tential is the dominant potential. It should be noticed
that higher resonances for J=O and 1 get wider com-
pared to the lower ones. This is contrary to what is seen
for atomic systems. This could be due to the coupling
with 3s, 4s, . . . , 3p, 4p, . . . , states, the coupling with 1s
being weak, " and the first few resonances are not strictly
due to the —e/r potential, or the results have not yet
converged for the number of terms used in the wave func-
tion for J=0 and 1.

The complex-rotation method has the advantage that
the total widths are obtained along with the positions,
though partial widths cannot be obtained without calcu-

agree with those obtained by Hara and Ishihara. ' The
higher resonances in J =0 and 1 have also been calculat-
ed and our final results are given in Table IV along with
those obtained by Hara and Ishihara. ' The agreement
for the positions between the two calculations is very
good, but there is no other calculation for widths avail-
able at present for comparison. The positions of the
higher resonances can be determined from

E„+&=E„exp(—2m/a), n =1,2, 3, . . .

where E, 's are defined with respect to the n =2 threshold
of tp. A similar relation' is expected to hold for widths:

I „+,=I „exp( 2vrla), n —=1,2, 3, . . .

TABLE IV. Resonance parameters and their comparison
with the results of Hara and Ishihara (Ref. 14).

Resonance Position' Width Hara and Ishihara

1815.561
1893.929
1955.046
1820.920
1898.285
1958.491
2000.036

0.036
0.076
1.125
0.007
0.084
0.284

1815.539
1893.707
1954.336
1820.884
1898.056
1957.757
1999.198

lating the continuum functions. However, a better ap-
proach for calculating these Feshbach-type or closed-
channel resonances would be the use of the Feshbach
projection operator formalism, which has been very suc-
cessfully applied to three-particle systems, and in this
approach partial widths can also be calculated, provided
scattering functions are known. But one of the problems,
which is also encountered in e+-H, is the nonorthogonal-
ity of the tp and dp ground-state wave functions. This
makes it difficult to write a projection operator to project
out the lower states from the wave function. However,
Dirks and Hahn' tried to overcome this difficulty and we
hope to apply their method in the near future to the reso-
nances in the tdp system and also to other muonic sys-
tems.

The wave functions given here have the capability,
with appropriate nonlinear parameters, to provide accu-
rate results for the bound states' and predict resonances.
We conclude that there are resonances below the n =2
threshold of dp and tp. We hope this paper will en-
courage further investigation, using different methods, as
to why widths of the Feshbach resonances get larger as
we go to the higher ones.
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'Resonance positions are with respect to the n =1 threshold of
tp. The units are eV.
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